code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" assert ( isinstance(snake_case__, snake_case__ ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 __lowercase ,__lowercase : Optional[Any] = 1, 1 for _ in range(number_of_steps - 1 ): __lowercase ,__lowercase : int = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
575
"""simple docstring""" def a__ ( ) -> int: return 1 def a__ ( snake_case__ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a__ ( snake_case__ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(snake_case__ ) def a__ ( snake_case__ ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(snake_case__ ) def a__ ( snake_case__ ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(snake_case__ ) def a__ ( snake_case__ ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(snake_case__ ) def a__ ( snake_case__ ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(snake_case__ ) def a__ ( snake_case__ ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(snake_case__ ) def a__ ( snake_case__ = 2_00 ) -> int: return two_pound(snake_case__ ) if __name__ == "__main__": print(solution(int(input().strip())))
543
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def A__ ( self ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=lowerCAmelCase , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def snake_case__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def snake_case__ ( ) -> Any: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCamelCase ( lowercase__ ): '''simple docstring''' @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): import apache_beam as beam UpperCAmelCase_ = beam.io.parquetio.WriteToParquet UpperCAmelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase_ = partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A__ ( self ): UpperCAmelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase_ = NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , lowerCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , lowerCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
23
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : List[str] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = RealmTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase__ : Any = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) UpperCAmelCase__ : str = do_lower_case UpperCAmelCase__ : Tuple = strip_accents UpperCAmelCase__ : Tuple = tokenize_chinese_chars UpperCAmelCase__ : Union[str, Any] = normalizer_class(**_lowerCAmelCase ) UpperCAmelCase__ : Dict = do_lower_case def __UpperCAmelCase ( self , _lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH UpperCAmelCase__ : Optional[int] = text UpperCAmelCase__ : Optional[int] = kwargs.pop("""text_pair""" , _lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = kwargs.pop("""return_tensors""" , _lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_lowerCAmelCase ): if batch_text_pair is not None: UpperCAmelCase__ : str = batch_text_pair[idx] else: UpperCAmelCase__ : Any = None UpperCAmelCase__ : str = super().__call__(_lowerCAmelCase , _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = encoded_candidates.get("""input_ids""" ) UpperCAmelCase__ : str = encoded_candidates.get("""attention_mask""" ) UpperCAmelCase__ : Union[str, Any] = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowerCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowerCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = {key: item for key, item in output_data.items() if len(_lowerCAmelCase ) != 0} return BatchEncoding(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): UpperCAmelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : Any = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : List[str] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
79
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Union[str, Any] = {} __magic_name__ : Tuple = job["""started_at"""] __magic_name__ : List[str] = job["""completed_at"""] __magic_name__ : str = date_parser.parse(_A ) __magic_name__ : int = date_parser.parse(_A ) __magic_name__ : List[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __magic_name__ : Tuple = start __magic_name__ : Optional[Any] = end __magic_name__ : int = duration_in_min return job_info def UpperCamelCase ( _A, _A=None ): """simple docstring""" __magic_name__ : Optional[int] = None if token is not None: __magic_name__ : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} __magic_name__ : str = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __magic_name__ : List[Any] = requests.get(_A, headers=_A ).json() __magic_name__ : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(_A ) for job in result["""jobs"""]} ) __magic_name__ : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_A ): __magic_name__ : Optional[Any] = requests.get(url + f'&page={i + 2}', headers=_A ).json() job_time.update({job["""name"""]: extract_time_from_single_job(_A ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __magic_name__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __magic_name__: Dict = parser.parse_args() __magic_name__: Tuple = get_job_time(args.workflow_run_id) __magic_name__: Union[str, Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v['duration']}""")
324
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _a ( lowerCAmelCase__ ): __a : Dict = "camembert" def __init__( self : str , lowercase : str=30_522 , lowercase : List[str]=768 , lowercase : List[Any]=12 , lowercase : List[Any]=12 , lowercase : List[str]=3_072 , lowercase : Optional[Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : int=0.1 , lowercase : Union[str, Any]=512 , lowercase : Optional[int]=2 , lowercase : Optional[int]=0.02 , lowercase : str=1E-12 , lowercase : List[Any]=1 , lowercase : List[Any]=0 , lowercase : int=2 , lowercase : List[Any]="absolute" , lowercase : Optional[int]=True , lowercase : List[Any]=None , **lowercase : int , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class _a ( lowerCAmelCase__ ): @property def A ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
712
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case_ (_a : List[str] ): UpperCAmelCase = {} UpperCAmelCase = job['''started_at'''] UpperCAmelCase = job['''completed_at'''] UpperCAmelCase = date_parser.parse(_a ) UpperCAmelCase = date_parser.parse(_a ) UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase = start UpperCAmelCase = end UpperCAmelCase = duration_in_min return job_info def snake_case_ (_a : str , _a : List[str]=None ): UpperCAmelCase = None if token is not None: UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase = requests.get(_a , headers=_a ).json() UpperCAmelCase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(_a ) for job in result['''jobs''']} ) UpperCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(_a ): UpperCAmelCase = requests.get(url + F"&page={i + 2}" , headers=_a ).json() job_time.update({job['''name''']: extract_time_from_single_job(_a ) for job in result['''jobs''']} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') A =parser.parse_args() A =get_job_time(args.workflow_run_id) A =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
358
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = """data2vec-vision""" def __init__( self , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=224 , __lowercase=16 , __lowercase=3 , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=0.1 , __lowercase=0.1 , __lowercase=True , __lowercase=[3, 5, 7, 11] , __lowercase=[1, 2, 3, 6] , __lowercase=True , __lowercase=0.4 , __lowercase=256 , __lowercase=1 , __lowercase=False , __lowercase=255 , **__lowercase , ) -> Union[str, Any]: super().__init__(**__lowercase) __UpperCamelCase :Union[str, Any] = hidden_size __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :Optional[int] = intermediate_size __UpperCamelCase :List[str] = hidden_act __UpperCamelCase :List[Any] = hidden_dropout_prob __UpperCamelCase :int = attention_probs_dropout_prob __UpperCamelCase :Tuple = initializer_range __UpperCamelCase :List[str] = layer_norm_eps __UpperCamelCase :Union[str, Any] = image_size __UpperCamelCase :Any = patch_size __UpperCamelCase :Tuple = num_channels __UpperCamelCase :Any = use_mask_token __UpperCamelCase :str = use_absolute_position_embeddings __UpperCamelCase :Optional[Any] = use_relative_position_bias __UpperCamelCase :Any = use_shared_relative_position_bias __UpperCamelCase :Optional[Any] = layer_scale_init_value __UpperCamelCase :Tuple = drop_path_rate __UpperCamelCase :Dict = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCamelCase :List[Any] = out_indices __UpperCamelCase :Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCamelCase :Tuple = use_auxiliary_head __UpperCamelCase :List[Any] = auxiliary_loss_weight __UpperCamelCase :Dict = auxiliary_channels __UpperCamelCase :List[str] = auxiliary_num_convs __UpperCamelCase :Dict = auxiliary_concat_input __UpperCamelCase :Any = semantic_loss_ignore_index class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[int] = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCamelCase__ ( self) -> float: return 1E-4
167
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowercase = None __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __lowercase = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } __lowercase = '''▁''' class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = BigBirdTokenizer a__ : List[str] = ["""input_ids""", """attention_mask"""] a__ : List[int] = [] def __init__( self , __lowercase=None , __lowercase=None , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="[SEP]" , __lowercase="[MASK]" , __lowercase="[CLS]" , **__lowercase , ) -> int: __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else bos_token __UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else eos_token __UpperCamelCase :int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else unk_token __UpperCamelCase :str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else pad_token __UpperCamelCase :Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else cls_token __UpperCamelCase :Union[str, Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else sep_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) __UpperCamelCase :str = vocab_file __UpperCamelCase :int = False if not self.vocab_file else True def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :int = [self.sep_token_id] __UpperCamelCase :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :Dict = [self.sep_token_id] __UpperCamelCase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :Dict = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowercase): copyfile(self.vocab_file , __lowercase) return (out_vocab_file,)
167
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=13 , __UpperCamelCase : Any=30 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : str=3 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Optional[int]=10 , __UpperCamelCase : Tuple=0.02 , __UpperCamelCase : int=3 , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[int]=2 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Any ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): _UpperCAmelCase = TFDeiTModel(config=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : str ): _UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = TFDeiTForMaskedImageModeling(__UpperCamelCase ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = TFDeiTForImageClassification(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = TFDeiTForImageClassification(__UpperCamelCase ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE : List[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : str = False def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = TFDeiTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Dense ) ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple=False ): _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCAmelCase__ ( self : List[Any] ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFDeiTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( ) -> str: _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : str ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="tf" ) # forward pass _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
129
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class __SCREAMING_SNAKE_CASE ( lowercase): @add_start_docstrings(__UpperCamelCase ) def __call__( self : Optional[int] , __UpperCamelCase : torch.LongTensor , __UpperCamelCase : torch.FloatTensor , **__UpperCamelCase : str ): raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] = None ): _UpperCAmelCase = max_length _UpperCAmelCase = max_position_embeddings @add_start_docstrings(__UpperCamelCase ) def __call__( self : Union[str, Any] , __UpperCamelCase : torch.LongTensor , __UpperCamelCase : torch.FloatTensor , **__UpperCamelCase : Any ): _UpperCAmelCase = input_ids.shape[-1] _UpperCAmelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : int ): warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , __UpperCamelCase , ) _UpperCAmelCase = start_length _UpperCAmelCase = max_new_tokens _UpperCAmelCase = start_length + max_new_tokens @add_start_docstrings(__UpperCamelCase ) def __call__( self : Union[str, Any] , __UpperCamelCase : torch.LongTensor , __UpperCamelCase : torch.FloatTensor , **__UpperCamelCase : List[str] ): return input_ids.shape[-1] >= self.max_length class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : Union[str, Any] , __UpperCamelCase : float , __UpperCamelCase : Optional[float] = None ): _UpperCAmelCase = max_time _UpperCAmelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__UpperCamelCase ) def __call__( self : Union[str, Any] , __UpperCamelCase : torch.LongTensor , __UpperCamelCase : torch.FloatTensor , **__UpperCamelCase : Any ): return time.time() - self.initial_timestamp > self.max_time class __SCREAMING_SNAKE_CASE ( lowercase): @add_start_docstrings(__UpperCamelCase ) def __call__( self : int , __UpperCamelCase : torch.LongTensor , __UpperCamelCase : torch.FloatTensor , **__UpperCamelCase : Optional[Any] ): return any(criteria(__UpperCamelCase , __UpperCamelCase ) for criteria in self ) @property def UpperCAmelCase__ ( self : Dict ): for stopping_criterium in self: if isinstance(__UpperCamelCase , __UpperCamelCase ): return stopping_criterium.max_length elif isinstance(__UpperCamelCase , __UpperCamelCase ): return stopping_criterium.max_length return None def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> StoppingCriteriaList: _UpperCAmelCase = stopping_criteria.max_length _UpperCAmelCase = deepcopy(_lowerCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCAmelCase ) ) return new_stopping_criteria
129
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCAmelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , *A_ , **A_ )-> None: '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
3
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Dict = LEDTokenizer A_ : Union[str, Any] = LEDTokenizerFast A_ : Tuple = True def __UpperCamelCase ( self : str ) -> str: super().setUp() A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) def __UpperCamelCase ( self : str , **__UpperCamelCase : str ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : List[str] , **__UpperCamelCase : List[Any] ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) -> Dict: return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Union[str, Any] ) -> Any: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __UpperCamelCase ( self : str ) -> str: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __UpperCamelCase ( self : str ) -> Optional[Any]: A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] A = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = tokenizer(__UpperCamelCase , max_length=len(__UpperCamelCase ) , padding=__UpperCamelCase , return_tensors='pt' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A = batch.input_ids.tolist()[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> str: A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors='pt' ) self.assertIn('input_ids' , __UpperCamelCase ) self.assertIn('attention_mask' , __UpperCamelCase ) self.assertNotIn('labels' , __UpperCamelCase ) self.assertNotIn('decoder_attention_mask' , __UpperCamelCase ) @require_torch def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: A = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = tokenizer(text_target=__UpperCamelCase , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def __UpperCamelCase ( self : int ) -> Optional[Any]: A = ['A long paragraph for summarization.'] A = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = tokenizer(__UpperCamelCase , return_tensors='pt' ) A = tokenizer(text_target=__UpperCamelCase , return_tensors='pt' ) A = inputs['input_ids'] A = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A = ['Summary of the text.', 'Another summary.'] A = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase ) A = [[0] * len(__UpperCamelCase ) for x in encoded_output['input_ids']] A = tokenizer.pad(__UpperCamelCase ) self.assertSequenceEqual(outputs['global_attention_mask'] , __UpperCamelCase ) def __UpperCamelCase ( self : str ) -> int: pass def __UpperCamelCase ( self : Dict ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A = 'A, <mask> AllenNLP sentence.' A = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) A = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) A = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) A = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
106
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCamelCase : lowerCamelCase : torch.Tensor # [batch_size x 3] lowerCamelCase : torch.Tensor # [batch_size x 3] lowerCamelCase : torch.Tensor # [batch_size x 3] lowerCamelCase : torch.Tensor # [batch_size x 3] lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float lowerCamelCase : float lowerCamelCase : Tuple[int] def __a ( self ) -> Union[str, Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __a ( self ) -> Any: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __a ( self ) -> str: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __a ( self ) -> torch.Tensor: a : int = torch.arange(self.height * self.width ) a : Optional[int] = torch.stack( [ pixel_indices % self.width, torch.div(lowerCAmelCase__ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def __a ( self ) -> Optional[Any]: a, *a : Dict = self.shape a : Any = int(np.prod(lowerCAmelCase__ ) ) a : Optional[int] = self.get_image_coords() a : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) a : Dict = self.get_camera_rays(lowerCAmelCase__ ) a : Tuple = rays.view(lowerCAmelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __a ( self , lowerCAmelCase__ ) -> torch.Tensor: a, *a, a : List[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] a : Optional[int] = coords.view(lowerCAmelCase__ , -1 , 2 ) a : Dict = self.resolution() a : Optional[Any] = self.fov() a : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 a : str = fracs * torch.tan(fov / 2 ) a : Tuple = fracs.view(lowerCAmelCase__ , -1 , 2 ) a : List[Any] = ( self.z.view(lowerCAmelCase__ , 1 , 3 ) + self.x.view(lowerCAmelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCAmelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) a : Dict = directions / directions.norm(dim=-1 , keepdim=lowerCAmelCase__ ) a : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCAmelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCAmelCase__ , *lowerCAmelCase__ , 2 , 3 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCAmelCase__ , height=lowerCAmelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->DifferentiableProjectiveCamera: '''simple docstring''' a : int = [] a : str = [] a : List[str] = [] a : Optional[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): a : Optional[Any] = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) a : Union[str, Any] = -z * 4 a : Tuple = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) a : List[Any] = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
31
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 200 ) ->int: '''simple docstring''' a : Dict = [1, 2, 5, 10, 20, 50, 100, 200] a : Optional[Any] = [0] * (pence + 1) a : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
31
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand SCREAMING_SNAKE_CASE__ : List[Any] =( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) SCREAMING_SNAKE_CASE__ : List[Any] =( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) SCREAMING_SNAKE_CASE__ : List[str] =( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) SCREAMING_SNAKE_CASE__ : Tuple =( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) SCREAMING_SNAKE_CASE__ : Optional[int] =( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) SCREAMING_SNAKE_CASE__ : Tuple =( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) SCREAMING_SNAKE_CASE__ : Optional[int] =( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def UpperCamelCase ( ) ->List[str]: _lowerCamelCase, _lowerCamelCase : Dict = randrange(len(SCREAMING_SNAKE_CASE_ ) ), randrange(len(SCREAMING_SNAKE_CASE_ ) ) _lowerCamelCase : Dict = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] _lowerCamelCase, _lowerCamelCase : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 100 ) ->List[Any]: return (generate_random_hand() for _ in range(SCREAMING_SNAKE_CASE_ )) @pytest.mark.parametrize('''hand, expected''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: assert PokerHand(SCREAMING_SNAKE_CASE_ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->str: assert PokerHand(SCREAMING_SNAKE_CASE_ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: _lowerCamelCase : Dict = PokerHand(SCREAMING_SNAKE_CASE_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: assert PokerHand(SCREAMING_SNAKE_CASE_ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->str: assert PokerHand(SCREAMING_SNAKE_CASE_ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: assert PokerHand(SCREAMING_SNAKE_CASE_ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE_ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[Any]: assert PokerHand(SCREAMING_SNAKE_CASE_ ).compare_with(PokerHand(SCREAMING_SNAKE_CASE_ ) ) == expected def UpperCamelCase ( ) ->Tuple: _lowerCamelCase : Tuple = [PokerHand(SCREAMING_SNAKE_CASE_ ) for hand in SORTED_HANDS] _lowerCamelCase : int = poker_hands.copy() shuffle(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : str = chain(sorted(SCREAMING_SNAKE_CASE_ ) ) for index, hand in enumerate(SCREAMING_SNAKE_CASE_ ): assert hand == poker_hands[index] def UpperCamelCase ( ) ->str: # Test that five high straights are compared correctly. _lowerCamelCase : List[str] = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=SCREAMING_SNAKE_CASE_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase ( ) ->Tuple: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _lowerCamelCase : Optional[int] = PokerHand('''2C 4S AS 3D 5C''' ) _lowerCamelCase : int = True _lowerCamelCase : str = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase ( ) ->int: # Problem number 54 from Project Euler # Testing from poker_hands.txt file _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = os.path.abspath(os.path.dirname(SCREAMING_SNAKE_CASE_ ) ) _lowerCamelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , '''poker_hands.txt''' ) with open(SCREAMING_SNAKE_CASE_ ) as file_hand: for line in file_hand: _lowerCamelCase : Any = line[:14].strip() _lowerCamelCase : List[Any] = line[15:].strip() _lowerCamelCase, _lowerCamelCase : Tuple = PokerHand(SCREAMING_SNAKE_CASE_ ), PokerHand(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = player.compare_with(SCREAMING_SNAKE_CASE_ ) if output == "Win": answer += 1 assert answer == 376
434
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase ( ) ->Optional[int]: _lowerCamelCase : int = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) _lowerCamelCase : Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go _lowerCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run _lowerCamelCase : List[str] = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
434
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class __lowercase : def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = question_encoder __snake_case = generator __snake_case = self.question_encoder def _a ( self , lowercase_) -> List[str]: if os.path.isfile(lowercase_): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = os.path.join(lowercase_ , 'question_encoder_tokenizer') __snake_case = os.path.join(lowercase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(lowercase_) self.generator.save_pretrained(lowercase_) @classmethod def _a ( cls , lowercase_ , **lowercase_) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __snake_case = kwargs.pop('config' , lowercase_) if config is None: __snake_case = RagConfig.from_pretrained(lowercase_) __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=lowercase_ , generator=lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> Tuple: return self.current_tokenizer(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.generator.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.generator.decode(*lowercase_ , **lowercase_) def _a ( self) -> int: __snake_case = self.question_encoder def _a ( self) -> Optional[int]: __snake_case = self.generator def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase_ , ) if max_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) __snake_case = labels['input_ids'] return model_inputs
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} __A : str = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __A : Dict = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } __A : Dict = "▁" class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_ = None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) _A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _A = len(self.sp_model ) - 1 _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ): return len(self.sp_model ) def lowerCAmelCase__ ( self ): _A = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(snake_case_ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , snake_case_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _A = True _A = [] else: current_sub_tokens.append(snake_case_ ) _A = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __getstate__( self ): _A = self.__dict__.copy() _A = None return state def __setstate__( self , snake_case_ ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _A = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
27
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig A_ = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = "ernie_m" A__ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , _lowerCAmelCase = 25_0002 , _lowerCAmelCase = 768 , _lowerCAmelCase = 12 , _lowerCAmelCase = 12 , _lowerCAmelCase = 3072 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 514 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1 , _lowerCAmelCase = 1E-05 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=0.0 , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = classifier_dropout lowerCamelCase__ = is_decoder lowerCamelCase__ = act_dropout
719
def __UpperCamelCase ( a = 100) ->int: lowerCamelCase__ = (n * (n + 1) // 2) ** 2 lowerCamelCase__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
360
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCamelCase__ ( unittest.TestCase ): def __lowercase( self : int ) -> str: debug_launcher(test_script.main ) def __lowercase( self : Any ) -> Any: debug_launcher(test_ops.main )
344
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _SCREAMING_SNAKE_CASE : Any = """sshleifer/bart-tiny-random""" _SCREAMING_SNAKE_CASE : List[str] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase__ ( unittest.TestCase ): @cached_property def __lowercase( self : str ) -> Dict: return AutoConfig.from_pretrained(__lowerCamelCase ) def __lowercase( self : Optional[int] ) -> int: UpperCamelCase__ ,*UpperCamelCase__ : Dict = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def __lowercase( self : List[Any] ) -> Optional[Any]: UpperCamelCase__ ,*UpperCamelCase__ : Optional[Any] = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase ) def __lowercase( self : str ) -> List[Any]: UpperCamelCase__ ,*UpperCamelCase__ : str = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=__lowerCamelCase ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def __lowercase( self : Union[str, Any] ) -> int: UpperCamelCase__ ,*UpperCamelCase__ : int = create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def __lowercase( self : Union[str, Any] ) -> Tuple: with self.assertRaises(__lowerCamelCase ): create_student_by_copying_alternating_layers(__lowerCamelCase, tempfile.mkdtemp(), e=__lowerCamelCase, d=__lowerCamelCase )
344
1
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if not (isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in range(1, texta_length + 1 ): for j in range(1, texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase = i __lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
421
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def a_ ( lowerCAmelCase_ : Features ): __lowerCAmelCase = np.inf def set_batch_size(lowerCAmelCase_ : FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and feature.dtype == "binary": __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase_, lowerCAmelCase_ ) return None if batch_size is np.inf else batch_size class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : NestedDataStructureLike[PathLike] , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : int , ) -> str: super().__init__( lowerCAmelCase_ , split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = path_or_paths if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else {self.split: path_or_paths} __lowerCAmelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCAmelCase = Parquet( cache_dir=lowerCAmelCase_ , data_files=lowerCAmelCase_ , features=lowerCAmelCase_ , hash=lowerCAmelCase_ , **lowerCAmelCase_ , ) def lowercase ( self : Optional[int] ) -> int: # Build iterable dataset if self.streaming: __lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , ) __lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Dataset , lowerCAmelCase_ : Union[PathLike, BinaryIO] , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : int , ) -> Any: __lowerCAmelCase = dataset __lowerCAmelCase = path_or_buf __lowerCAmelCase = batch_size or get_writer_batch_size(dataset.features ) __lowerCAmelCase = parquet_writer_kwargs def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCAmelCase = self._write(file_obj=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **self.parquet_writer_kwargs ) else: __lowerCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=lowerCAmelCase_ , **self.parquet_writer_kwargs ) return written def lowercase ( self : List[Any] , lowerCAmelCase_ : BinaryIO , lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = 0 __lowerCAmelCase = parquet_writer_kwargs.pop('path_or_buf' , lowerCAmelCase_ ) __lowerCAmelCase = self.dataset.features.arrow_schema __lowerCAmelCase = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ , **lowerCAmelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCAmelCase_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCAmelCase = query_table( table=self.dataset._data , key=slice(lowerCAmelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCAmelCase_ ) written += batch.nbytes writer.close() return written
421
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : Tuple = None if token is not None: _a : Union[str, Any] = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _a : List[str] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _a : str = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _a : int = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _a : Optional[int] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _a : Union[str, Any] = requests.get(url + f"""&page={i + 2}""" , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : int = None if token is not None: _a : int = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _a : Any = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _a : str = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _a : str = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) _a : Optional[int] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _a : str = requests.get(url + f"""&page={i + 2}""" , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : Union[str, Any] = None if token is not None: _a : Tuple = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _a : Dict = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _a : Tuple = result.headers["Location"] _a : int = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , f"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fp: fp.write(response.content ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : List[str] = [] _a : Any = [] _a : Dict = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _a : int = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _a : Optional[int] = line[: line.index(''': ''' )] _a : str = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed _a : Union[str, Any] = line[len('''FAILED ''' ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _a : int = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` """ f"""and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) _a : Tuple = None if job_name and job_links: _a : Any = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _a : List[Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : Tuple = [] _a : List[Any] = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : Any = Counter() counter.update([x[1] for x in logs] ) _a : Any = counter.most_common() _a : Optional[Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: _a : Any = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _a : List[Any] = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCamelCase_ ( UpperCamelCase_ ): _a : List[str] = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): _a : Optional[int] = test.split('''/''' )[2] else: _a : Tuple = None return test def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ): _a : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _a : Union[str, Any] = [x for x in logs if x[2] is not None] _a : Optional[Any] = {x[2] for x in logs} _a : Union[str, Any] = {} for test in tests: _a : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _a : Tuple = counter.most_common() _a : List[str] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _a : Any = sum(error_counts.values() ) if n_errors > 0: _a : Dict = {"count": n_errors, "errors": error_counts} _a : str = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def lowerCamelCase_ ( UpperCamelCase_ ): _a : List[Any] = "| no. | error | status |" _a : str = "|-:|:-|:-|" _a : int = [header, sep] for error in reduced_by_error: _a : Optional[int] = reduced_by_error[error]["count"] _a : Optional[Any] = f"""| {count} | {error[:100]} | |""" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( UpperCamelCase_ ): _a : Dict = "| model | no. of errors | major error | count |" _a : Tuple = "|-:|-:|-:|-:|" _a : List[str] = [header, sep] for model in reduced_by_model: _a : Optional[int] = reduced_by_model[model]["count"] _a : List[Any] = list(reduced_by_model[model]['''errors'''].items() )[0] _a : Optional[Any] = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __UpperCAmelCase : Tuple = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __UpperCAmelCase : Union[str, Any] = get_job_links(args.workflow_run_id, token=args.token) __UpperCAmelCase : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __UpperCAmelCase : List[Any] = k.find(' / ') __UpperCAmelCase : Any = k[index + len(' / ') :] __UpperCAmelCase : List[Any] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __UpperCAmelCase : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __UpperCAmelCase : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __UpperCAmelCase : List[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __UpperCAmelCase : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __UpperCAmelCase : Any = reduce_by_error(errors) __UpperCAmelCase : str = reduce_by_model(errors) __UpperCAmelCase : str = make_github_table(reduced_by_error) __UpperCAmelCase : int = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
471
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise TypeError("Input value must be an 'int' type" ) lowercase__ : str = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
397
0
'''simple docstring''' import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a_ : Union[str, Any] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def _A (lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Any: '''simple docstring''' _a = True while ask_again: _a = input(lowerCAmelCase__ ) try: if default is not None and len(lowerCAmelCase__ ) == 0: return default return convert_value(lowerCAmelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCAmelCase__ ) def _A (lowerCAmelCase__ , lowerCAmelCase__=[] , lowerCAmelCase__=None , lowerCAmelCase__=0 ) -> str: '''simple docstring''' _a = BulletMenu(lowerCAmelCase__ , lowerCAmelCase__ ) _a = menu.run(default_choice=lowerCAmelCase__ ) return convert_value(lowerCAmelCase__ ) if convert_value is not None else result def _A (lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' _a = int(lowerCAmelCase__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def _A (lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' _a = int(lowerCAmelCase__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def _A (lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' _a = int(lowerCAmelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _A (lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' _a = int(lowerCAmelCase__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def _A (lowerCAmelCase__ ) -> Any: '''simple docstring''' _a = int(lowerCAmelCase__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def _A (lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class a ( argparse.RawDescriptionHelpFormatter ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: _a = super()._format_usage(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = usage.replace('<command> [<args>] ' , '' ) return usage
706
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' _a = BertConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
532
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowercase : List[str] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') __lowercase : Tuple = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() __lowercase : Union[str, Any] = """|""".join(sys.argv[1:]) __lowercase : str = re.compile(rf'''^({joined_dirs}).*?\.py$''') __lowercase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
36
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off SCREAMING_SNAKE_CASE__ : int = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] SCREAMING_SNAKE_CASE__ : List[str] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Any = """whisper""" _UpperCamelCase : Union[str, Any] = ["""past_key_values"""] _UpperCamelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case=51_865 , snake_case=80 , snake_case=6 , snake_case=4 , snake_case=6 , snake_case=4 , snake_case=1_536 , snake_case=1_536 , snake_case=0.0 , snake_case=0.0 , snake_case=50_257 , snake_case=True , snake_case=True , snake_case="gelu" , snake_case=256 , snake_case=0.0 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=False , snake_case=1_500 , snake_case=448 , snake_case=50_256 , snake_case=50_256 , snake_case=50_256 , snake_case=None , snake_case=[220, 50_256] , snake_case=False , snake_case=256 , snake_case=False , snake_case=0.05 , snake_case=10 , snake_case=2 , snake_case=0.0 , snake_case=10 , snake_case=0 , snake_case=7 , **snake_case , ) -> Dict: """simple docstring""" a__ : Optional[Any] = vocab_size a__ : int = num_mel_bins a__ : Dict = d_model a__ : List[Any] = encoder_layers a__ : List[Any] = encoder_attention_heads a__ : Optional[int] = decoder_layers a__ : int = decoder_attention_heads a__ : Optional[Any] = decoder_ffn_dim a__ : List[Any] = encoder_ffn_dim a__ : int = dropout a__ : Optional[int] = attention_dropout a__ : Tuple = activation_dropout a__ : Optional[Any] = activation_function a__ : List[Any] = init_std a__ : List[Any] = encoder_layerdrop a__ : Dict = decoder_layerdrop a__ : List[Any] = use_cache a__ : Union[str, Any] = encoder_layers a__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True a__ : Tuple = max_source_positions a__ : Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ : Optional[Any] = classifier_proj_size a__ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : Tuple = apply_spec_augment a__ : int = mask_time_prob a__ : Optional[Any] = mask_time_length a__ : List[str] = mask_time_min_masks a__ : List[str] = mask_feature_prob a__ : Dict = mask_feature_length a__ : Any = mask_feature_min_masks a__ : List[str] = median_filter_width super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , suppress_tokens=snake_case , begin_suppress_tokens=snake_case , **snake_case , ) class __lowerCAmelCase ( _UpperCamelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" a__ : Dict = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: a__ : Tuple = {0: "batch"} else: a__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case , direction="inputs" ) return common_inputs def _snake_case ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , snake_case = 22_050 , snake_case = 5.0 , snake_case = 220 , ) -> Mapping[str, Any]: """simple docstring""" a__ : int = OrderedDict() a__ : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=snake_case , framework=snake_case , sampling_rate=snake_case , time_duration=snake_case , frequency=snake_case , ) a__ : Optional[int] = encoder_inputs["input_features"].shape[2] a__ : str = encoder_sequence_length // 2 if self.use_past else seq_length a__ : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , snake_case , snake_case , snake_case , snake_case ) a__ : Any = encoder_inputs.pop("input_features" ) a__ : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: a__ : Tuple = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _snake_case ( self ) -> float: """simple docstring""" return 1E-3
112
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset snake_case = random.Random() def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ): """simple docstring""" if rng is None: _lowerCAmelCase : int = global_rng _lowerCAmelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self , _snake_case , _snake_case=7 , _snake_case=400 , _snake_case=2000 , _snake_case=2048 , _snake_case=128 , _snake_case=1 , _snake_case=512 , _snake_case=30 , _snake_case=4_4100 , ): _lowerCAmelCase : Tuple = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : List[Any] = min_seq_length _lowerCAmelCase : List[str] = max_seq_length _lowerCAmelCase : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Union[str, Any] = spectrogram_length _lowerCAmelCase : Any = feature_size _lowerCAmelCase : int = num_audio_channels _lowerCAmelCase : int = hop_length _lowerCAmelCase : List[Any] = chunk_length _lowerCAmelCase : str = sampling_rate def SCREAMING_SNAKE_CASE__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self , _snake_case=False , _snake_case=False ): def _flatten(_snake_case ): return list(itertools.chain(*_snake_case ) ) if equal_length: _lowerCAmelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : str = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , "spectrogram_length" ) ) self.assertTrue(hasattr(_snake_case , "feature_size" ) ) self.assertTrue(hasattr(_snake_case , "num_audio_channels" ) ) self.assertTrue(hasattr(_snake_case , "hop_length" ) ) self.assertTrue(hasattr(_snake_case , "chunk_length" ) ) self.assertTrue(hasattr(_snake_case , "sampling_rate" ) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = feat_extract_first.save_pretrained(_snake_case )[0] check_json_file_has_correct_format(_snake_case ) _lowerCAmelCase : Tuple = self.feature_extraction_class.from_pretrained(_snake_case ) _lowerCAmelCase : int = feat_extract_first.to_dict() _lowerCAmelCase : Union[str, Any] = feat_extract_second.to_dict() _lowerCAmelCase : Any = dict_first.pop("mel_filters" ) _lowerCAmelCase : str = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : str = os.path.join(_snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(_snake_case ) _lowerCAmelCase : Tuple = self.feature_extraction_class.from_json_file(_snake_case ) _lowerCAmelCase : Dict = feat_extract_first.to_dict() _lowerCAmelCase : Dict = feat_extract_second.to_dict() _lowerCAmelCase : Tuple = dict_first.pop("mel_filters" ) _lowerCAmelCase : List[str] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_snake_case , _snake_case ) ) self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize feature_extractor _lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : int = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : Any = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _lowerCAmelCase : str = feature_extractor(_snake_case , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _lowerCAmelCase : str = feature_extractor( _snake_case , return_tensors="np" , sampling_rate=4_4100 , mask_audio=_snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase : List[Any] = np.asarray(_snake_case ) _lowerCAmelCase : str = feature_extractor(_snake_case , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _lowerCAmelCase : List[Any] = ds.sort("id" ).select(range(_snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self._load_datasamples(1 ) _lowerCAmelCase : List[str] = TvltFeatureExtractor() _lowerCAmelCase : Optional[int] = feature_extractor(_snake_case , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _snake_case , atol=1E-4 ) )
710
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Union[str, Any] = (32, 32) _lowerCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_snake_case ) return image @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) _lowerCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): def extract(*_snake_case , **_snake_case ): class __A : '''simple docstring''' def __init__( self ): _lowerCAmelCase : List[str] = torch.ones([0] ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): self.pixel_values.to(_snake_case ) return self return Out() return extract def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Tuple = self.dummy_cond_unet _lowerCAmelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) _lowerCAmelCase : List[str] = self.dummy_vae _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : List[Any] = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Optional[Any] = "A painting of a squirrel eating a burger" _lowerCAmelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sd_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : List[Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_snake_case , )[0] _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.dummy_cond_unet _lowerCAmelCase : List[Any] = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase : Tuple = self.dummy_vae _lowerCAmelCase : List[Any] = self.dummy_text_encoder _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : int = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Tuple = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Optional[Any] = "A painting of a squirrel eating a burger" _lowerCAmelCase : str = torch.Generator(device=_snake_case ).manual_seed(0 ) _lowerCAmelCase : int = sd_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_snake_case , )[0] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : int = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_snake_case ) assert isinstance(_snake_case , _snake_case ) assert isinstance(pipe.scheduler , _snake_case ) assert pipe.safety_checker is None _lowerCAmelCase : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) _lowerCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(_snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : Union[str, Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.dummy_cond_unet _lowerCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase : Tuple = self.dummy_vae _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 _lowerCAmelCase : List[Any] = unet.half() _lowerCAmelCase : List[Any] = vae.half() _lowerCAmelCase : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : Dict = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : List[Any] = "A painting of a squirrel eating a burger" _lowerCAmelCase : List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_snake_case ) _lowerCAmelCase : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Tuple = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) _lowerCAmelCase : Tuple = 40_0366_0346 _lowerCAmelCase : Dict = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase : Optional[int] = torch.manual_seed(_snake_case ) _lowerCAmelCase : Optional[Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _lowerCAmelCase : Tuple = torch.manual_seed(_snake_case ) _lowerCAmelCase : int = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_snake_case ) _lowerCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Optional[int] = "padme amidala taking a bath artwork, safe for work, no nudity" _lowerCAmelCase : str = 27_3497_1755 _lowerCAmelCase : List[Any] = 7 _lowerCAmelCase : Tuple = torch.manual_seed(_snake_case ) _lowerCAmelCase : Union[str, Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : int = output.images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _lowerCAmelCase : Tuple = torch.manual_seed(_snake_case ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) _lowerCAmelCase : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : List[str] = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) _lowerCAmelCase : int = 10_4435_5234 _lowerCAmelCase : Union[str, Any] = 12 _lowerCAmelCase : List[Any] = torch.manual_seed(_snake_case ) _lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _lowerCAmelCase : Optional[int] = torch.manual_seed(_snake_case ) _lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : str = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
587
0
def lowerCamelCase__ ( ): """simple docstring""" return 1 def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase ) def lowerCamelCase__ ( lowercase = 200 ): """simple docstring""" return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
62
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_skip_sample=_lowerCAmelCase) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =[-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Dict): '''simple docstring''' return super().get_dummy_input(include_skip_sample=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'out_channels': 3_2, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =[1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Any): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'out_channels': 3_2, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =[0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaD # noqa F405 lowerCAmelCase__ = """mid""" def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'temb_channels': 1_2_8, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =[-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =[0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Any): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent') def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =[0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =[0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : int): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase ={'in_channels': 3_2, 'out_channels': 3_2} __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase ={'in_channels': 3_2, 'out_channels': 3_2} __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_lowerCAmelCase)
474
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
476
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( _a , _a , _a , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] =AltDiffusionPipeline _SCREAMING_SNAKE_CASE : int =TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : List[Any] =TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Any =TEXT_TO_IMAGE_IMAGE_PARAMS def a__ ( self ): torch.manual_seed(0 ) _A= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _A= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) _A= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _A= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) _A= CLIPTextModel(lowerCAmelCase__ ) _A= XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _A= 77 _A= { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ): if str(lowerCAmelCase__ ).startswith('mps' ): _A= torch.manual_seed(lowerCAmelCase__ ) else: _A= torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _A= { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def a__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def a__ ( self ): _A= 'cpu' # ensure determinism for the device-dependent torch.Generator _A= self.get_dummy_components() torch.manual_seed(0 ) _A= RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A= RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _A= text_encoder _A= AltDiffusionPipeline(**lowerCAmelCase__ ) _A= alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _A= self.get_dummy_inputs(lowerCAmelCase__ ) _A= 'A photo of an astronaut' _A= alt_pipe(**lowerCAmelCase__ ) _A= output.images _A= image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A= np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self ): _A= 'cpu' # ensure determinism for the device-dependent torch.Generator _A= self.get_dummy_components() _A= PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) _A= RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _A= RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _A= text_encoder _A= AltDiffusionPipeline(**lowerCAmelCase__ ) _A= alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _A= self.get_dummy_inputs(lowerCAmelCase__ ) _A= alt_pipe(**lowerCAmelCase__ ) _A= output.images _A= image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A= np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def a__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ): # make sure here that pndm scheduler skips prk _A= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase__ ) _A= alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _A= 'A painting of a squirrel eating a burger' _A= torch.manual_seed(0 ) _A= alt_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _A= output.images _A= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A= np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self ): _A= DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _A= AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) _A= alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _A= 'A painting of a squirrel eating a burger' _A= torch.manual_seed(0 ) _A= alt_pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type='numpy' ) _A= output.images _A= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A= np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
476
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : List[str] = 'codegen' __magic_name__ : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , lowerCAmelCase : str=50400 , lowerCAmelCase : Optional[int]=2048 , lowerCAmelCase : Optional[int]=2048 , lowerCAmelCase : str=4096 , lowerCAmelCase : List[str]=28 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Optional[int]=64 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int="gelu_new" , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=50256 , lowerCAmelCase : Dict=50256 , lowerCAmelCase : List[str]=False , **lowerCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __UpperCamelCase : int = vocab_size __UpperCamelCase : Optional[int] = n_ctx __UpperCamelCase : Tuple = n_positions __UpperCamelCase : Optional[Any] = n_embd __UpperCamelCase : List[str] = n_layer __UpperCamelCase : str = n_head __UpperCamelCase : str = n_inner __UpperCamelCase : List[str] = rotary_dim __UpperCamelCase : List[Any] = activation_function __UpperCamelCase : Union[str, Any] = resid_pdrop __UpperCamelCase : List[Any] = embd_pdrop __UpperCamelCase : Optional[int] = attn_pdrop __UpperCamelCase : Any = layer_norm_epsilon __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : List[str] = use_cache __UpperCamelCase : List[Any] = bos_token_id __UpperCamelCase : Optional[Any] = eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" , lowerCAmelCase : List[PatchingSpec] = None , lowerCAmelCase : bool = False , ) -> Optional[Any]: """simple docstring""" super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , """pad_token_id""" , lowerCAmelCase ): # TODO: how to do that better? __UpperCamelCase : Dict = 0 @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __UpperCamelCase : Union[str, Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction="""inputs""" ) __UpperCamelCase : List[str] = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self : str ) -> int: """simple docstring""" return self._config.n_layer @property def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" return self._config.n_head def lowerCamelCase__ ( self : int , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __UpperCamelCase : List[str] = super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase : Optional[Any] = seqlen + 2 __UpperCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase : int = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] __UpperCamelCase : Tuple = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase : Dict = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self : Any ) -> int: """simple docstring""" return 13
279
import argparse import hashlib # hashlib is only used inside the Test class import struct class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __UpperCamelCase : Any = data __UpperCamelCase : List[str] = [0x6_7_4_5_2_3_0_1, 0xe_f_c_d_a_b_8_9, 0x9_8_b_a_d_c_f_e, 0x1_0_3_2_5_4_7_6, 0xc_3_d_2_e_1_f_0] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0xf_f_f_f_f_f_f_f def lowerCamelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __UpperCamelCase : int = b"""\x80""" + b"""\x00""" * (63 - (len(self.data ) + 8) % 64) __UpperCamelCase : int = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def lowerCamelCase__ ( self : str ) -> str: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __UpperCamelCase : Tuple = list(struct.unpack(""">16L""" , lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): __UpperCamelCase : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __UpperCamelCase : Dict = self.padding() __UpperCamelCase : int = self.split_blocks() for block in self.blocks: __UpperCamelCase : Union[str, Any] = self.expand_block(lowerCAmelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.h for i in range(0 , 80 ): if 0 <= i < 20: __UpperCamelCase : List[Any] = (b & c) | ((~b) & d) __UpperCamelCase : str = 0x5_a_8_2_7_9_9_9 elif 20 <= i < 40: __UpperCamelCase : Tuple = b ^ c ^ d __UpperCamelCase : List[Any] = 0x6_e_d_9_e_b_a_1 elif 40 <= i < 60: __UpperCamelCase : Tuple = (b & c) | (b & d) | (c & d) __UpperCamelCase : List[str] = 0x8_f_1_b_b_c_d_c elif 60 <= i < 80: __UpperCamelCase : Optional[int] = b ^ c ^ d __UpperCamelCase : Tuple = 0xc_a_6_2_c_1_d_6 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = ( self.rotate(lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xf_f_f_f_f_f_f_f, a, self.rotate(lowerCAmelCase , 30 ), c, d, ) __UpperCamelCase : List[Any] = ( self.h[0] + a & 0xf_f_f_f_f_f_f_f, self.h[1] + b & 0xf_f_f_f_f_f_f_f, self.h[2] + c & 0xf_f_f_f_f_f_f_f, self.h[3] + d & 0xf_f_f_f_f_f_f_f, self.h[4] + e & 0xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def A__ () -> int: __UpperCamelCase : Optional[int] = b"""Test String""" assert SHAaHash(snake_case ).final_hash() == hashlib.shaa(snake_case ).hexdigest() # noqa: S324 def A__ () -> Tuple: __UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) __UpperCamelCase : List[Any] = parser.parse_args() __UpperCamelCase : List[str] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: __UpperCamelCase : Tuple = f.read() else: __UpperCamelCase : Any = bytes(snake_case , """utf-8""" ) print(SHAaHash(snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
279
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if os.path.exists(SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , """config.json""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE , """config.json""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE , """config.json""" ) ) if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE , """pytorch_model.bin""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE , """pytorch_model.bin""" ) ) else: os.makedirs(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=False ): '''simple docstring''' lowerCAmelCase = 2 if unlogit: lowerCAmelCase = torch.pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = p * torch.log(SCREAMING_SNAKE_CASE ) lowerCAmelCase = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' logger.info("""lv, h >\t""" + """\t""".join(F'{x + 1}' for x in range(len(SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + """\t""".join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + """\t""".join(F'{x:d}' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]=False ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) lowerCAmelCase = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: lowerCAmelCase = torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase = None lowerCAmelCase = 0.0 lowerCAmelCase = 0.0 for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase = entropy(attn.detach() , SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase = 2 lowerCAmelCase = torch.pow(torch.pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowerCAmelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(SCREAMING_SNAKE_CASE ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(SCREAMING_SNAKE_CASE ) logger.info("""Head ranked by importance scores""" ) lowerCAmelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase = head_ranks.view_as(SCREAMING_SNAKE_CASE ) print_ad_tensor(SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE ) lowerCAmelCase = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) lowerCAmelCase = torch.ones_like(SCREAMING_SNAKE_CASE ) lowerCAmelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase = float("""Inf""" ) lowerCAmelCase = head_importance.view(-1 ).sort()[1] if len(SCREAMING_SNAKE_CASE ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowerCAmelCase = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase = new_head_mask.view(-1 ) lowerCAmelCase = 0.0 lowerCAmelCase = new_head_mask.view_as(SCREAMING_SNAKE_CASE ) lowerCAmelCase = new_head_mask.clone().detach() print_ad_tensor(SCREAMING_SNAKE_CASE ) # Compute metric and head importance again lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) lowerCAmelCase = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("""Final head mask""" ) print_ad_tensor(SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase = datetime.now() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , compute_importance=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) lowerCAmelCase = 1 / loss lowerCAmelCase = datetime.now() - before_time lowerCAmelCase = sum(p.numel() for p in model.parameters() ) lowerCAmelCase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = [ v, ] assert sum(len(SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(SCREAMING_SNAKE_CASE ) lowerCAmelCase = sum(p.numel() for p in model.parameters() ) lowerCAmelCase = datetime.now() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , compute_importance=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE , actually_pruned=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = 1 / loss lowerCAmelCase = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 1_00 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_00 ) save_model(SCREAMING_SNAKE_CASE , args.output_dir ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=SCREAMING_SNAKE_CASE , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=SCREAMING_SNAKE_CASE , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=SCREAMING_SNAKE_CASE , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=SCREAMING_SNAKE_CASE , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=SCREAMING_SNAKE_CASE , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=SCREAMING_SNAKE_CASE , default="""""" , help="""Can be used for distant debugging.""" ) lowerCAmelCase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowerCAmelCase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase = torch.device("""cuda""" , args.local_rank ) lowerCAmelCase = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase = nn.parallel.DistributedDataParallel( SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: lowerCAmelCase = nn.DataParallel(SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE ) # Prepare dataset lowerCAmelCase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase = (torch.from_numpy(SCREAMING_SNAKE_CASE ),) lowerCAmelCase = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase = mask_heads(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) prune_heads(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
393
"""simple docstring""" import qiskit def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 2 ): '''simple docstring''' lowerCAmelCase = qubits # Using Aer's simulator lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowerCAmelCase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'Total count for various states are: {quantum_entanglement(3)}')
393
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = 16 ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ = 8 else: SCREAMING_SNAKE_CASE__ = None return tokenizer.pad( UpperCamelCase_ , padding='longest' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase_ ) == "1": SCREAMING_SNAKE_CASE__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config['lr'] SCREAMING_SNAKE_CASE__ = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE__ = int(config['seed'] ) SCREAMING_SNAKE_CASE__ = int(config['batch_size'] ) set_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE__ = os.path.split(UpperCamelCase_ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCamelCase_ ), 'epoch': epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
import tensorflow as tf from ...tf_utils import shape_list class UpperCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Any=False , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" super().__init__(**_A) lowercase__ = vocab_size lowercase__ = d_embed lowercase__ = d_proj lowercase__ = cutoffs + [vocab_size] lowercase__ = [0] + self.cutoffs lowercase__ = div_val lowercase__ = self.cutoffs[0] lowercase__ = len(self.cutoffs) - 1 lowercase__ = self.shortlist_size + self.n_clusters lowercase__ = keep_order lowercase__ = [] lowercase__ = [] def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if self.n_clusters > 0: lowercase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=_A , name='cluster_weight') lowercase__ = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=_A , name='cluster_bias') if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: lowercase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=_A , name=f'''out_projs_._{i}''' , ) self.out_projs.append(_A) else: self.out_projs.append(_A) lowercase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=_A , name=f'''out_layers_._{i}_._weight''' , ) lowercase__ = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=_A , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): lowercase__, lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ = self.d_embed // (self.div_val**i) lowercase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=_A , name=f'''out_projs_._{i}''') self.out_projs.append(_A) lowercase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=_A , name=f'''out_layers_._{i}_._weight''' , ) lowercase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=_A , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) super().build(_A) @staticmethod def UpperCAmelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=None) -> int: """simple docstring""" lowercase__ = x if proj is not None: lowercase__ = tf.einsum('ibd,ed->ibe' , _A , _A) return tf.einsum('ibd,nd->ibn' , _A , _A) + b @staticmethod def UpperCAmelCase ( lowerCAmelCase : str , lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" lowercase__ = shape_list(_A) lowercase__ = tf.range(lp_size[0] , dtype=target.dtype) lowercase__ = tf.stack([r, target] , 1) return tf.gather_nd(_A , _A) def UpperCAmelCase ( self : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=True , lowerCAmelCase : Dict=False) -> int: """simple docstring""" lowercase__ = 0 if self.n_clusters == 0: lowercase__ = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0]) if target is not None: lowercase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A) lowercase__ = tf.nn.log_softmax(_A , axis=-1) else: lowercase__ = shape_list(_A) lowercase__ = [] lowercase__ = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): lowercase__, lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowercase__ = (target >= l_idx) & (target < r_idx) lowercase__ = tf.where(_A) lowercase__ = tf.boolean_mask(_A , _A) - l_idx if self.div_val == 1: lowercase__ = self.out_layers[0][0][l_idx:r_idx] lowercase__ = self.out_layers[0][1][l_idx:r_idx] else: lowercase__ = self.out_layers[i][0] lowercase__ = self.out_layers[i][1] if i == 0: lowercase__ = tf.concat([cur_W, self.cluster_weight] , 0) lowercase__ = tf.concat([cur_b, self.cluster_bias] , 0) lowercase__ = self._logit(_A , _A , _A , self.out_projs[0]) lowercase__ = tf.nn.log_softmax(_A) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: lowercase__ = tf.boolean_mask(_A , _A) lowercase__ = self._gather_logprob(_A , _A) else: lowercase__ = self._logit(_A , _A , _A , self.out_projs[i]) lowercase__ = tf.nn.log_softmax(_A) lowercase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster lowercase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A) if target is not None: lowercase__ = tf.boolean_mask(_A , _A) lowercase__ = tf.boolean_mask(_A , _A) lowercase__ = self._gather_logprob(_A , _A) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A)) lowercase__ = tf.concat(_A , axis=-1) if target is not None: if return_mean: lowercase__ = tf.reduce_mean(_A) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation='mean' if return_mean else '') return out
714
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE__ : Dict = """pt""" elif is_tf_available(): SCREAMING_SNAKE_CASE__ : List[str] = """tf""" else: SCREAMING_SNAKE_CASE__ : List[Any] = """jax""" class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = PerceiverTokenizer a__ = False def A ( self ): """simple docstring""" super().setUp() __magic_name__ :str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2_0 , __lowerCAmelCase=5 ): """simple docstring""" # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ :List[str] = [] for i in range(len(__lowerCAmelCase ) ): try: __magic_name__ :Optional[int] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ :Dict = list(filter(lambda __lowerCAmelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowerCAmelCase ) ) __magic_name__ :Union[str, Any] = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: __magic_name__ :int = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: __magic_name__ :str = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ :Dict = [t[0] for t in toks] # Ensure consistency __magic_name__ :List[str] = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: __magic_name__ :Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: __magic_name__ :Union[str, Any] = ''' ''' + output_txt __magic_name__ :str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.perceiver_tokenizer __magic_name__ :List[Any] = '''Unicode €.''' __magic_name__ :Tuple = tokenizer(__lowerCAmelCase ) __magic_name__ :Optional[int] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase ) # decoding __magic_name__ :List[str] = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '''[CLS]Unicode €.[SEP]''' ) __magic_name__ :int = tokenizer('''e è é ê ë''' ) __magic_name__ :List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase ) # decoding __magic_name__ :Tuple = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.perceiver_tokenizer __magic_name__ :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __magic_name__ :Union[str, Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __magic_name__ :List[str] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": __magic_name__ :List[Any] = list(batch.input_ids.numpy()[0] ) else: __magic_name__ :Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.perceiver_tokenizer __magic_name__ :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __magic_name__ :Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowerCAmelCase ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertNotIn('''decoder_input_ids''' , __lowerCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.perceiver_tokenizer __magic_name__ :Optional[Any] = [ '''Summary of the text.''', '''Another summary.''', ] __magic_name__ :int = tokenizer( text_target=__lowerCAmelCase , max_length=3_2 , padding='''max_length''' , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def A ( self ): """simple docstring""" # safety check on max_len default value so we are sure the test works __magic_name__ :List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __magic_name__ :Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ :Union[str, Any] = tempfile.mkdtemp() __magic_name__ :Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) __magic_name__ :int = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) __magic_name__ :int = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ :Union[str, Any] = tempfile.mkdtemp() __magic_name__ :Tuple = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __magic_name__ :Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __magic_name__ :List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) __magic_name__ :int = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __magic_name__ :Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ :Union[str, Any] = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ :Tuple = json.load(__lowerCAmelCase ) __magic_name__ :str = [F'''<extra_id_{i}>''' for i in range(1_2_5 )] __magic_name__ :List[str] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __magic_name__ :Tuple = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ :Optional[int] = tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ :Optional[Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowerCAmelCase )] __magic_name__ :Any = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __magic_name__ :List[Any] = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ :Any = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __magic_name__ :Union[str, Any] = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase : """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=4 , _A="gelu" , _A=0.0 , _A=0.1 , _A=True , _A=512 , _A=16 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ) -> List[Any]: __a : Dict = parent __a : str = batch_size __a : Any = seq_length __a : int = is_training __a : List[Any] = use_input_mask __a : List[Any] = use_token_type_ids __a : Optional[Any] = use_labels __a : Tuple = vocab_size __a : List[str] = hidden_size __a : Optional[int] = num_hidden_layers __a : int = num_attention_heads __a : str = intermediate_multiple_size __a : Tuple = hidden_act __a : str = hidden_dropout __a : Tuple = attention_dropout __a : str = weight_tying __a : Any = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : List[Any] = initializer_range __a : List[Any] = num_labels __a : Dict = num_choices __a : List[Any] = scope def __magic_name__ ( self ) -> Any: __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : str = None if self.use_input_mask: __a : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __a : str = None if self.use_labels: __a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self ) -> List[str]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def __magic_name__ ( self ) -> Dict: __a , __a , __a , __a : Any = self.prepare_config_and_inputs() __a : List[Any] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self , _A , _A , _A ) -> Optional[int]: __a : str = GPTNeoXJapaneseModel(config=_A ) model.to(_A ) model.eval() __a : Optional[Any] = model(_A , attention_mask=_A ) __a : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , _A , _A , _A ) -> List[str]: __a : int = True __a : Union[str, Any] = GPTNeoXJapaneseModel(_A ) model.to(_A ) model.eval() __a : Optional[int] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , _A , _A , _A , _A ) -> List[Any]: __a : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() __a : Tuple = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _A , _A , _A ) -> Tuple: __a : str = True __a : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass __a : int = model(_A , attention_mask=_A , use_cache=_A ) __a : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __a : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) __a : Tuple = model(_A , attention_mask=_A , output_hidden_states=_A ) __a : Optional[int] = output_from_no_past['hidden_states'][0] __a : Optional[int] = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __a : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a : str = output_from_no_past[:, -3:, random_slice_idx].detach() __a : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3 ) ) def __magic_name__ ( self ) -> Any: __a : int = self.prepare_config_and_inputs() __a , __a , __a , __a : Dict = config_and_inputs __a : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" _A = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _A = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _A = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def __magic_name__ ( self ) -> Optional[int]: __a : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) __a : List[str] = ConfigTester(self , config_class=_A , hidden_size=37 ) def __magic_name__ ( self ) -> Tuple: self.config_tester.run_common_tests() def __magic_name__ ( self ) -> Dict: __a , __a , __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def __magic_name__ ( self ) -> Tuple: __a , __a , __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def __magic_name__ ( self ) -> Any: # This regression test was failing with PyTorch < 1.3 __a , __a , __a , __a : str = self.model_tester.prepare_config_and_inputs_for_decoder() __a : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def __magic_name__ ( self ) -> Tuple: __a , __a , __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def __magic_name__ ( self ) -> str: __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def __magic_name__ ( self ) -> List[str]: __a : Any = 'abeja/gpt-neox-japanese-2.7b' __a : List[str] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] __a : Union[str, Any] = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] __a : List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(_A ) __a : Optional[int] = GPTNeoXJapaneseForCausalLM.from_pretrained(_A ) __a : Any = [] for prompt in prompts: __a : Tuple = tokenizer(_A , return_tensors='pt' ).input_ids __a : Optional[Any] = model.generate(_A , max_length=50 ) __a : Optional[Any] = tokenizer.batch_decode(_A , skip_special_tokens=_A ) predicted_outputs += generated_string self.assertListEqual(_A , _A )
597
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : int ): snake_case__ : str = StableDiffusionPipeline.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case__ : int = load_file(_UpperCamelCase ) snake_case__ : List[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case__ : int = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) snake_case__ : Any = pipeline.text_encoder else: snake_case__ : Union[str, Any] = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) snake_case__ : Optional[Any] = pipeline.unet # find the target layer snake_case__ : int = layer_infos.pop(0 ) while len(_UpperCamelCase ) > -1: try: snake_case__ : List[Any] = curr_layer.__getattr__(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case__ : Dict = layer_infos.pop(0 ) elif len(_UpperCamelCase ) == 0: break except Exception: if len(_UpperCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case__ : Union[str, Any] = layer_infos.pop(0 ) snake_case__ : str = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(_UpperCamelCase ) else: pair_keys.append(_UpperCamelCase ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case__ : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case__ : Union[str, Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case__ : List[str] = state_dict[pair_keys[0]].to(torch.floataa ) snake_case__ : str = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCamelCase , _UpperCamelCase ) # update visited list for item in pair_keys: visited.append(_UpperCamelCase ) return pipeline if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") __lowerCamelCase : int = parser.parse_args() __lowerCamelCase : List[Any] = args.base_model_path __lowerCamelCase : Any = args.checkpoint_path __lowerCamelCase : str = args.dump_path __lowerCamelCase : Optional[Any] = args.lora_prefix_unet __lowerCamelCase : Tuple = args.lora_prefix_text_encoder __lowerCamelCase : Dict = args.alpha __lowerCamelCase : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCamelCase : str = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase : Union[str, Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def A_( A : Union[str, Any] , A : List[str] , A : Dict , A : Tuple , A : Any): for attribute in key.split('.'): UpperCamelCase = getattr(A , A) if weight_type is not None: UpperCamelCase = getattr(A , A).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def A_( A : int , A : Union[str, Any] , A : str): UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A)[0].split('.')[-2] UpperCamelCase = mapped_key.replace('*' , A) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A , A , A , A , A) continue if not is_used: unused_weights.append(A) logger.warning(f'''Unused weights: {unused_weights}''') def A_( A : str , A : int , A : int , A : List[str] , A : Tuple): UpperCamelCase = full_name.split('conv_layers.')[-1] UpperCamelCase = name.split('.') UpperCamelCase = int(items[0]) UpperCamelCase = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(A) @torch.no_grad() def A_( A : Dict , A : List[str] , A : Any=None , A : str=None , A : Optional[int]=True): if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(A , hidden_act='swish') else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(A) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols) UpperCamelCase = os.path.join(A , 'vocab.json') if not os.path.isdir(A): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A)) return os.makedirs(A , exist_ok=A) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(A , 'w' , encoding='utf-8') as vocab_handle: json.dump(A , A) UpperCamelCase = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=A , tokenizer=A) processor.save_pretrained(A) UpperCamelCase = WavaVecaConformerForCTC(A) else: UpperCamelCase = WavaVecaConformerForPreTraining(A) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining') UpperCamelCase = fairseq.tasks.setup_task(A) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A) UpperCamelCase = model[0].eval() recursively_load_weights(A , A , not is_finetuned) hf_wavavec.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
1
"""simple docstring""" from itertools import count def lowercase ( a__ : int = 50 ) -> int: _UpperCamelCase = [1] * min_block_length for n in count(a__ ): fill_count_functions.append(1 ) for block_length in range(a__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(F'''{solution() = }''')
342
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCAmelCase_ ( _lowercase , _lowercase): snake_case__ = '''pixel_values''' snake_case__ = False snake_case__ = TimmBackboneConfig def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) -> Dict: requires_backends(self , '''timm''' ) super().__init__(__UpperCamelCase ) _UpperCamelCase = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(__UpperCamelCase , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _UpperCamelCase = getattr(__UpperCamelCase , '''use_pretrained_backbone''' , __UpperCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _UpperCamelCase = config.out_indices if getattr(__UpperCamelCase , '''out_indices''' , __UpperCamelCase ) is not None else (-1,) _UpperCamelCase = timm.create_model( config.backbone , pretrained=__UpperCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCamelCase , **__UpperCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _UpperCamelCase = self._backbone.return_layers _UpperCamelCase = {layer['''module''']: str(__UpperCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__UpperCamelCase ) @classmethod def _UpperCamelCase ( cls : Optional[int] , __UpperCamelCase : Tuple , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Tuple ) -> Tuple: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _UpperCamelCase = kwargs.pop('''config''' , TimmBackboneConfig() ) _UpperCamelCase = kwargs.pop('''use_timm_backbone''' , __UpperCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _UpperCamelCase = kwargs.pop('''num_channels''' , config.num_channels ) _UpperCamelCase = kwargs.pop('''features_only''' , config.features_only ) _UpperCamelCase = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _UpperCamelCase = kwargs.pop('''out_indices''' , config.out_indices ) _UpperCamelCase = TimmBackboneConfig( backbone=__UpperCamelCase , num_channels=__UpperCamelCase , features_only=__UpperCamelCase , use_pretrained_backbone=__UpperCamelCase , out_indices=__UpperCamelCase , ) return super()._from_config(__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int ) -> int: pass def _UpperCamelCase ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int=None , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , **__UpperCamelCase : int ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _UpperCamelCase = self._all_layers _UpperCamelCase = self._backbone(__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = self._return_layers _UpperCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: _UpperCamelCase = self._backbone(__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = None _UpperCamelCase = tuple(__UpperCamelCase ) _UpperCamelCase = tuple(__UpperCamelCase ) if hidden_states is not None else None if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: _UpperCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCamelCase , hidden_states=__UpperCamelCase , attentions=__UpperCamelCase )
342
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : str = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase : Optional[Any] = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase , lowercase ) def __lowerCAmelCase ( self : int , **lowercase : List[str] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : Tuple , **lowercase : Tuple ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : Optional[int] , **lowercase : List[str] ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Any = self.get_image_processor() UpperCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) UpperCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Dict = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) UpperCAmelCase : List[Any] = self.get_image_processor(do_normalize=lowercase ) UpperCAmelCase : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Tuple = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Dict = self.prepare_image_inputs() UpperCAmelCase : Tuple = image_processor(lowercase , return_tensors="np" ) UpperCAmelCase : Dict = processor(images=lowercase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : List[str] = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Tuple = "Alexandra,T-shirt的价格是15便士。" UpperCAmelCase : int = processor(text=lowercase ) UpperCAmelCase : Dict = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Union[str, Any] = "Alexandra,T-shirt的价格是15便士。" UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase : str = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : str = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : List[str] = processor.batch_decode(lowercase ) UpperCAmelCase : List[str] = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) UpperCAmelCase : Optional[Any] = "Alexandra,T-shirt的价格是15便士。" UpperCAmelCase : Any = self.prepare_image_inputs() UpperCAmelCase : Union[str, Any] = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
595
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase_ ( _lowercase : Any , _lowercase : float = 0.0 , _lowercase : float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
595
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any]=False ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: a__ : Any = os.path.abspath(lowerCAmelCase__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) a__ : str = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) a__ : Tuple = convert_pytorch_state_dict_to_flax(lowerCAmelCase__ , lowerCAmelCase__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files a__ : int = convert_pytorch_sharded_state_dict_to_flax(lowerCAmelCase__ , lowerCAmelCase__ ) return flax_state_dict def __a ( lowerCAmelCase__ : Tuple[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, jnp.ndarray] , lowerCAmelCase__ : str , ): def is_key_or_prefix_key_in_dict(lowerCAmelCase__ : Tuple[str] ) -> bool: return len(set(lowerCAmelCase__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm a__ : Any = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean a__ : Optional[Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var a__ : Union[str, Any] = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): return renamed_pt_tuple_key, pt_tensor # embedding a__ : Optional[Any] = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): return renamed_pt_tuple_key, pt_tensor # conv layer a__ : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): a__ : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowerCAmelCase__ ): a__ : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 a__ : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): a__ : Optional[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): a__ : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: a__ : str = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ): # convert pytorch tensor to numpy a__ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} a__ : Union[str, Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: a__ : Optional[Any] = flax_model.params['''params'''] else: a__ : Tuple = flax_model.params a__ : List[Any] = flatten_dict(lowerCAmelCase__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ : Union[str, Any] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(lowerCAmelCase__ ) a__ : Optional[Any] = {} a__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) a__ : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary a__ : Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters a__ , a__ : int = rename_key_and_reshape_tensor( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # add model prefix if necessary a__ : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: a__ : Any = jnp.asarray(lowerCAmelCase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) continue # also add unexpected weight so that warning is thrown a__ : int = jnp.asarray(lowerCAmelCase__ ) else: # also add unexpected weight so that warning is thrown a__ : Any = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): import torch # Load the index a__ : Dict = {} for shard_file in shard_filenames: # load using msgpack utils a__ : Union[str, Any] = torch.load(lowerCAmelCase__ ) a__ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} a__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: a__ : Optional[int] = flax_model.params['''params'''] a__ : List[Any] = flatten_dict(lowerCAmelCase__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: a__ : Tuple = flax_model.params a__ : str = flatten_dict(lowerCAmelCase__ ) a__ : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) a__ : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Dict = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary a__ : Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: a__ : Any = pt_tuple_key[1:] # Correctly rename weight parameters a__ , a__ : List[Any] = rename_key_and_reshape_tensor( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # add model prefix if necessary a__ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: a__ : Dict = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: a__ : int = jnp.asarray(lowerCAmelCase__ ) continue if "var" in flax_key[-1]: a__ : List[Any] = jnp.asarray(lowerCAmelCase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) continue # also add unexpected weight so that warning is thrown a__ : Optional[Any] = jnp.asarray(lowerCAmelCase__ ) else: # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ): a__ : Any = os.path.abspath(lowerCAmelCase__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class a__ : Union[str, Any] = getattr(lowerCAmelCase__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(lowerCAmelCase__ , '''rb''' ) as state_f: try: a__ : List[Any] = from_bytes(lowerCAmelCase__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights a__ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase__ : x.dtype == jnp.bfloataa , lowerCAmelCase__ ) ).values() if any(lowerCAmelCase__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) a__ : Optional[int] = jax.tree_util.tree_map( lambda lowerCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase__ ) a__ : List[Any] = flatten_dict(lowerCAmelCase__ ) a__ : Union[str, Any] = pt_model.state_dict() a__ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) a__ : str = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys a__ : Tuple = [] a__ : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): a__ : List[Any] = flax_key_tuple[0] == pt_model.base_model_prefix a__ : Any = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: a__ : Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: a__ : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowerCAmelCase__ ) not in pt_model_dict: # conv layer a__ : Tuple = flax_key_tuple[:-1] + ('''weight''',) a__ : int = jnp.transpose(lowerCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase__ ) not in pt_model_dict: # linear layer a__ : str = flax_key_tuple[:-1] + ('''weight''',) a__ : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ : int = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: a__ : List[str] = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: a__ : List[Any] = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: a__ : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: a__ : int = '''.'''.join(lowerCAmelCase__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. a__ : str = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: a__ : List[str] = key.split('''.''' ) a__ : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: a__ : Union[str, Any] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: a__ : Tuple = key_components[-2] + '''_v''' if name is not None: a__ : List[str] = key_components[:-3] + [name] a__ : Tuple = '''.'''.join(lowerCAmelCase__ ) a__ : Any = key if flax_key in special_pt_names: a__ : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict a__ : str = np.asarray(lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , np.ndarray ) else flax_tensor a__ : List[Any] = torch.from_numpy(lowerCAmelCase__ ) # remove from missing keys missing_keys.remove(lowerCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase__ ) pt_model.load_state_dict(lowerCAmelCase__ ) # re-transform missing_keys to list a__ : Union[str, Any] = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(lowerCAmelCase__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
340
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off __SCREAMING_SNAKE_CASE = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = [] __UpperCamelCase = [] def __init__( self : Union[str, Any] , A__ : List[str] , A__ : Union[str, Any]="<s>" , A__ : str="</s>" , A__ : Dict="</s>" , A__ : Union[str, Any]="<s>" , A__ : int="<unk>" , A__ : int="<pad>" , A__ : Any="<mask>" , A__ : List[str]=None , A__ : Union[str, Any]=None , A__ : Optional[int]=None , A__ : Optional[Dict[str, Any]] = None , A__ : int=None , A__ : Tuple=False , **A__ : str , ) -> List[Any]: '''simple docstring''' a__ : str = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token a__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs a__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) a__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a__ : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : List[str] = 1 a__ : List[Any] = len(self.sp_model ) a__ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } a__ : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} a__ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a__ : Tuple = src_lang if src_lang is not None else '''eng_Latn''' a__ : Dict = self.lang_code_to_id[self._src_lang] a__ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : List[Any] = self.__dict__.copy() a__ : Optional[Any] = None a__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , A__ : int ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a__ : str = {} a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : List[str] , A__ : str ) -> None: '''simple docstring''' a__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Dict , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) a__ : List[str] = [1] * len(self.prefix_tokens ) a__ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __lowerCAmelCase ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Dict , A__ : Optional[int] , A__ : str , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) a__ : List[Any] = src_lang a__ : List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) a__ : Union[str, Any] = self.convert_tokens_to_ids(A__ ) a__ : Union[str, Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Union[str, Any] , A__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __lowerCAmelCase ( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : Tuple = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Any ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = ''''''.join(A__ ).replace(A__ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Optional[Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Tuple = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: a__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[str] , A__ : str = "eng_Latn" , A__ : Optional[List[str]] = None , A__ : str = "fra_Latn" , **A__ : Any , ) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = src_lang a__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : int , A__ : Union[str, Any] ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a__ : Union[str, Any] = [] a__ : Dict = [self.eos_token_id, self.cur_lang_code] else: a__ : Tuple = [self.cur_lang_code] a__ : List[Any] = [self.eos_token_id] def __lowerCAmelCase ( self : Dict , A__ : str ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: a__ : Optional[Any] = [] a__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: a__ : List[str] = [self.cur_lang_code] a__ : str = [self.eos_token_id]
340
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase__ ( _a , unittest.TestCase ): a : List[str] = BertJapaneseTokenizer a : Optional[Any] = False a : Optional[int] = True def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().setUp() __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_ ( self : str , A_ : List[str] ): '''simple docstring''' __lowercase = """こんにちは、世界。 \nこんばんは、世界。""" __lowercase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : str , A_ : Optional[Any] ): '''simple docstring''' __lowercase , __lowercase = self.get_input_output_texts(A_ ) __lowercase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowercase = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) return text, ids def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(A_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(A_ ) __lowercase = """こんにちは、世界。\nこんばんは、世界。""" __lowercase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(A_ , """wb""" ) as handle: pickle.dump(A_ , A_ ) with open(A_ , """rb""" ) as handle: __lowercase = pickle.load(A_ ) __lowercase = tokenizer_new.tokenize(A_ ) self.assertListEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = MecabTokenizer(do_lower_case=A_ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' try: __lowercase = MecabTokenizer( do_lower_case=A_ , normalize_text=A_ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = MecabTokenizer(normalize_text=A_ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(A_ ) __lowercase = """こんにちは、世界。\nこんばんは、世界。""" __lowercase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(A_ , """wb""" ) as handle: pickle.dump(A_ , A_ ) with open(A_ , """rb""" ) as handle: __lowercase = pickle.load(A_ ) __lowercase = tokenizer_new.tokenize(A_ ) self.assertListEqual(A_ , A_ ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = SudachiTokenizer(do_lower_case=A_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = SudachiTokenizer(normalize_text=A_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = SudachiTokenizer(trim_whitespace=A_ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(A_ ) __lowercase = """こんにちは、世界。\nこんばんは、世界。""" __lowercase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(A_ , """wb""" ) as handle: pickle.dump(A_ , A_ ) with open(A_ , """rb""" ) as handle: __lowercase = pickle.load(A_ ) __lowercase = tokenizer_new.tokenize(A_ ) self.assertListEqual(A_ , A_ ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = JumanppTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = JumanppTokenizer(normalize_text=A_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = JumanppTokenizer(trim_whitespace=A_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __lowercase = {} for i, token in enumerate(A_ ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=A_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __lowercase = tokenizer.subword_tokenizer __lowercase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(A_ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __lowercase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(A_ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __lowercase = tokenizer.encode("""ありがとう。""" , add_special_tokens=A_ ) __lowercase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=A_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(A_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase__ ( _a , unittest.TestCase ): a : Union[str, Any] = BertJapaneseTokenizer a : Any = False def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().setUp() __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **A_ : Dict ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : Tuple ): '''simple docstring''' __lowercase = """こんにちは、世界。 \nこんばんは、世界。""" __lowercase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' pass # TODO add if relevant def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) __lowercase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( A_ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowercase = {} for i, token in enumerate(A_ ): __lowercase = i __lowercase = CharacterTokenizer(vocab=A_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __lowercase = tokenizer.encode("""ありがとう。""" , add_special_tokens=A_ ) __lowercase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=A_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(A_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """cl-tohoku/bert-base-japanese""" __lowercase = AutoTokenizer.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(A_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __lowercase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(A_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
616
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" __lowercase = cva.getAffineTransform(UpperCamelCase__ , UpperCamelCase__ ) return cva.warpAffine(UpperCamelCase__ , UpperCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ =cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value UpperCAmelCase__ =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ , UpperCAmelCase__ =gray_img.shape # set different points to rotate image UpperCAmelCase__ =np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase__ =np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase__ =np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase__ =np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase__ =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ =plt.figure(1) UpperCAmelCase__ =["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
616
1
'''simple docstring''' import numpy as np def __UpperCAmelCase ( a_: np.ndarray, a_: np.ndarray, a_: float = 1e-1_2, a_: int = 100, ): assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) _UpperCAmelCase : int = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Dict = 1e1_2 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase : List[str] = np.dot(a_, a_ ) # Normalize the resulting output vector. _UpperCAmelCase : Optional[int] = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase : Optional[Any] = vector.conj().T if is_complex else vector.T _UpperCAmelCase : Dict = np.dot(a_, np.dot(a_, a_ ) ) # Check convergence. _UpperCAmelCase : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[int] = lambda_ if is_complex: _UpperCAmelCase : Optional[int] = np.real(lambda_ ) return lambda_, vector def __UpperCAmelCase ( ): _UpperCAmelCase : Any = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase : Union[str, Any] = np.array([41, 4, 20] ) _UpperCAmelCase : List[Any] = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase : int = np.triu(1J * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase : Optional[int] = real_input_matrix _UpperCAmelCase : Tuple = real_vector elif problem_type == "complex": _UpperCAmelCase : Union[str, Any] = complex_input_matrix _UpperCAmelCase : List[str] = complex_vector # Our implementation. _UpperCAmelCase , _UpperCAmelCase : str = power_iteration(a_, a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. _UpperCAmelCase : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase : Optional[int] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
257
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = DebertaVaTokenizer UpperCamelCase_ : List[str] = DebertaVaTokenizerFast UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Tuple = True def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "this is a test" _UpperCAmelCase : Dict = "this is a test" return input_text, output_text def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = "<pad>" _UpperCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(lowerCAmelCase__ ) , 3_0_0_0_1 ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase : Optional[int] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on _UpperCAmelCase : Dict = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" pass def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Optional[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : List[str] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase : List[str] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on _UpperCAmelCase : List[Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = "This is a test" _UpperCAmelCase : Tuple = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] _UpperCAmelCase : Tuple = ["▁", "T", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase : int = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = DebertaVaTokenizerFast(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # fmt: off _UpperCAmelCase : Any = "I was born in 92000, and this is falsé." _UpperCAmelCase : Tuple = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] _UpperCAmelCase : Optional[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] _UpperCAmelCase : Union[str, Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = DebertaVaTokenizer(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("sequence builders" ) _UpperCAmelCase : int = tokenizer.encode("multi-sequence build" ) _UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase__ , ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
257
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : List[str] ): _A = 0 _A = len(__snake_case ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__snake_case ): return None _A = sorted_collection[point] if current_item == item: return point else: if point < left: _A = left _A = point elif point > right: _A = right _A = point else: if item < current_item: _A = point - 1 else: _A = point + 1 return None def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : List[str] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__snake_case ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__snake_case , __snake_case , __snake_case , __snake_case ) elif point > right: return interpolation_search_by_recursion(__snake_case , __snake_case , __snake_case , __snake_case ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __snake_case , __snake_case , __snake_case , point - 1 ) else: return interpolation_search_by_recursion( __snake_case , __snake_case , point + 1 , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): if collection != sorted(__snake_case ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _UpperCAmelCase : int = 0 if debug == 1: _UpperCAmelCase : Optional[int] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _UpperCAmelCase : str = 67 _UpperCAmelCase : Any = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
107
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = KandinskyInpaintPipeline a_ = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a_ = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a_ = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a_ = False @property def _lowercase ( self : int ): return 3_2 @property def _lowercase ( self : Any ): return 3_2 @property def _lowercase ( self : Dict ): return self.time_input_dim @property def _lowercase ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def _lowercase ( self : List[str] ): return 1_0_0 @property def _lowercase ( self : List[str] ): snake_case__ : Tuple = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) snake_case__ : List[str] = MultilingualCLIP(__A ) snake_case__ : List[str] = text_encoder.eval() return text_encoder @property def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case__ : List[Any] = UNetaDConditionModel(**__A ) return model @property def _lowercase ( self : Dict ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self : Optional[int] ): snake_case__ : List[Any] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : Any = self.dummy_unet snake_case__ : List[Any] = self.dummy_movq snake_case__ : Optional[int] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type="epsilon" , thresholding=__A , ) snake_case__ : Union[str, Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase ( self : Any , __A : Union[str, Any] , __A : int=0 ): snake_case__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__A ) ).to(__A ) snake_case__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__A ) # create init_image snake_case__ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__A ) ).to(__A ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Optional[int] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : str = np.ones((6_4, 6_4) , dtype=np.floataa ) snake_case__ : str = 0 if str(__A ).startswith("mps" ): snake_case__ : Optional[Any] = torch.manual_seed(__A ) else: snake_case__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[int] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = "cpu" snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Tuple = self.pipeline_class(**__A ) snake_case__ : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = pipe(**self.get_dummy_inputs(__A ) ) snake_case__ : List[Any] = output.images snake_case__ : List[str] = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : int = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _lowercase ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) snake_case__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case__ : Optional[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) snake_case__ : List[Any] = 0 snake_case__ : str = "a hat" snake_case__ : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) snake_case__ : Dict = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) snake_case__ : Union[str, Any] = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) snake_case__ : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case__, snake_case__ : str = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case__ : int = pipeline( __A , image=__A , mask_image=__A , image_embeds=__A , negative_image_embeds=__A , generator=__A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) snake_case__ : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__A , __A )
297
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowercase : List[str] =logging.get_logger(__name__) def A__ ( lowercase: Optional[Any], lowercase: int ) -> str: try: with open(lowercase, 'rb' ) as flax_state_f: A : int =from_bytes(lowercase, flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowercase, lowercase ) def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights A : Optional[Any] =flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa, lowercase ) ).values() if any(lowercase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) A : Any =jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowercase ) A : int ='' A : Optional[int] =flatten_dict(lowercase, sep='.' ) A : Tuple =pt_model.state_dict() # keep track of unexpected & missing keys A : Tuple =[] A : List[str] =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] =flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A : Any =flax_key_tuple_array[:-1] + ['weight'] A : List[str] =jnp.transpose(lowercase, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A : List[Any] =flax_key_tuple_array[:-1] + ['weight'] A : Optional[int] =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A : Optional[int] =flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase ): A : Any =( flax_key_tuple_string.replace('_0', '.0' ) .replace('_1', '.1' ) .replace('_2', '.2' ) .replace('_3', '.3' ) .replace('_4', '.4' ) .replace('_5', '.5' ) .replace('_6', '.6' ) .replace('_7', '.7' ) .replace('_8', '.8' ) .replace('_9', '.9' ) ) A : Optional[Any] ='.'.join(lowercase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : List[str] =np.asarray(lowercase ) if not isinstance(lowercase, np.ndarray ) else flax_tensor A : str =torch.from_numpy(lowercase ) # remove from missing keys missing_keys.remove(lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase ) pt_model.load_state_dict(lowercase ) # re-transform missing_keys to list A : Union[str, Any] =list(lowercase ) if len(lowercase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(lowercase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
661
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] = DDIMPipeline lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) A : str =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A : Optional[int] =DDIMScheduler() A : Optional[Any] ={'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A : Optional[int] ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: A : Union[str, Any] ='cpu' A : Tuple =self.get_dummy_components() A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images A : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A : Optional[Any] =np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Any ='google/ddpm-cifar10-32' A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMScheduler() A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddim.to(SCREAMING_SNAKE_CASE__ ) ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Dict =torch.manual_seed(0 ) A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images A : str =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : Optional[int] ='google/ddpm-ema-bedroom-256' A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddpm.to(SCREAMING_SNAKE_CASE__ ) ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Any =torch.manual_seed(0 ) A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images A : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
661
1
from __future__ import annotations from typing import Any class __UpperCamelCase : """simple docstring""" def __init__( self : List[Any] , _A : int = 6 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None self.create_linked_list(_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = Node() __SCREAMING_SNAKE_CASE : List[Any] = current_node __SCREAMING_SNAKE_CASE : Optional[Any] = current_node __SCREAMING_SNAKE_CASE : Union[str, Any] = current_node for _ in range(1 , _A ): __SCREAMING_SNAKE_CASE : Dict = Node() __SCREAMING_SNAKE_CASE : List[Any] = current_node __SCREAMING_SNAKE_CASE : Optional[int] = previous_node __SCREAMING_SNAKE_CASE : Any = current_node __SCREAMING_SNAKE_CASE : List[Any] = self.front __SCREAMING_SNAKE_CASE : List[Any] = previous_node def UpperCAmelCase__ ( self : Any ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def UpperCAmelCase__ ( self : str , _A : Any ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): __SCREAMING_SNAKE_CASE : List[str] = self.rear.next if self.rear: __SCREAMING_SNAKE_CASE : Any = data def UpperCAmelCase__ ( self : str ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __SCREAMING_SNAKE_CASE : Dict = self.front.data __SCREAMING_SNAKE_CASE : Optional[int] = None return data __SCREAMING_SNAKE_CASE : List[str] = self.front __SCREAMING_SNAKE_CASE : int = old_front.next __SCREAMING_SNAKE_CASE : Dict = old_front.data __SCREAMING_SNAKE_CASE : str = None return data def UpperCAmelCase__ ( self : Dict ): """simple docstring""" if self.is_empty(): raise Exception('''Empty Queue''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __UpperCamelCase : """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any | None = None __SCREAMING_SNAKE_CASE : Node | None = None __SCREAMING_SNAKE_CASE : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
74
def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Dict = len(lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) UpperCamelCase_ : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase_ : Tuple = True for i in range(lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase_ : str = True if a[i].islower(): UpperCamelCase_ : List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
417
0
import torch from torch import nn class lowercase ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : Optional[int]=1 , _lowercase : str=False ): super().__init__() SCREAMING_SNAKE_CASE__ : int = n_token SCREAMING_SNAKE_CASE__ : Optional[int] = d_embed SCREAMING_SNAKE_CASE__ : Optional[int] = d_proj SCREAMING_SNAKE_CASE__ : Dict = cutoffs + [n_token] SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] + self.cutoffs SCREAMING_SNAKE_CASE__ : List[Any] = div_val SCREAMING_SNAKE_CASE__ : Any = self.cutoffs[0] SCREAMING_SNAKE_CASE__ : int = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE__ : Tuple = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE__ : List[Any] = nn.ModuleList() SCREAMING_SNAKE_CASE__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowercase , _lowercase ) ) ) else: self.out_projs.append(_lowercase ) self.out_layers.append(nn.Linear(_lowercase , _lowercase ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ : Any = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowercase , _lowercase ) ) ) self.out_layers.append(nn.Linear(_lowercase , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE__ : List[Any] = keep_order def lowercase__ ( self : Any , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] ): if proj is None: SCREAMING_SNAKE_CASE__ : int = nn.functional.linear(_lowercase , _lowercase , bias=_lowercase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.linear(_lowercase , proj.t().contiguous() ) SCREAMING_SNAKE_CASE__ : str = nn.functional.linear(_lowercase , _lowercase , bias=_lowercase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase__ ( self : int , _lowercase : int , _lowercase : List[str]=None , _lowercase : Union[str, Any]=False ): if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE__ : List[Any] = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE__ : Union[str, Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ : List[str] = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE__ : Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: SCREAMING_SNAKE_CASE__ : Tuple = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ : Dict = self._compute_logit(_lowercase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE__ : int = labels != -1_00 SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.zeros_like(_lowercase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( -nn.functional.log_softmax(_lowercase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.functional.log_softmax(_lowercase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ : str = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE__ : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ : List[str] = self.out_layers[i].weight SCREAMING_SNAKE_CASE__ : int = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE__ : Any = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowercase ) biases.append(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE__ : List[Any] = self._compute_logit(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.functional.log_softmax(_lowercase , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE__ : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE__ : List[str] = torch.zeros_like(_lowercase , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : Tuple = [0] + self.cutoffs for i in range(len(_lowercase ) - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE__ : List[Any] = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE__ : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE__ : List[Any] = labels.index_select(0 , _lowercase ) - l_idx SCREAMING_SNAKE_CASE__ : str = head_logprob.index_select(0 , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = hidden.index_select(0 , _lowercase ) else: SCREAMING_SNAKE_CASE__ : Dict = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE__ : int = self._compute_logit(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Any = nn.functional.log_softmax(_lowercase , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE__ : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE__ : Tuple = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _lowercase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase__ ( self : Dict , _lowercase : Optional[int] ): if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ : List[Any] = self._compute_logit(_lowercase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_lowercase , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ : List[str] = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ : List[Any] = self.out_layers[i].weight SCREAMING_SNAKE_CASE__ : int = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_lowercase ) biases.append(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE__ : List[str] = self._compute_logit(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.log_softmax(_lowercase , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(_lowercase ) - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE__ : int = self._compute_logit(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : str = nn.functional.log_softmax(_lowercase , dim=1 ) SCREAMING_SNAKE_CASE__ : str = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE__ : str = logprob_i return out
250
from math import pow def a ( A__ , A__ , A__ , A__ , A__ , ) -> tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE__ : Optional[int] = int(pow(A__ , A__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = backtrack( A__ , A__ , current_number + 1 , A__ , A__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = backtrack( A__ , A__ , current_number + 1 , A__ , A__ ) return current_sum, solutions_count def a ( A__ , A__ ) -> int: '''simple docstring''' if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(A__ , A__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
250
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'spiece.model'} lowerCAmelCase__ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowerCAmelCase__ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCAmelCase__ = '▁' class _lowerCAmelCase ( _A ): SCREAMING_SNAKE_CASE_: Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_: str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : Tuple = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = do_lower_case _SCREAMING_SNAKE_CASE : int = remove_space _SCREAMING_SNAKE_CASE : int = keep_accents _SCREAMING_SNAKE_CASE : Dict = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def A ( self ) -> int: return len(self.sp_model ) def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Dict = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _SCREAMING_SNAKE_CASE : int = self.__dict__.copy() _SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self , lowerCAmelCase_ ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _SCREAMING_SNAKE_CASE : Dict = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self , lowerCAmelCase_ ) -> Any: if self.remove_space: _SCREAMING_SNAKE_CASE : Dict = ' '.join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : List[str] = inputs _SCREAMING_SNAKE_CASE : Optional[int] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : Tuple = unicodedata.normalize('NFKD' , __lowerCAmelCase ) _SCREAMING_SNAKE_CASE : str = ''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Any = outputs.lower() return outputs def A ( self , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : str = self.preprocess_text(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Tuple = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Any = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def A ( self , lowerCAmelCase_ ) -> Dict: return self.sp_model.PieceToId(__lowerCAmelCase ) def A ( self , lowerCAmelCase_ ) -> List[Any]: return self.sp_model.IdToPiece(__lowerCAmelCase ) def A ( self , lowerCAmelCase_ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = '' _SCREAMING_SNAKE_CASE : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token _SCREAMING_SNAKE_CASE : int = True _SCREAMING_SNAKE_CASE : Dict = [] else: current_sub_tokens.append(__lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : int = os.path.join( __lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , 'wb' ) as fi: _SCREAMING_SNAKE_CASE : Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
621
UpperCAmelCase_ = 0 # The first color of the flag. UpperCAmelCase_ = 1 # The second color of the flag. UpperCAmelCase_ = 2 # The third color of the flag. UpperCAmelCase_ = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> list: if not sequence: return [] if len(_snake_case ) == 1: return list(_snake_case ) _A = 0 _A = len(_snake_case ) - 1 _A = 0 while mid <= high: if sequence[mid] == colors[0]: _A , _A = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _A , _A = sequence[high], sequence[mid] high -= 1 else: _A = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(_snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by commas:\n""").strip() UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
2
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class a__ ( snake_case__ ): _a : Tuple = """open-llama""" def __init__( self , _A=1_0_0_0_0_0 , _A=4_0_9_6 , _A=1_1_0_0_8 , _A=3_2 , _A=3_2 , _A="silu" , _A=2_0_4_8 , _A=0.02 , _A=1E-6 , _A=True , _A=0 , _A=1 , _A=2 , _A=False , _A=True , _A=0.1 , _A=0.1 , _A=True , _A=True , _A=None , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = rms_norm_eps __lowerCAmelCase = use_cache __lowerCAmelCase = kwargs.pop( "use_memorry_efficient_attention" , _A ) __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_dropout_prob __lowerCAmelCase = use_stable_embedding __lowerCAmelCase = shared_input_output_embedding __lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) __lowerCAmelCase = self.rope_scaling.get("type" , _A ) __lowerCAmelCase = self.rope_scaling.get("factor" , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
711
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a__ : def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=False , _A=True , _A="None" , _A=3 , _A=4 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = relative_attention __lowerCAmelCase = position_biased_input __lowerCAmelCase = pos_att_type __lowerCAmelCase = scope def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel(config=_A ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForMaskedLM(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForSequenceClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForTokenClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForQuestionAnswering(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _a : Union[str, Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _a : str = False _a : List[str] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(_A ) @require_tf class a__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __lowerCAmelCase = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase = model(_A , attention_mask=_A )[0] __lowerCAmelCase = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 )
552
0
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class lowerCamelCase ( _A , unittest.TestCase ): snake_case_ = BartphoTokenizer snake_case_ = False snake_case_ = True def _lowerCamelCase ( self ): super().setUp() lowerCAmelCase : Optional[int] = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase : Any = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase : Any = {"unk_token": "<unk>"} lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) lowerCAmelCase : List[str] = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self , **a_ ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a_ ) def _lowerCamelCase ( self , a_ ): lowerCAmelCase : List[Any] = "This is a là test" lowerCAmelCase : Union[str, Any] = "This is a<unk><unk> test" return input_text, output_text def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase : Dict = "This is a là test" lowerCAmelCase : int = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase : int = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
525
'''simple docstring''' lowerCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __A ( a_ : int ): lowerCAmelCase : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase = [None] * 10_00_00_00 lowerCAmelCase = True lowerCAmelCase = False def __A ( a_ : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase : Dict = chain(next_number(a_ ) ) lowerCAmelCase : Union[str, Any] = number_chain while number < 1_0_0_0_0_0_0_0: lowerCAmelCase : Any = number_chain number *= 1_0 return number_chain def __A ( a_ : int = 1_0_0_0_0_0_0_0 ): for i in range(1 ,a_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(a_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
525
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]]): super().__init__() _lowercase: List[Any] = nn.ModuleList(_UpperCamelCase) def UpperCAmelCase__ ( self : Optional[Any] , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : Union[torch.Tensor, float, int] , _UpperCamelCase : torch.Tensor , _UpperCamelCase : List[torch.tensor] , _UpperCamelCase : List[float] , _UpperCamelCase : Optional[torch.Tensor] = None , _UpperCamelCase : Optional[torch.Tensor] = None , _UpperCamelCase : Optional[torch.Tensor] = None , _UpperCamelCase : Optional[Dict[str, Any]] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(_UpperCamelCase , _UpperCamelCase , self.nets)): _lowercase: Optional[int] = controlnet( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # merge samples if i == 0: _lowercase: str = down_samples, mid_sample else: _lowercase: Dict = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_UpperCamelCase , _UpperCamelCase) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase__ ( self : int , _UpperCamelCase : Union[str, os.PathLike] , _UpperCamelCase : bool = True , _UpperCamelCase : Callable = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[str] = None , ): _lowercase: Union[str, Any] = 0 _lowercase: str = save_directory for controlnet in self.nets: controlnet.save_pretrained( _UpperCamelCase , is_main_process=_UpperCamelCase , save_function=_UpperCamelCase , safe_serialization=_UpperCamelCase , variant=_UpperCamelCase , ) idx += 1 _lowercase: List[Any] = model_path_to_save + f"_{idx}" @classmethod def UpperCAmelCase__ ( cls : Dict , _UpperCamelCase : Optional[Union[str, os.PathLike]] , **_UpperCamelCase : int): _lowercase: Any = 0 _lowercase: List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowercase: Tuple = pretrained_model_path while os.path.isdir(_UpperCamelCase): _lowercase: Union[str, Any] = ControlNetModel.from_pretrained(_UpperCamelCase , **_UpperCamelCase) controlnets.append(_UpperCamelCase) idx += 1 _lowercase: str = pretrained_model_path + f"_{idx}" logger.info(f"{len(_UpperCamelCase)} controlnets loaded from {pretrained_model_path}.") if len(_UpperCamelCase) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(_UpperCamelCase)}. Expected at least {pretrained_model_path + '_0'}.") return cls(_UpperCamelCase)
719
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _SCREAMING_SNAKE_CASE : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _SCREAMING_SNAKE_CASE : int = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _SCREAMING_SNAKE_CASE : Optional[Any] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_MAPPING _SCREAMING_SNAKE_CASE : Tuple = auto_class_update(FlaxAutoModel) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING _SCREAMING_SNAKE_CASE : int = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _SCREAMING_SNAKE_CASE : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _SCREAMING_SNAKE_CASE : List[str] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
206
0
'''simple docstring''' from __future__ import annotations import math def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> float: _UpperCamelCase : Optional[Any] = u for i in range(1 ,UpperCamelCase ): _UpperCamelCase : Optional[int] = temp * (u - i) return temp def snake_case__ ( ) -> None: _UpperCamelCase : Union[str, Any] = int(input('''enter the numbers of values: ''' ) ) _UpperCamelCase : list[list[float]] = [] for _ in range(UpperCamelCase ): y.append([] ) for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): y[i].append(UpperCamelCase ) _UpperCamelCase : Tuple = 0 print('''enter the values of parameters in a list: ''' ) _UpperCamelCase : int = list(map(UpperCamelCase ,input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(UpperCamelCase ): _UpperCamelCase : Dict = float(input() ) _UpperCamelCase : List[Any] = int(input('''enter the value to interpolate: ''' ) ) _UpperCamelCase : List[str] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,UpperCamelCase ): for j in range(n - i ): _UpperCamelCase : Tuple = y[j + 1][i - 1] - y[j][i - 1] _UpperCamelCase : Any = y[0][0] for i in range(1 ,UpperCamelCase ): summ += (ucal(UpperCamelCase ,UpperCamelCase ) * y[0][i]) / math.factorial(UpperCamelCase ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
683
'''simple docstring''' _UpperCAmelCase : str = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase : List[str] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> str: assert len(str(UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _UpperCamelCase : Any = year // 1_00 _UpperCamelCase : List[Any] = (5 * (century % 4) + 2) % 7 _UpperCamelCase : Tuple = year % 1_00 _UpperCamelCase : Optional[int] = centurian % 12 _UpperCamelCase : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _UpperCamelCase : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _UpperCamelCase : Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Tuple = logging.get_logger(__name__) __a : List[str] = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """visual_bert""" def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
414
from math import factorial def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) UpperCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCamelCase = float(factorial(lowercase_ ) ) coefficient /= factorial(lowercase_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
414
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> None: """simple docstring""" create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __snake_case : Tuple = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() __snake_case : str = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
26
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def lowerCamelCase ( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
561
0
from __future__ import annotations _lowercase = [True] * 1000001 _lowercase = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): _lowercase = False i += 1 def UpperCamelCase ( snake_case__): return seive[n] def UpperCamelCase ( snake_case__): return any(digit in "02468" for digit in str(snake_case__)) def UpperCamelCase ( snake_case__ = 1_00_00_00): lowerCAmelCase_ : Union[str, Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2): if is_prime(snake_case__) and not contains_an_even_digit(snake_case__): lowerCAmelCase_ : Optional[Any] = str(snake_case__) lowerCAmelCase_ : str = [int(str_num[j:] + str_num[:j]) for j in range(len(snake_case__))] if all(is_prime(snake_case__) for i in list_nums): result.append(snake_case__) return result def UpperCamelCase ( ): return len(find_circular_primes()) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ (UpperCamelCase_ ): lowercase_ : Any = "MCTCTFeatureExtractor" lowercase_ : Tuple = "AutoTokenizer" def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" super().__init__(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False def __call__( self : Any , *__lowerCamelCase : Tuple , **__lowerCamelCase : Any ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ = kwargs.pop('''audio''' , __lowerCamelCase ) lowerCAmelCase__ = kwargs.pop('''sampling_rate''' , __lowerCamelCase ) lowerCAmelCase__ = kwargs.pop('''text''' , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: lowerCAmelCase__ = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ = encodings['''input_ids'''] return inputs def A__ ( self : Any , *__lowerCamelCase : str , **__lowerCamelCase : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def A__ ( self : Optional[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : int ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase__ = kwargs.pop('''input_features''' , __lowerCamelCase ) lowerCAmelCase__ = kwargs.pop('''labels''' , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if input_features is not None: lowerCAmelCase__ = self.feature_extractor.pad(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if labels is not None: lowerCAmelCase__ = self.tokenizer.pad(__lowerCamelCase , **__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase__ = labels['''input_ids'''] return input_features def A__ ( self : Dict , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : int ): """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @contextmanager def A__ ( self : Any ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer yield lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False
615
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=lowerCAmelCase , ) assert hasattr(self , '''env''' ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Tuple: # configuration for running training on smdistributed Model Parallel SCREAMING_SNAKE_CASE__: Optional[Any]= { '''enabled''': True, '''processes_per_host''': 8, } SCREAMING_SNAKE_CASE__: Dict= { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } SCREAMING_SNAKE_CASE__: Optional[Any]= {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} SCREAMING_SNAKE_CASE__: Dict= '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase , py_version='''py36''' , ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: TrainingJobAnalytics(lowerCAmelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: # create estimator SCREAMING_SNAKE_CASE__: List[str]= self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__: Any= TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__: Optional[int]= list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE__: Optional[int]= list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__: List[Any]= ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowerCAmelCase )
64
0
# Function to print upper half of diamond (pyramid) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): for i in range(0 , _SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): for i in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(_SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") SCREAMING_SNAKE_CASE : str = 1 while K: SCREAMING_SNAKE_CASE : Optional[int] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) SCREAMING_SNAKE_CASE : str = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
709
from math import sqrt def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase_ : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase_ : Tuple = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase_ : Union[str, Any] = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase_ : Dict = list(range(2 , n + 1 ) ) UpperCamelCase_ : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase_ : Optional[int] = 0 # filters actual prime numbers. UpperCamelCase_ : Union[str, Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase_ : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase_ : Optional[int] = 2 UpperCamelCase_ : Dict = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Tuple = 0 # prime factorization of 'number' UpperCamelCase_ : int = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Any = 0 # prime factorization of 'number' UpperCamelCase_ : Dict = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Union[str, Any] = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" UpperCamelCase_ : Tuple = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase_ : int = get_prime_numbers(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : str = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = None # exit variable. for break up the loops UpperCamelCase_ : Any = True while i < len_pn and loop: UpperCamelCase_ : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase_ : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : List[Any] = 0 while numbera != 0: UpperCamelCase_ : List[str] = numbera % numbera UpperCamelCase_ : Optional[Any] = numbera UpperCamelCase_ : Optional[Any] = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: UpperCamelCase_ : int = [] UpperCamelCase_ : Dict = [] UpperCamelCase_ : List[Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = 0 UpperCamelCase_ : int = 0 UpperCamelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase_ : List[str] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: UpperCamelCase_ : Tuple = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" UpperCamelCase_ : str = 0 UpperCamelCase_ : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase_ : Optional[int] = p_number_a + 1 # jump to the next number UpperCamelCase_ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase_ : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase_ : Dict = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase_ : List[Any] = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase_ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : List[str] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase_ : List[Any] = ans ans += fiba UpperCamelCase_ : Any = tmp return ans
138
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase_ = ["gpt2"] lowercase_ = "gpt2" if is_tf_available(): class __A ( tf.Module ): '''simple docstring''' def __init__(self , A ) -> List[Any]: """simple docstring""" super().__init__() _a = tokenizer _a = AutoConfig.from_pretrained(A ) _a = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" _a = self.tokenizer(A ) _a = tokenized['''input_ids'''].to_tensor() _a = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _a = self.model(input_ids=A , attention_mask=A )['''logits'''] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Any: """simple docstring""" super().setUp() _a = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _a = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _a = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _a = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__ (self ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _a = tokenizer([test_inputs] , return_tensors='''tf''' ) _a = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _a = python_outputs[key].numpy() _a = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def a__ (self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.function(A ) for test_inputs in self.test_sentences: _a = tf.constant(A ) _a = compiled_tokenizer(A ) _a = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = ModelToSave(tokenizer=A ) _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _a = Path(A ) / '''saved.model''' tf.saved_model.save(A , A , signatures={'''serving_default''': model.serving} ) _a = tf.saved_model.load(A ) _a = loaded_model.signatures['''serving_default'''](A )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ (self ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A ) # Build model with some sample inputs _a = tf_tokenizer.get_config() _a = TFGPTaTokenizer.from_config(A ) _a = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ (self ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _a = 123_123 for max_length in [3, 5, 1_024]: _a = tf.convert_to_tensor([self.test_sentences[0]] ) _a = tf_tokenizer(A , max_length=A ) _a = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
"""simple docstring""" from __future__ import annotations def __lowercase ( a : int , a : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __snake_case : List[str] =number_of_bytes // partitions __snake_case : str =[] for i in range(a ): __snake_case : Optional[Any] =i * bytes_per_partition + 1 __snake_case : Any =( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
497
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCamelCase_ : Optional[Any] = 6_37_81_37.0 UpperCamelCase_ : Optional[Any] = 6_35_67_52.31_42_45 UpperCamelCase_ : Union[str, Any] = 6378137 def __lowercase ( a : float , a : float , a : float , a : float ) -> float: __snake_case : Optional[Any] =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case : List[str] =atan((1 - flattening) * tan(radians(a ) ) ) __snake_case : Any =atan((1 - flattening) * tan(radians(a ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case : Optional[Any] =haversine_distance(a , a , a , a ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case : List[str] =(b_lata + b_lata) / 2 __snake_case : Dict =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case : Optional[int] =(sin(a ) ** 2) * (cos(a ) ** 2) __snake_case : Any =cos(sigma / 2 ) ** 2 __snake_case : Optional[Any] =(sigma - sin(a )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case : Tuple =(cos(a ) ** 2) * (sin(a ) ** 2) __snake_case : Dict =sin(sigma / 2 ) ** 2 __snake_case : Tuple =(sigma + sin(a )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
497
1
'''simple docstring''' import os from math import logaa def __magic_name__ ( __UpperCAmelCase = "base_exp.txt" ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(map(__UpperCAmelCase , line.split(""",""" ) ) ) if x * logaa(__UpperCAmelCase ) > largest: __SCREAMING_SNAKE_CASE = x * logaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = i + 1 return result if __name__ == "__main__": print(solution())
109
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : List[str] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''lxmert''' UpperCAmelCase__ : Any = {} def __init__( self :Dict ,__snake_case :Optional[Any]=3_05_22 ,__snake_case :int=7_68 ,__snake_case :int=12 ,__snake_case :Any=95_00 ,__snake_case :Union[str, Any]=16_00 ,__snake_case :str=4_00 ,__snake_case :Optional[Any]=30_72 ,__snake_case :List[str]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Dict=5_12 ,__snake_case :str=2 ,__snake_case :List[str]=0.02 ,__snake_case :Optional[int]=1E-12 ,__snake_case :Any=9 ,__snake_case :List[str]=5 ,__snake_case :Optional[Any]=5 ,__snake_case :str=20_48 ,__snake_case :Optional[Any]=4 ,__snake_case :str=6.67 ,__snake_case :Union[str, Any]=True ,__snake_case :str=True ,__snake_case :int=True ,__snake_case :List[str]=True ,__snake_case :List[Any]=True ,__snake_case :str=True ,__snake_case :List[str]=True ,**__snake_case :Optional[Any] ,) -> str: a__ = vocab_size a__ = hidden_size a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = num_qa_labels a__ = num_object_labels a__ = num_attr_labels a__ = l_layers a__ = x_layers a__ = r_layers a__ = visual_feat_dim a__ = visual_pos_dim a__ = visual_loss_normalizer a__ = task_matched a__ = task_mask_lm a__ = task_obj_predict a__ = task_qa a__ = visual_obj_loss a__ = visual_attr_loss a__ = visual_feat_loss a__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__snake_case )
335
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : int = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowercase : str = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : int ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ): lowercase_ : Optional[int] = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase_ : str = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase_ : int = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase_ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
721
'''simple docstring''' import unittest import numpy as np def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray | None = None , ) -> np.ndarray: lowercase_ : List[Any] = np.shape(UpperCAmelCase__ ) lowercase_ : Dict = np.shape(UpperCAmelCase__ ) lowercase_ : int = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: lowercase_ : Optional[int] = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: lowercase_ : Optional[Any] = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) lowercase_ : Any = pseudo_inv if a_inv is None: try: lowercase_ : List[str] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : int = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Dict = np.array([[2, 1], [6, 3]] ) lowercase_ : Union[str, Any] = schur_complement(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : List[Any] = np.block([[a, b], [b.T, c]] ) lowercase_ : Optional[int] = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : str = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def UpperCamelCase_( ) -> Union[str, Any]: UpperCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase__ = bs[:] UpperCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase_( snake_case__: int ) -> List[Any]: UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs class lowercase ( lowercase__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__(self , __a , __a , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , **__a , ) -> Any: """simple docstring""" UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='utf-8' ) as vocab_handle: UpperCAmelCase__ = json.load(__lowercase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ = errors # how to handle errors in decoding UpperCAmelCase__ = bytes_to_unicode() UpperCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='utf-8' ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) UpperCAmelCase__ = {} UpperCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" return len(self.encoder ) def UpperCamelCase__ (self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ (self , __a ) -> Optional[int]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase__ = tuple(__lowercase ) UpperCAmelCase__ = get_pairs(__lowercase ) if not pairs: return token while True: UpperCAmelCase__ = min(__lowercase , key=lambda __a : self.bpe_ranks.get(__lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__lowercase ): try: UpperCAmelCase__ = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__lowercase ) UpperCAmelCase__ = new_word if len(__lowercase ) == 1: break else: UpperCAmelCase__ = get_pairs(__lowercase ) UpperCAmelCase__ = """ """.join(__lowercase ) UpperCAmelCase__ = word return word def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = [] for token in re.findall(self.pat , __lowercase ): UpperCAmelCase__ = """""".join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ (self , __a ) -> str: """simple docstring""" return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ (self , __a ) -> Optional[Any]: """simple docstring""" return self.decoder.get(__lowercase ) def UpperCamelCase__ (self , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = """""".join(__lowercase ) UpperCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase__ = os.path.join( __lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '\n' ) UpperCAmelCase__ = 0 with open(__lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase__ = token_index writer.write(' '.join(__lowercase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ (self , __a , __a = None , __a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ (self , __a , __a=False , **__a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): UpperCAmelCase__ = """ """ + text return (text, kwargs)
146
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
63
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( __A : Optional[int] , __A : Tuple , __A : Any , __A : List[Any] , __A : Optional[int] ) -> Tuple: '''simple docstring''' with open(__A ) as metadata_file: snake_case : Union[str, Any] = json.load(__A ) snake_case : Any = LukeConfig(use_entity_aware_attention=__A , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path snake_case : Any = torch.load(__A , map_location="""cpu""" )["""module"""] # Load the entity vocab file snake_case : Dict = load_original_entity_vocab(__A ) # add an entry for [MASK2] snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : List[str] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Any = AddedToken("""<ent>""" , lstrip=__A , rstrip=__A ) snake_case : str = AddedToken("""<ent2>""" , lstrip=__A , rstrip=__A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__A ) with open(os.path.join(__A , """tokenizer_config.json""" ) , """r""" ) as f: snake_case : int = json.load(__A ) snake_case : Any = """MLukeTokenizer""" with open(os.path.join(__A , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__A , __A ) with open(os.path.join(__A , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__A , __A ) snake_case : Any = MLukeTokenizer.from_pretrained(__A ) # Initialize the embeddings of the special tokens snake_case : List[str] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] snake_case : Union[str, Any] = state_dict["""embeddings.word_embeddings.weight"""] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Dict = word_emb[enta_init_index].unsqueeze(0 ) snake_case : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Any = state_dict[bias_name] snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" snake_case : List[str] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] snake_case : Dict = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) snake_case : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Dict = state_dict["""entity_predictions.bias"""] snake_case : Dict = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) snake_case : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Optional[int] = LukeForMaskedLM(config=__A ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) snake_case : Dict = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): snake_case : List[Any] = state_dict[key] else: snake_case : str = state_dict[key] snake_case , snake_case : int = model.load_state_dict(__A , strict=__A ) if set(__A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : str = MLukeTokenizer.from_pretrained(__A , task="""entity_classification""" ) snake_case : Optional[int] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" snake_case : Dict = (0, 9) snake_case : Optional[Any] = tokenizer(__A , entity_spans=[span] , return_tensors="""pt""" ) snake_case : Any = model(**__A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 33, 768) ) snake_case : List[str] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : List[str] = torch.Size((1, 1, 768) ) snake_case : Optional[Any] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[Any] = MLukeTokenizer.from_pretrained(__A ) snake_case : List[str] = """Tokyo is the capital of <mask>.""" snake_case : Tuple = (24, 30) snake_case : Optional[Any] = tokenizer(__A , entity_spans=[span] , return_tensors="""pt""" ) snake_case : Any = model(**__A ) snake_case : str = encoding["""input_ids"""][0].tolist() snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) snake_case : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__A ) snake_case : int = outputs.entity_logits[0][0].argmax().item() snake_case : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__A ) ) model.save_pretrained(__A ) def lowercase ( __A : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] snake_case : Optional[int] = [json.loads(__A ) for line in open(__A )] snake_case : Union[str, Any] = {} for entry in data: snake_case : str = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Optional[int] = entity_id break snake_case : List[Any] = f"""{language}:{entity_name}""" snake_case : List[Any] = entity_id return new_mapping if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowercase : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
315
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowercase : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowercase ( __A : Optional[int] , __A : List[str] , __A : str ) -> Dict: '''simple docstring''' snake_case : Any = state_dict.pop(__A ) snake_case : Optional[Any] = val def lowercase ( __A : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case : Optional[int] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) snake_case : List[Any] = value else: snake_case : List[str] = value return new_state_dict def lowercase ( __A : List[Any] , __A : List[Any]=False ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = """""" if is_panoptic: snake_case : Dict = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case : Union[str, Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case : str = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : List[Any] = in_proj_weight[:256, :] snake_case : Optional[Any] = in_proj_bias[:256] snake_case : Tuple = in_proj_weight[256:512, :] snake_case : Any = in_proj_bias[256:512] snake_case : int = in_proj_weight[-256:, :] snake_case : Any = in_proj_bias[-256:] def lowercase ( ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowercase ( __A : Union[str, Any] , __A : int ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case : Optional[Any] = """resnet101""" if "dc5" in model_name: snake_case : Optional[Any] = True snake_case : Optional[int] = """panoptic""" in model_name if is_panoptic: snake_case : str = 250 else: snake_case : Dict = 91 snake_case : Dict = """huggingface/label-files""" snake_case : List[str] = """coco-detection-id2label.json""" snake_case : Optional[int] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) snake_case : Tuple = {int(__A ): v for k, v in idalabel.items()} snake_case : List[str] = idalabel snake_case : Tuple = {v: k for k, v in idalabel.items()} # load image processor snake_case : Dict = """coco_panoptic""" if is_panoptic else """coco_detection""" snake_case : Any = ConditionalDetrImageProcessor(format=__A ) # prepare image snake_case : List[str] = prepare_img() snake_case : List[str] = image_processor(images=__A , return_tensors="""pt""" ) snake_case : Dict = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub snake_case : Tuple = torch.hub.load("""DeppMeng/ConditionalDETR""" , __A , pretrained=__A ).eval() snake_case : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case : Any = """conditional_detr.""" + src rename_key(__A , __A , __A ) snake_case : Optional[int] = rename_backbone_keys(__A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case : Tuple = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): snake_case : str = state_dict.pop(__A ) snake_case : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case : Dict = state_dict.pop(__A ) snake_case : Optional[int] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: snake_case : Optional[int] = state_dict.pop(__A ) snake_case : Optional[Any] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case : List[Any] = state_dict.pop(__A ) snake_case : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case : str = ConditionalDetrForSegmentation(__A ) if is_panoptic else ConditionalDetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() model.push_to_hub(repo_id=__A , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion snake_case : Tuple = conditional_detr(__A ) snake_case : Tuple = model(__A ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowercase : Optional[int] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
315
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowercase : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __a ( A__ ) -> Optional[Any]: with open(A__ , "rb" ) as f: lowerCAmelCase = Image.open(A__ ) return im.convert("RGB" ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self : Optional[int] ) -> List[str]: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCamelCase_ )} , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __a ( A__ ) -> Any: lowerCAmelCase = torch.stack([example["pixel_values"] for example in examples] ) lowerCAmelCase = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __a ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , A__ , A__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase = {} if data_args.train_dir is not None: lowerCAmelCase = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: lowerCAmelCase = os.path.join(data_args.validation_dir , "**" ) lowerCAmelCase = load_dataset( "imagefolder" , data_files=A__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCAmelCase = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , A__ ) and data_args.train_val_split > 0.0: lowerCAmelCase = dataset["train"].train_test_split(data_args.train_val_split ) lowerCAmelCase = split["train"] lowerCAmelCase = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase = dataset["train"].features["labels"].names lowerCAmelCase , lowerCAmelCase = {}, {} for i, label in enumerate(A__ ): lowerCAmelCase = str(A__ ) lowerCAmelCase = label # Load the accuracy metric from the datasets package lowerCAmelCase = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel=A__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowerCAmelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowerCAmelCase = image_processor.size["shortest_edge"] else: lowerCAmelCase = (image_processor.size["height"], image_processor.size["width"]) lowerCAmelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowerCAmelCase = Compose( [ RandomResizedCrop(A__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowerCAmelCase = Compose( [ Resize(A__ ), CenterCrop(A__ ), ToTensor(), normalize, ] ) def train_transforms(A__ ): lowerCAmelCase = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A__ ): lowerCAmelCase = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCAmelCase = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCAmelCase = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A__ ) # Initalize our trainer lowerCAmelCase = Trainer( model=A__ , args=A__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=A__ , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase = last_checkpoint lowerCAmelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase = trainer.evaluate() trainer.log_metrics("eval" , A__ ) trainer.save_metrics("eval" , A__ ) # Write model card and (optionally) push to hub lowerCAmelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) if __name__ == "__main__": main()
649
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase_ : __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(lowerCAmelCase_ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ , *UpperCAmelCase_ : Any = self.shape UpperCAmelCase_ : Any = int(np.prod(lowerCAmelCase_ ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : Optional[int] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Dict = self.get_camera_rays(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = rays.view(lowerCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(lowerCAmelCase_ , -1 , 2 ) UpperCAmelCase_ : Any = self.resolution() UpperCAmelCase_ : str = self.fov() UpperCAmelCase_ : List[str] = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : List[str] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Union[str, Any] = fracs.view(lowerCAmelCase_ , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(lowerCAmelCase_ , 1 , 3 ) + self.x.view(lowerCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCAmelCase_ , *lowerCAmelCase_ , 2 , 3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCAmelCase_ , height=lowerCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case ( A__ ): UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): UpperCAmelCase_ : str = np.array([np.sin(A__ ), np.cos(A__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Union[str, Any] = -z * 4 UpperCAmelCase_ : Optional[Any] = np.array([np.cos(A__ ), -np.sin(A__ ), 0.0] ) UpperCAmelCase_ : str = np.cross(A__ ,A__ ) origins.append(A__ ) xs.append(A__ ) ys.append(A__ ) zs.append(A__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(A__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(A__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(A__ ,axis=0 ) ).float() ,width=A__ ,height=A__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(A__ )) ,)
463
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase_ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCamelCase_ = { '''facebook/xglm-564M''': 2048, } class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : List[str] , ) -> None: UpperCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_ : Any = 7 UpperCAmelCase_ : Dict = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase_ : Optional[int] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Tuple = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCAmelCase_ : List[str] = len(self.sp_model ) UpperCAmelCase_ : List[Any] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.__dict__.copy() UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Optional[int] = self.sp_model.PieceToId(lowerCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: UpperCAmelCase_ : Any = "".join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
463
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( lowercase__ : str ) -> None: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = analyze_text(lowercase__ ) lowerCAmelCase_ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase_ : Any = sum(single_char_strings.values() ) # one length string lowerCAmelCase_ : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase_ : Union[str, Any] = single_char_strings[ch] lowerCAmelCase_ : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase__ ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase_ : Any = sum(two_char_strings.values() ) lowerCAmelCase_ : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase_ : List[str] = cha + cha if sequence in two_char_strings: lowerCAmelCase_ : Any = two_char_strings[sequence] lowerCAmelCase_ : Optional[Any] = int(lowercase__ ) / all_sum my_sec_sum += prob * math.loga(lowercase__ ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __UpperCamelCase ( lowercase__ : str ) -> tuple[dict, dict]: '''simple docstring''' lowerCAmelCase_ : Any = Counter() # type: ignore lowerCAmelCase_ : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowercase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
600
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCAmelCase_ : List[Any] = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCAmelCase_ : Dict = True if a[i].islower(): lowerCAmelCase_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
600
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Linear(3 , 4 ) lowerCamelCase_ = nn.BatchNormad(4 ) lowerCamelCase_ = nn.Linear(4 , 5 ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , model.state_dict() ) lowerCamelCase_ = os.path.join(__lowerCamelCase , '''index.json''' ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCamelCase_ = os.path.join(__lowerCamelCase , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCamelCase_ = torch.randn(2 , 3 , dtype=__lowerCamelCase ) with TemporaryDirectory() as tmp_dir: lowerCamelCase_ = offload_weight(__lowerCamelCase , '''weight''' , __lowerCamelCase , {} ) lowerCamelCase_ = os.path.join(__lowerCamelCase , '''weight.dat''' ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) self.assertDictEqual(__lowerCamelCase , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(__lowerCamelCase ).split('''.''' )[1]}} ) lowerCamelCase_ = load_offloaded_weight(__lowerCamelCase , index['''weight'''] ) self.assertTrue(torch.equal(__lowerCamelCase , __lowerCamelCase ) ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = ModelForTest() lowerCamelCase_ = model.state_dict() lowerCamelCase_ = {k: v for k, v in state_dict.items() if 'linear2' not in k} lowerCamelCase_ = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase_ = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) lowerCamelCase_ = {k: v for k, v in state_dict.items() if 'weight' in k} lowerCamelCase_ = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase_ = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) # Duplicates are removed lowerCamelCase_ = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = {'a.1': 0, 'a.10': 1, 'a.2': 2} lowerCamelCase_ = extract_submodules_state_dict(__lowerCamelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(__lowerCamelCase , {'''a.1''': 0, '''a.2''': 2} ) lowerCamelCase_ = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} lowerCamelCase_ = extract_submodules_state_dict(__lowerCamelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(__lowerCamelCase , {'''a.1.a''': 0, '''a.2.a''': 2} )
142
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowercase_ ( lowerCAmelCase_ ): def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Tuple = tempfile.mkdtemp() snake_case__ : Dict = 8 # DPR tok snake_case__ : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Tuple = os.path.join(__lowerCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok snake_case__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case__ : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) snake_case__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Any = {'unk_token': '<unk>'} snake_case__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Dict = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : int = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCamelCase ) ) def _lowerCAmelCase ( self : Optional[int] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCAmelCase ( self : int ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ): snake_case__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowerCAmelCase ( self : Any ): snake_case__ : List[str] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Optional[Any] = dataset snake_case__ : List[Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : bool ): snake_case__ : Union[str, Any] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: snake_case__ : List[Any] = os.path.join(self.tmpdirname , 'dataset' ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset snake_case__ : Optional[int] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ : Union[str, Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCamelCase ) , ) return retriever def _lowerCAmelCase ( self : Tuple ): snake_case__ : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) snake_case__ : Optional[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__lowerCamelCase , open(__lowerCamelCase , 'wb' ) ) snake_case__ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) snake_case__ : List[str] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[str] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : int = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__lowerCamelCase ) snake_case__ : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Any = 1 snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : int ): snake_case__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Any = 1 snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Tuple = 1 snake_case__ : Tuple = self.get_dummy_legacy_index_retriever() snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : Dict = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Any ): import torch snake_case__ : Optional[Any] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : List[Any] = [[5, 7], [10, 11]] snake_case__ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Any = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) snake_case__ , snake_case__ , snake_case__ : Any = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , np.ndarray ) snake_case__ : Dict = retriever( __lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase , return_tensors='pt' , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() snake_case__ : List[Any] = 1 snake_case__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCamelCase ) snake_case__ : Optional[int] = [[5, 7], [10, 11]] snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) self.assertEqual( len(__lowerCamelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __lowerCamelCase ) # check for doc token related keys in dictionary.
270
0
def lowerCamelCase_ ( _lowercase ) -> list[int]: __A : Dict = len(snake_case__ ) for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if numbers[j] < numbers[i]: __A , __A : Optional[int] = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
717
from collections import Counter from timeit import timeit def lowerCamelCase_ ( _lowercase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def lowerCamelCase_ ( _lowercase = "" ) -> bool: if len(_lowercase ) == 0: return True __A : List[Any] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __A : dict[str, int] = {} for character in lower_case_input_str: __A : str = character_freq_dict.get(_lowercase , 0 ) + 1 __A : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase_ ( _lowercase = "" ) -> None: print("\nFor string = " , _lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": UpperCamelCase = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
387
0
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> bool: __lowerCamelCase : Any =False if low == high: return swapped __lowerCamelCase : int =low __lowerCamelCase : Optional[int] =high while left < right: if collection[left] > collection[right]: __lowerCamelCase , __lowerCamelCase : str =( collection[right], collection[left], ) __lowerCamelCase : Dict =True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowerCamelCase , __lowerCamelCase : Any =( collection[right + 1], collection[left], ) __lowerCamelCase : Tuple =True __lowerCamelCase : Union[str, Any] =low + int((high - low) / 2 ) __lowerCamelCase : Dict =circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =circle_sort_util(SCREAMING_SNAKE_CASE , mid + 1 , SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap __lowerCamelCase : Union[str, Any] =True while is_not_sorted is True: __lowerCamelCase : List[str] =circle_sort_util(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": _UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
179
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : Optional[Any] =XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase , __lowerCamelCase : List[Any] =XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __lowerCamelCase : int =ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase , __lowerCamelCase : int =ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =['''key_proj''', '''value_proj''', '''query_proj'''] __lowerCamelCase : Tuple ={ '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __lowerCamelCase : int =key.split('''.''' ) if attributes[0] == "lm_head": __lowerCamelCase : int =prophet __lowerCamelCase : Optional[int] =prophet_old else: __lowerCamelCase : Any =prophet.prophetnet __lowerCamelCase : Union[str, Any] =prophet_old.model __lowerCamelCase : Optional[Any] =False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Optional[Any] =mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __lowerCamelCase : Any =attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : Any =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : str =old_model.weight logger.info(F'{attribute} is initialized.' ) __lowerCamelCase : Any =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : Union[str, Any] =old_model.bias logger.info(F'{attribute} is initialized' ) __lowerCamelCase : str =True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __lowerCamelCase : int =old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : Union[str, Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : List[str] =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : str =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : List[str] =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Tuple =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : Optional[Any] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : int =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Dict =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : str =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict =True break if attribute.isdigit(): __lowerCamelCase : List[str] =model[int(SCREAMING_SNAKE_CASE )] __lowerCamelCase : Optional[Any] =old_model[int(SCREAMING_SNAKE_CASE )] else: __lowerCamelCase : int =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __lowerCamelCase : Dict =old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __lowerCamelCase : Tuple =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
179
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase : """simple docstring""" def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): '''simple docstring''' return None class lowercase : """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int ): '''simple docstring''' return None class lowercase ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) @require_torch @slow def __UpperCAmelCase ( self : int ): '''simple docstring''' from transformers import BertModel _snake_case : int = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCamelCase_ ) ) vocab_file.flush() _snake_case : List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _snake_case : Union[str, Any] = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , 'pt' , 12 , lowerCamelCase_ ) @require_tf @slow def __UpperCAmelCase ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Union[str, Any] = self._test_export(lowerCamelCase_ , 'tf' , 12 , **lowerCamelCase_ ) _snake_case : List[str] = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _snake_case : Any = self._test_export(lowerCamelCase_ , 'pt' , 12 , **lowerCamelCase_ ) _snake_case : int = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _snake_case : Union[str, Any] = Path(lowerCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def __UpperCAmelCase ( self : Dict ): '''simple docstring''' from transformers import BertModel _snake_case : Dict = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Tuple = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'pt' ) @require_tf @require_tokenizers @slow def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' from transformers import TFBertModel _snake_case : Dict = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _snake_case : Optional[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , 'tf' ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : str = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _snake_case : Tuple = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] _snake_case : Optional[int] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _snake_case : int = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _snake_case : int = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : str = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
720
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ : Any = logging.getLogger(__name__) def A__( __lowerCAmelCase , __lowerCAmelCase ): # save results if os.path.exists(__lowerCAmelCase ): if os.path.exists(os.path.join(__lowerCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'config.json' ) ): os.remove(os.path.join(__lowerCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__lowerCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase=False ): _snake_case : int = 2 if unlogit: _snake_case : Dict = torch.pow(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[int] = p * torch.log(__lowerCAmelCase ) _snake_case : List[str] = 0 return -plogp.sum(dim=-1 ) def A__( __lowerCAmelCase ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(__lowerCAmelCase ) ) ) ) for row in range(len(__lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=False ): _snake_case , _snake_case : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Optional[int] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) if head_mask is None: _snake_case : List[str] = torch.ones(__lowerCAmelCase , __lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : List[str] = None _snake_case : str = 0.0 _snake_case : List[str] = 0.0 for step, inputs in enumerate(tqdm(__lowerCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : Dict = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase , head_mask=__lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowerCAmelCase ): _snake_case : int = entropy(attn.detach() , __lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : List[str] = 2 _snake_case : Any = torch.pow(torch.pow(__lowerCAmelCase , __lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__lowerCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__lowerCAmelCase ) logger.info('Head ranked by importance scores' ) _snake_case : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : Optional[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : Union[str, Any] = head_ranks.view_as(__lowerCAmelCase ) print_ad_tensor(__lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case , _snake_case , _snake_case : int = compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase ) _snake_case : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __lowerCAmelCase , original_score * args.masking_threshold ) _snake_case : Optional[Any] = torch.ones_like(__lowerCAmelCase ) _snake_case : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : Dict = original_score while current_score >= original_score * args.masking_threshold: _snake_case : List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Optional[Any] = float('Inf' ) _snake_case : Optional[int] = head_importance.view(-1 ).sort()[1] if len(__lowerCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : int = new_head_mask.view_as(__lowerCAmelCase ) _snake_case : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__lowerCAmelCase ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : List[str] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : Union[str, Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__lowerCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = datetime.now() _snake_case , _snake_case , _snake_case : List[Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase ) _snake_case : str = 1 / loss _snake_case : Optional[int] = datetime.now() - before_time _snake_case : Optional[int] = sum(p.numel() for p in model.parameters() ) _snake_case : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[int] = [ v, ] assert sum(len(__lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowerCAmelCase ) _snake_case : Optional[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : List[str] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , compute_entropy=__lowerCAmelCase , compute_importance=__lowerCAmelCase , head_mask=__lowerCAmelCase , actually_pruned=__lowerCAmelCase , ) _snake_case : Dict = 1 / loss _snake_case : str = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __lowerCAmelCase , __lowerCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __lowerCAmelCase , __lowerCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__lowerCAmelCase , args.output_dir ) def A__( ): _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__lowerCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__lowerCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__lowerCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__lowerCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__lowerCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__lowerCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__lowerCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) _snake_case : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case : Any = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : Union[str, Any] = torch.device('cuda' , args.local_rank ) _snake_case : Dict = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : List[str] = nn.parallel.DistributedDataParallel( __lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowerCAmelCase ) elif args.n_gpu > 1: _snake_case : int = nn.DataParallel(__lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Prepare dataset _snake_case : str = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : Dict = (torch.from_numpy(__lowerCAmelCase ),) _snake_case : List[Any] = TensorDataset(*__lowerCAmelCase ) _snake_case : List[str] = RandomSampler(__lowerCAmelCase ) _snake_case : List[str] = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Union[str, Any] = mask_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) prune_heads(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
652
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 1 _SCREAMING_SNAKE_CASE : str = 3 _SCREAMING_SNAKE_CASE : int = (3_2, 3_2) _SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase__) return image @property def _lowerCAmelCase ( self : str): """simple docstring""" torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def _lowerCAmelCase ( self : List[str]): """simple docstring""" torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : str): """simple docstring""" torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Tuple = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(lowercase__) @property def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" def extract(*_A : int , **_A : Union[str, Any]): class _snake_case : """simple docstring""" def __init__( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = torch.ones([0]) def _lowerCAmelCase ( self : Tuple , _A : List[Any]): """simple docstring""" self.pixel_values.to(lowercase__) return self return Out() return extract def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowercase__) _SCREAMING_SNAKE_CASE : Tuple = self.dummy_vae _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : int = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""") _SCREAMING_SNAKE_CASE : Tuple = 7_7 _SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image.to(lowercase__) _SCREAMING_SNAKE_CASE : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) _SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) _SCREAMING_SNAKE_CASE : Any = """A painting of a squirrel eating a burger""" _SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowercase__).manual_seed(0) _SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , ) _SCREAMING_SNAKE_CASE : Tuple = output.images _SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowercase__).manual_seed(0) _SCREAMING_SNAKE_CASE : List[str] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , return_dict=lowercase__ , )[0] _SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _SCREAMING_SNAKE_CASE : List[str] = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet _SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler(skip_prk_steps=lowercase__) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae _SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder _SCREAMING_SNAKE_CASE : Optional[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""") _SCREAMING_SNAKE_CASE : Tuple = 7_7 _SCREAMING_SNAKE_CASE : int = self.dummy_image.to(lowercase__) # put models in fp16 _SCREAMING_SNAKE_CASE : Union[str, Any] = unet.half() _SCREAMING_SNAKE_CASE : Any = vae.half() _SCREAMING_SNAKE_CASE : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) _SCREAMING_SNAKE_CASE : Any = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) _SCREAMING_SNAKE_CASE : Union[str, Any] = """A painting of a squirrel eating a burger""" _SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Any = alt_pipe( [prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""") def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""") # resize to resolution that is divisible by 8 but not 16 or 32 _SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((7_6_0, 5_0_4)) _SCREAMING_SNAKE_CASE : List[str] = """BAAI/AltDiffusion""" _SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : Union[str, Any] = """A fantasy landscape, trending on artstation""" _SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , generator=lowercase__ , output_type="""np""" , ) _SCREAMING_SNAKE_CASE : List[Any] = output.images[0] _SCREAMING_SNAKE_CASE : Dict = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _SCREAMING_SNAKE_CASE : Dict = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""") _SCREAMING_SNAKE_CASE : str = init_image.resize((7_6_8, 5_1_2)) _SCREAMING_SNAKE_CASE : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""") _SCREAMING_SNAKE_CASE : Dict = """BAAI/AltDiffusion""" _SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : Optional[int] = """A fantasy landscape, trending on artstation""" _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0) _SCREAMING_SNAKE_CASE : Any = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , generator=lowercase__ , output_type="""np""" , ) _SCREAMING_SNAKE_CASE : Dict = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
338
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase_ : Distribution , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Tuple=0 ): lowerCAmelCase_ : Tuple =1.0 if scale is None else scale lowerCAmelCase_ : Optional[Any] =0.0 if loc is None else loc super().__init__(UpperCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCamelCase_ )] ) @property def __A ( self : Any ): return self.base_dist.mean * self.scale + self.loc @property def __A ( self : List[str] ): return self.base_dist.variance * self.scale**2 @property def __A ( self : Optional[int] ): return self.variance.sqrt() class _snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Callable[..., Tuple[torch.Tensor]] , **UpperCamelCase_ : List[str] ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase_ : str =args_dim lowerCAmelCase_ : int =nn.ModuleList([nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) for dim in args_dim.values()] ) lowerCAmelCase_ : str =domain_map def __A ( self : str , UpperCamelCase_ : torch.Tensor ): lowerCAmelCase_ : Optional[int] =[proj(UpperCamelCase_ ) for proj in self.proj] return self.domain_map(*UpperCamelCase_ ) class _snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase_ : Optional[int] ): super().__init__() lowerCAmelCase_ : List[Any] =function def __A ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , *UpperCamelCase_ : Optional[int] ): return self.function(UpperCamelCase_ , *UpperCamelCase_ ) class _snake_case : """simple docstring""" _UpperCamelCase : type _UpperCamelCase : int _UpperCamelCase : Dict[str, int] def __init__( self : int , UpperCamelCase_ : int = 1 ): lowerCAmelCase_ : List[str] =dim lowerCAmelCase_ : str ={k: dim * self.args_dim[k] for k in self.args_dim} def __A ( self : int , UpperCamelCase_ : str ): if self.dim == 1: return self.distribution_class(*UpperCamelCase_ ) else: return Independent(self.distribution_class(*UpperCamelCase_ ) , 1 ) def __A ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[torch.Tensor] = None , ): lowerCAmelCase_ : Optional[Any] =self._base_distribution(UpperCamelCase_ ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCamelCase_ , loc=UpperCamelCase_ , scale=UpperCamelCase_ , event_dim=self.event_dim ) @property def __A ( self : Optional[int] ): return () if self.dim == 1 else (self.dim,) @property def __A ( self : Union[str, Any] ): return len(self.event_shape ) @property def __A ( self : Optional[int] ): return 0.0 def __A ( self : Tuple , UpperCamelCase_ : int ): return ParameterProjection( in_features=UpperCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __A ( self : Any , *UpperCamelCase_ : torch.Tensor ): raise NotImplementedError() @staticmethod def __A ( UpperCamelCase_ : torch.Tensor ): return (x + torch.sqrt(torch.square(UpperCamelCase_ ) + 4.0 )) / 2.0 class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCamelCase : type = StudentT @classmethod def __A ( cls : Tuple , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : torch.Tensor ): lowerCAmelCase_ : Union[str, Any] =cls.squareplus(UpperCamelCase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCAmelCase_ : Optional[Any] =2.0 + cls.squareplus(UpperCamelCase_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} _UpperCamelCase : type = Normal @classmethod def __A ( cls : Optional[Any] , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : torch.Tensor ): lowerCAmelCase_ : Optional[int] =cls.squareplus(UpperCamelCase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCamelCase : type = NegativeBinomial @classmethod def __A ( cls : Optional[int] , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : torch.Tensor ): lowerCAmelCase_ : str =cls.squareplus(UpperCamelCase_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __A ( self : Union[str, Any] , UpperCamelCase_ : int ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] =distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCamelCase_ , logits=UpperCamelCase_ ) else: return Independent(self.distribution_class(total_count=UpperCamelCase_ , logits=UpperCamelCase_ ) , 1 ) def __A ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[torch.Tensor] = None ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
305
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''MobileNetV2FeatureExtractor'''] __lowercase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
305
1
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : Optional[int] = 1, lowerCamelCase__ : Optional[Any] = 1_0_0_0 ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for divide_by_number in range(lowerCamelCase__, digit + 1 ): _SCREAMING_SNAKE_CASE : list[int] = [] _SCREAMING_SNAKE_CASE : List[Any] = numerator for _ in range(1, digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : int = len(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Any = divide_by_number else: has_been_divided.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[int] = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
572
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 class _lowerCamelCase ( nn.Module ): """simple docstring""" snake_case = 42 snake_case = (16, 32, 96, 256) snake_case = jnp.floataa def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): A_ : Dict = self.block_out_channels[i] A_ : Union[str, Any] = self.block_out_channels[i + 1] A_ : Dict = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_SCREAMING_SNAKE_CASE ) A_ : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_SCREAMING_SNAKE_CASE ) A_ : str = blocks A_ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : Optional[int] = self.conv_in(_SCREAMING_SNAKE_CASE ) A_ : str = nn.silu(_SCREAMING_SNAKE_CASE ) for block in self.blocks: A_ : Union[str, Any] = block(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = nn.silu(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.conv_out(_SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class _lowerCamelCase ( nn.Module , UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = 32 snake_case = 4 snake_case = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case = False snake_case = (320, 640, 1_280, 1_280) snake_case = 2 snake_case = 8 snake_case = None snake_case = 1_280 snake_case = 0.0 snake_case = False snake_case = jnp.floataa snake_case = True snake_case = 0 snake_case = "rgb" snake_case = (16, 32, 96, 256) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->FrozenDict: '''simple docstring''' A_ : Dict = (1, self.in_channels, self.sample_size, self.sample_size) A_ : Any = jnp.zeros(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ : str = jnp.ones((1,) , dtype=jnp.intaa ) A_ : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ : Dict = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ : int = jnp.zeros(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ , A_ : Any = jax.random.split(_SCREAMING_SNAKE_CASE ) A_ : Dict = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["params"] def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = self.block_out_channels A_ : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ : Dict = self.num_attention_heads or self.attention_head_dim # input A_ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ : int = FlaxTimestepEmbedding(_SCREAMING_SNAKE_CASE , dtype=self.dtype ) A_ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ : str = self.only_cross_attention if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down A_ : List[str] = [] A_ : Optional[int] = [] A_ : Optional[int] = block_out_channels[0] A_ : Tuple = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): A_ : Optional[int] = output_channel A_ : int = block_out_channels[i] A_ : Union[str, Any] = i == len(_SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ : str = FlaxCrossAttnDownBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ : Dict = FlaxDownBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): A_ : List[str] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) if not is_final_block: A_ : List[Any] = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_SCREAMING_SNAKE_CASE ) A_ : List[str] = down_blocks A_ : Tuple = controlnet_down_blocks # mid A_ : Dict = block_out_channels[-1] A_ : str = FlaxUNetMidBlockaDCrossAttn( in_channels=_SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ : str = nn.Conv( _SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , )->Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ : Optional[int] = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ : int = jnp.flip(_SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(_SCREAMING_SNAKE_CASE , jnp.ndarray ): A_ : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) A_ : Optional[Any] = jnp.expand_dims(_SCREAMING_SNAKE_CASE , 0 ) A_ : Optional[Any] = self.time_proj(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.time_embedding(_SCREAMING_SNAKE_CASE ) # 2. pre-process A_ : str = jnp.transpose(_SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) A_ : Optional[Any] = self.conv_in(_SCREAMING_SNAKE_CASE ) A_ : List[str] = jnp.transpose(_SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) A_ : List[Any] = self.controlnet_cond_embedding(_SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down A_ : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ , A_ : Tuple = down_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) else: A_ , A_ : Union[str, Any] = down_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ : Optional[int] = self.mid_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks A_ : str = () for down_block_res_sample, controlnet_block in zip(_SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): A_ : List[Any] = controlnet_block(_SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ : Dict = controlnet_down_block_res_samples A_ : Tuple = self.controlnet_mid_block(_SCREAMING_SNAKE_CASE ) # 6. scaling A_ : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_SCREAMING_SNAKE_CASE , mid_block_res_sample=_SCREAMING_SNAKE_CASE )
590
0
def __UpperCamelCase ( _A ): assert ( isinstance(_A , _A ) and number_of_steps > 0 ), f"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 lowerCAmelCase_ , lowerCAmelCase_ = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase_ , lowerCAmelCase_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
325
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = '''▁''' _A = {'''vocab_file''': '''spiece.model'''} _A = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } _A = { '''google/pegasus-xsum''': 512, } _A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['input_ids', 'attention_mask'] def __init__( self, UpperCamelCase__, UpperCamelCase__="<pad>", UpperCamelCase__="</s>", UpperCamelCase__="<unk>", UpperCamelCase__="<mask_2>", UpperCamelCase__="<mask_1>", UpperCamelCase__=None, UpperCamelCase__=103, UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError( f"additional_special_tokens should be of type {type(UpperCamelCase__ )}, but is" f" {type(UpperCamelCase__ )}" ) lowerCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(UpperCamelCase__ ), self.offset - 1 ) ] if len(set(UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase_ = additional_special_tokens_extended else: lowerCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset )] lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, mask_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token_sent=UpperCamelCase__, offset=UpperCamelCase__, additional_special_tokens=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) lowerCAmelCase_ = mask_token_sent lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # add special tokens to encoder dict lowerCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase_ = self.sp_model.piece_to_id(UpperCamelCase__ ) return sp_id + self.offset def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] lowerCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__=False ): """simple docstring""" return 1 def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
325
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """AutoImageProcessor""" _lowercase = """AutoTokenizer""" def __init__( self: int,A_: Any,A_: Tuple ): '''simple docstring''' super().__init__(A_,A_ ) __UpperCamelCase = self.image_processor def __call__( self: str,A_: Union[str, Any]=None,A_: Optional[int]=None,A_: Optional[int]=None,**A_: Union[str, Any] ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __UpperCamelCase = self.tokenizer(A_,return_tensors=A_,**A_ ) if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Dict,*A_: Optional[Any],**A_: Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Union[str, Any],**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: int ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def snake_case (UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ = OmegaConf.load(UpperCamelCase ) lowerCamelCase__ = torch.load(UpperCamelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(UpperCamelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(UpperCamelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**UpperCamelCase ).eval() vqvae.load_state_dict(UpperCamelCase ) lowerCamelCase__ = UNetLDMModel(**UpperCamelCase ).eval() unet.load_state_dict(UpperCamelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase , ) lowerCamelCase__ = LDMPipeline(UpperCamelCase , UpperCamelCase , UpperCamelCase ) pipeline.save_pretrained(UpperCamelCase ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) a__ : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
165
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _lowercase : Tuple = None _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Optional[int] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _lowercase : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _lowercase : Optional[int] = """▁""" # Segments (not really needed) _lowercase : List[str] = 0 _lowercase : List[Any] = 1 _lowercase : Dict = 2 _lowercase : Union[str, Any] = 3 _lowercase : Dict = 4 class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = "left" UpperCamelCase__ = XLNetTokenizer def __init__( self : Optional[Any] , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : List[str]=False , lowercase_ : str=True , lowercase_ : int=False , lowercase_ : Tuple="<s>" , lowercase_ : Dict="</s>" , lowercase_ : List[Any]="<unk>" , lowercase_ : Optional[int]="<sep>" , lowercase_ : Any="<pad>" , lowercase_ : Optional[Any]="<cls>" , lowercase_ : Dict="<mask>" , lowercase_ : List[Any]=["<eop>", "<eod>"] , **lowercase_ : str , ): lowercase_ : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( vocab_file=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ : Tuple = 3 lowercase_ : List[str] = do_lower_case lowercase_ : Optional[int] = remove_space lowercase_ : str = keep_accents lowercase_ : Any = vocab_file lowercase_ : List[Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : List[str] = None ): lowercase_ : str = [self.sep_token_id] lowercase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : List[Any] = None ): lowercase_ : Tuple = [self.sep_token_id] lowercase_ : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
721
'''simple docstring''' import unittest import numpy as np def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray | None = None , ) -> np.ndarray: lowercase_ : List[Any] = np.shape(UpperCAmelCase__ ) lowercase_ : Dict = np.shape(UpperCAmelCase__ ) lowercase_ : int = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: lowercase_ : Optional[int] = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: lowercase_ : Optional[Any] = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) lowercase_ : Any = pseudo_inv if a_inv is None: try: lowercase_ : List[str] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : int = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Dict = np.array([[2, 1], [6, 3]] ) lowercase_ : Union[str, Any] = schur_complement(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : List[Any] = np.block([[a, b], [b.T, c]] ) lowercase_ : Optional[int] = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) lowercase_ : int = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ , det_a * det_s ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase_ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase_ : str = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self :Tuple , __snake_case :int , __snake_case :int=14 , __snake_case :Tuple=7 , __snake_case :Any=True , __snake_case :Dict=True , __snake_case :Any=True , __snake_case :Optional[Any]=True , __snake_case :Optional[Any]=True , __snake_case :Dict=99 , __snake_case :Any=32 , __snake_case :int=5 , __snake_case :Any=4 , __snake_case :str=37 , __snake_case :List[Any]="gelu" , __snake_case :str=0.1 , __snake_case :str=0.1 , __snake_case :str=5_12 , __snake_case :int=16 , __snake_case :Optional[Any]=2 , __snake_case :Dict=0.02 , __snake_case :Tuple=3 , __snake_case :List[str]=4 , __snake_case :Any=None , ): '''simple docstring''' __magic_name__ : int =parent __magic_name__ : str =batch_size __magic_name__ : str =seq_length __magic_name__ : Tuple =is_training __magic_name__ : List[str] =use_token_type_ids __magic_name__ : Tuple =use_input_mask __magic_name__ : Any =use_labels __magic_name__ : str =use_mc_token_ids __magic_name__ : List[Any] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Tuple =num_hidden_layers __magic_name__ : Union[str, Any] =num_attention_heads __magic_name__ : Tuple =intermediate_size __magic_name__ : Optional[int] =hidden_act __magic_name__ : Tuple =hidden_dropout_prob __magic_name__ : str =attention_probs_dropout_prob __magic_name__ : Dict =max_position_embeddings __magic_name__ : Dict =type_vocab_size __magic_name__ : Any =type_sequence_label_size __magic_name__ : Optional[Any] =initializer_range __magic_name__ : Optional[Any] =num_labels __magic_name__ : Any =num_choices __magic_name__ : List[str] =scope __magic_name__ : Optional[Any] =self.vocab_size - 1 def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any =None if self.use_input_mask: __magic_name__ : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Any =None if self.use_token_type_ids: __magic_name__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Tuple =None if self.use_mc_token_ids: __magic_name__ : Tuple =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __magic_name__ : Optional[Any] =None __magic_name__ : str =None __magic_name__ : List[str] =None if self.use_labels: __magic_name__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] =self.get_config() __magic_name__ : List[Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def A__ ( self :List[Any] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def A__ ( self :int , __snake_case :Dict , __snake_case :Optional[Any] , __snake_case :Tuple , __snake_case :Dict , __snake_case :Dict , *__snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case ) model(__snake_case , token_type_ids=__snake_case ) __magic_name__ : int =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def A__ ( self :Dict , __snake_case :Tuple , __snake_case :str , __snake_case :Dict , __snake_case :Tuple , __snake_case :List[Any] , *__snake_case :List[str] ): '''simple docstring''' __magic_name__ : str =CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Any =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : Tuple =self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any =config_and_inputs __magic_name__ : str ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Union[str, Any] , __snake_case :str , __snake_case :Optional[int] , __snake_case :str , *__snake_case :List[str] ): '''simple docstring''' __magic_name__ : Tuple =self.num_labels __magic_name__ : str =CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Any =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () UpperCamelCase = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False def A__ ( self :Any , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :int ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =CTRLModelTester(self ) __magic_name__ : Optional[int] =ConfigTester(self , config_class=__snake_case , n_embd=37 ) def A__ ( self :Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def A__ ( self :Any ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @slow def A__ ( self :Any ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Tuple =CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def A__ ( self :List[Any] ): '''simple docstring''' pass @require_torch class __A ( unittest.TestCase ): def A__ ( self :Dict ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__snake_case ) __magic_name__ : Optional[Any] =torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=__snake_case ) # Legal the president is __magic_name__ : Optional[int] =[ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __magic_name__ : str =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() , __snake_case )
21
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'depth_multiplier' ) ) class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=3 , UpperCAmelCase_=32 , UpperCAmelCase_=0.25 , UpperCAmelCase_=8 , UpperCAmelCase_=True , UpperCAmelCase_=1024 , UpperCAmelCase_=32 , UpperCAmelCase_="relu6" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=10 , UpperCAmelCase_=None , ) -> Optional[int]: lowerCamelCase : List[str] = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : Dict = image_size lowerCamelCase : Any = depth_multiplier lowerCamelCase : Optional[int] = min_depth lowerCamelCase : List[Any] = tf_padding lowerCamelCase : Any = int(last_hidden_size * depth_multiplier ) lowerCamelCase : Optional[Any] = output_stride lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[int] = classifier_dropout_prob lowerCamelCase : List[Any] = use_labels lowerCamelCase : Union[str, Any] = is_training lowerCamelCase : Dict = num_labels lowerCamelCase : Any = initializer_range lowerCamelCase : List[Any] = scope def _UpperCamelCase ( self ) -> str: lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Tuple = None lowerCamelCase : int = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase ( self ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: lowerCamelCase : Any = MobileNetVaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase : List[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : Any = self.num_labels lowerCamelCase : Tuple = MobileNetVaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase : List[str] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = config_and_inputs lowerCamelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase_ = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = MobileNetVaModelTester(self ) lowerCamelCase : str = MobileNetVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def _UpperCamelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def _UpperCamelCase ( self ) -> Optional[Any]: pass def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = model_class(UpperCAmelCase_ ) lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : List[Any] = [*signature.parameters.keys()] lowerCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Tuple: def check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase : List[Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCamelCase : str = outputs.hidden_states lowerCamelCase : str = 26 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def _UpperCamelCase ( self ) -> Tuple: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Optional[int] = MobileNetVaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> List[str]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : Dict = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(UpperCAmelCase_ ) lowerCamelCase : List[str] = self.default_image_processor lowerCamelCase : Any = prepare_img() lowerCamelCase : List[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase : List[str] = model(**UpperCAmelCase_ ) # verify the logits lowerCamelCase : List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCamelCase : int = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
133
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowercase_ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = 50257 , UpperCAmelCase_ = 1024 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = None , UpperCAmelCase_ = "gelu_new" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 1E-5 , UpperCAmelCase_ = 0.02 , UpperCAmelCase_ = True , UpperCAmelCase_ = True , UpperCAmelCase_ = False , UpperCAmelCase_ = False , ) -> Optional[Any]: super().__init__() lowerCamelCase : int = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) lowerCamelCase : str = prefix_inner_dim lowerCamelCase : Union[str, Any] = prefix_hidden_dim lowerCamelCase : Union[str, Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase : int = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase : Optional[Any] = GPTaConfig( vocab_size=UpperCAmelCase_ , n_positions=UpperCAmelCase_ , n_embd=UpperCAmelCase_ , n_layer=UpperCAmelCase_ , n_head=UpperCAmelCase_ , n_inner=UpperCAmelCase_ , activation_function=UpperCAmelCase_ , resid_pdrop=UpperCAmelCase_ , embd_pdrop=UpperCAmelCase_ , attn_pdrop=UpperCAmelCase_ , layer_norm_epsilon=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , scale_attn_weights=UpperCAmelCase_ , use_cache=UpperCAmelCase_ , scale_attn_by_inverse_layer_idx=UpperCAmelCase_ , reorder_and_upcast_attn=UpperCAmelCase_ , ) lowerCamelCase : Dict = GPTaLMHeadModel(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ) -> Tuple: lowerCamelCase : Optional[Any] = self.transformer.transformer.wte(UpperCAmelCase_ ) lowerCamelCase : int = self.encode_prefix(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = self.decode_prefix(UpperCAmelCase_ ) lowerCamelCase : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCamelCase : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCamelCase : Any = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCamelCase : Dict = self.transformer(inputs_embeds=UpperCAmelCase_ , labels=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> torch.Tensor: return torch.zeros(UpperCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Any: return self.encode_prefix(UpperCAmelCase_ ) @torch.no_grad() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = torch.split(UpperCAmelCase_ , 1 , dim=0 ) lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[Any] = [] for feature in features: lowerCamelCase : int = self.decode_prefix(feature.to(UpperCAmelCase_ ) ) # back to the clip feature # Only support beam search for now lowerCamelCase , lowerCamelCase : Union[str, Any] = self.generate_beam( input_embeds=UpperCAmelCase_ , device=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCamelCase : List[str] = torch.stack(UpperCAmelCase_ ) lowerCamelCase : List[str] = torch.stack(UpperCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _UpperCamelCase ( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_ = 5 , UpperCAmelCase_ = 67 , UpperCAmelCase_ = 1.0 , UpperCAmelCase_ = None , ) -> Tuple: lowerCamelCase : Dict = eos_token_id lowerCamelCase : List[Any] = None lowerCamelCase : str = None lowerCamelCase : Dict = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.int ) lowerCamelCase : int = torch.zeros(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: lowerCamelCase : Optional[Any] = input_embeds else: lowerCamelCase : Any = self.transformer.transformer.wte(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): lowerCamelCase : Tuple = self.transformer(inputs_embeds=UpperCAmelCase_ ) lowerCamelCase : List[Any] = outputs.logits lowerCamelCase : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase : str = logits.softmax(-1 ).log() if scores is None: lowerCamelCase , lowerCamelCase : Any = logits.topk(UpperCAmelCase_ , -1 ) lowerCamelCase : Union[str, Any] = generated.expand(UpperCAmelCase_ , *generated.shape[1:] ) lowerCamelCase , lowerCamelCase : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCamelCase : Optional[int] = next_tokens else: lowerCamelCase : Optional[Any] = tokens.expand(UpperCAmelCase_ , *tokens.shape[1:] ) lowerCamelCase : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCamelCase : Dict = -float(np.inf ) lowerCamelCase : List[Any] = 0 lowerCamelCase : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase : List[str] = scores_sum / seq_lengths[:, None] lowerCamelCase , lowerCamelCase : Tuple = scores_sum_average.view(-1 ).topk(UpperCAmelCase_ , -1 ) lowerCamelCase : List[Any] = next_tokens // scores_sum.shape[1] lowerCamelCase : Union[str, Any] = seq_lengths[next_tokens_source] lowerCamelCase : str = next_tokens % scores_sum.shape[1] lowerCamelCase : Dict = next_tokens.unsqueeze(1 ) lowerCamelCase : str = tokens[next_tokens_source] lowerCamelCase : int = torch.cat((tokens, next_tokens) , dim=1 ) lowerCamelCase : Optional[Any] = generated[next_tokens_source] lowerCamelCase : List[str] = scores_sum_average * seq_lengths lowerCamelCase : List[str] = is_stopped[next_tokens_source] lowerCamelCase : Optional[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCamelCase : str = torch.cat((generated, next_token_embed) , dim=1 ) lowerCamelCase : Optional[int] = is_stopped + next_tokens.eq(UpperCAmelCase_ ).squeeze() if is_stopped.all(): break lowerCamelCase : int = scores / seq_lengths lowerCamelCase : str = scores.argsort(descending=UpperCAmelCase_ ) # tokens tensors are already padded to max_seq_length lowerCamelCase : List[Any] = [tokens[i] for i in order] lowerCamelCase : Any = torch.stack(UpperCAmelCase_ , dim=0 ) lowerCamelCase : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
133
1
'''simple docstring''' from random import randint, random def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : int = 5 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : str = [[-1] * number_of_cells] # Create a highway without any car UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[int] = max(UpperCamelCase__ , 0 ) while i < number_of_cells: UpperCAmelCase_ : List[str] = ( randint(0 , UpperCamelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[str] = highway_now[car_index + 1 :] for cell in range(len(UpperCamelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCamelCase__ , -1 ) def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = len(UpperCamelCase__ ) # Beforce calculations, the highway is empty UpperCAmelCase_ : int = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCAmelCase_ : Union[str, Any] = min(highway_now[car_index] + 1 , UpperCamelCase__ ) # Number of empty cell before the next car UpperCAmelCase_ : List[str] = get_distance(UpperCamelCase__ , UpperCamelCase__ ) - 1 # We can't have the car causing an accident UpperCAmelCase_ : Tuple = min(next_highway[car_index] , UpperCamelCase__ ) if random() < probability: # Randomly, a driver will slow down UpperCAmelCase_ : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = len(highway[0] ) for i in range(UpperCamelCase__ ): UpperCAmelCase_ : Union[str, Any] = update(highway[i] , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ : Tuple = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): UpperCAmelCase_ : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCAmelCase_ : Tuple = (car_index + speed) % number_of_cells # Commit the change of position UpperCAmelCase_ : Optional[int] = speed highway.append(UpperCamelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : list ): """simple docstring""" __UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __UpperCAmelCase = True for i in range(0 , len(UpperCamelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase , __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False for i in range(1 , len(UpperCamelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase , __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __lowerCAmelCase : List[str] = [int(x) for x in input().split()] # inputing elements of the list in one line __lowerCAmelCase : Dict = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
262
0
import datasets from .evaluate import evaluate UpperCAmelCase : List[Any] ="""\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ UpperCAmelCase : Optional[Any] =""" This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ UpperCAmelCase : Any =""" Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase (datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCamelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=snake_case__ , predictions=snake_case__ ) return score
504
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase : Any ="""src/diffusers""" UpperCAmelCase : Union[str, Any] =""".""" # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase : int =importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase : Optional[Any] =spec.loader.load_module() def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): return line.startswith(_lowerCAmelCase) or len(_lowerCAmelCase) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , _lowerCAmelCase) is not None def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = object_name.split(".") UpperCamelCase_ = 0 # First let's find the module where our object lives. UpperCamelCase_ = parts[i] while i < len(_lowerCAmelCase) and not os.path.isfile(os.path.join(_lowerCAmelCase , f"""{module}.py""")): i += 1 if i < len(_lowerCAmelCase): UpperCamelCase_ = os.path.join(_lowerCAmelCase , parts[i]) if i >= len(_lowerCAmelCase): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""") with open(os.path.join(_lowerCAmelCase , f"""{module}.py""") , "r" , encoding="utf-8" , newline="\n") as f: UpperCamelCase_ = f.readlines() # Now let's find the class / func in the code! UpperCamelCase_ = "" UpperCamelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCAmelCase) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCAmelCase): raise ValueError(f""" {object_name} does not match any function or class in {module}.""") # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase_ = line_index while line_index < len(_lowerCAmelCase) and _should_continue(lines[line_index] , _lowerCAmelCase): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase_ = lines[start_index:line_index] return "".join(_lowerCAmelCase) UpperCAmelCase : Any =re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") UpperCAmelCase : Any =re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") UpperCAmelCase : Dict =re.compile(r"""<FILL\s+[^>]*>""") def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = code.split("\n") UpperCamelCase_ = 0 while idx < len(_lowerCAmelCase) and len(lines[idx]) == 0: idx += 1 if idx < len(_lowerCAmelCase): return re.search(r"^(\s*)\S" , lines[idx]).groups()[0] return "" def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(get_indent(_lowerCAmelCase)) > 0 if has_indent: UpperCamelCase_ = f"""class Bla:\n{code}""" UpperCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_lowerCAmelCase) UpperCamelCase_ = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ = style_docstrings_in_code(_lowerCAmelCase) return result[len("class Bla:\n") :] if has_indent else result def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=False): with open(_lowerCAmelCase , "r" , encoding="utf-8" , newline="\n") as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = [] UpperCamelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCAmelCase): UpperCamelCase_ = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = search.groups() UpperCamelCase_ = find_code_in_diffusers(_lowerCAmelCase) UpperCamelCase_ = get_indent(_lowerCAmelCase) UpperCamelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase_ = theoretical_indent UpperCamelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase_ = True while line_index < len(_lowerCAmelCase) and should_continue: line_index += 1 if line_index >= len(_lowerCAmelCase): break UpperCamelCase_ = lines[line_index] UpperCamelCase_ = _should_continue(_lowerCAmelCase , _lowerCAmelCase) and re.search(f"""^{indent}# End copy""" , _lowerCAmelCase) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase_ = lines[start_index:line_index] UpperCamelCase_ = "".join(_lowerCAmelCase) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase_ = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(_lowerCAmelCase) is None] UpperCamelCase_ = "\n".join(_lowerCAmelCase) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCAmelCase) > 0: UpperCamelCase_ = replace_pattern.replace("with" , "").split(",") UpperCamelCase_ = [_re_replace_pattern.search(_lowerCAmelCase) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = pattern.groups() UpperCamelCase_ = re.sub(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if option.strip() == "all-casing": UpperCamelCase_ = re.sub(obja.lower() , obja.lower() , _lowerCAmelCase) UpperCamelCase_ = re.sub(obja.upper() , obja.upper() , _lowerCAmelCase) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase_ = blackify(lines[start_index - 1] + theoretical_code) UpperCamelCase_ = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: UpperCamelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase_ = start_index + 1 if overwrite and len(_lowerCAmelCase) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""") with open(_lowerCAmelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCAmelCase) return diffs def _lowerCAmelCase (_lowerCAmelCase = False): UpperCamelCase_ = glob.glob(os.path.join(_lowerCAmelCase , "**/*.py") , recursive=_lowerCAmelCase) UpperCamelCase_ = [] for filename in all_files: UpperCamelCase_ = is_copy_consistent(_lowerCAmelCase , _lowerCAmelCase) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_lowerCAmelCase) > 0: UpperCamelCase_ = "\n".join(_lowerCAmelCase) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": UpperCAmelCase : List[str] =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase : Tuple =parser.parse_args() check_copies(args.fix_and_overwrite)
504
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __A = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Tuple , __snake_case : Tuple , __snake_case : List[Any] ) -> Union[str, Any]: return f"""gaussian_noise_s={seed}_shape={"_".join([str(__snake_case ) for s in shape] )}.npy""" def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case_ ( self : Any , __snake_case : Optional[int]=0 , __snake_case : Dict=(4, 4, 64, 64) , __snake_case : Optional[int]=False ) -> str: _a : str = jnp.bfloataa if fpaa else jnp.floataa _a : Any = jnp.array(load_hf_numpy(self.get_file_format(__snake_case , __snake_case ) ) , dtype=__snake_case ) return image def snake_case_ ( self : int , __snake_case : Union[str, Any]=False , __snake_case : List[str]="CompVis/stable-diffusion-v1-4" ) -> Tuple: _a : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _a : Any = '''bf16''' if fpaa else None _a , _a : List[str] = FlaxUNetaDConditionModel.from_pretrained( __snake_case , subfolder='''unet''' , dtype=__snake_case , revision=__snake_case ) return model, params def snake_case_ ( self : List[str] , __snake_case : Optional[Any]=0 , __snake_case : str=(4, 77, 768) , __snake_case : Tuple=False ) -> Union[str, Any]: _a : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _a : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(__snake_case , __snake_case ) ) , dtype=__snake_case ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def snake_case_ ( self : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict ) -> int: _a , _a : Optional[int] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__snake_case ) _a : Optional[Any] = self.get_latents(__snake_case , fpaa=__snake_case ) _a : Any = self.get_encoder_hidden_states(__snake_case , fpaa=__snake_case ) _a : int = model.apply( {'''params''': params} , __snake_case , jnp.array(__snake_case , dtype=jnp.intaa ) , encoder_hidden_states=__snake_case , ).sample assert sample.shape == latents.shape _a : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a : int = jnp.array(__snake_case , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__snake_case , __snake_case , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def snake_case_ ( self : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Any: _a , _a : Optional[int] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__snake_case ) _a : Union[str, Any] = self.get_latents(__snake_case , shape=(4, 4, 96, 96) , fpaa=__snake_case ) _a : Optional[Any] = self.get_encoder_hidden_states(__snake_case , shape=(4, 77, 1024) , fpaa=__snake_case ) _a : List[str] = model.apply( {'''params''': params} , __snake_case , jnp.array(__snake_case , dtype=jnp.intaa ) , encoder_hidden_states=__snake_case , ).sample assert sample.shape == latents.shape _a : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a : Any = jnp.array(__snake_case , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__snake_case , __snake_case , atol=1E-2 )
471
0
from __future__ import annotations class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> None: snake_case_ = data snake_case_ = None snake_case_ = None def __UpperCAmelCase ( a_): # In Order traversal of the tree if tree: display(tree.left) print(tree.data) display(tree.right) def __UpperCAmelCase ( a_): return 1 + max(depth_of_tree(tree.left) , depth_of_tree(tree.right)) if tree else 0 def __UpperCAmelCase ( a_): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return not tree.left and not tree.right def __UpperCAmelCase ( ): # Main function for testing. snake_case_ = Node(1) snake_case_ = Node(2) snake_case_ = Node(3) snake_case_ = Node(4) snake_case_ = Node(5) snake_case_ = Node(6) snake_case_ = Node(7) snake_case_ = Node(8) snake_case_ = Node(9) print(is_full_binary_tree(a_)) print(depth_of_tree(a_)) print('Tree is: ') display(a_) if __name__ == "__main__": main()
705
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase = parse(importlib.metadata.version("torch")) def __UpperCAmelCase ( a_ , a_ , a_): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}''') snake_case_ = STR_OPERATION_TO_FUNC[operation] if isinstance(a_ , a_): snake_case_ = parse(importlib.metadata.version(a_)) return operation(a_ , parse(a_)) def __UpperCAmelCase ( a_ , a_): return compare_versions(a_ , a_ , a_)
607
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=lowercase__ ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = huggingface_hub.__version__ SCREAMING_SNAKE_CASE : List[str] = 'not installed' SCREAMING_SNAKE_CASE : List[Any] = 'NA' if is_torch_available(): import torch SCREAMING_SNAKE_CASE : str = torch.__version__ SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.is_available() SCREAMING_SNAKE_CASE : str = 'not installed' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE : Any = transformers.__version__ SCREAMING_SNAKE_CASE : int = 'not installed' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE : Optional[Any] = accelerate.__version__ SCREAMING_SNAKE_CASE : Any = 'not installed' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE : Union[str, Any] = xformers.__version__ SCREAMING_SNAKE_CASE : Optional[int] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowercase__ ) ) return info @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
251
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=lowercase__ ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = huggingface_hub.__version__ SCREAMING_SNAKE_CASE : List[str] = 'not installed' SCREAMING_SNAKE_CASE : List[Any] = 'NA' if is_torch_available(): import torch SCREAMING_SNAKE_CASE : str = torch.__version__ SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.is_available() SCREAMING_SNAKE_CASE : str = 'not installed' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE : Any = transformers.__version__ SCREAMING_SNAKE_CASE : int = 'not installed' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE : Optional[Any] = accelerate.__version__ SCREAMING_SNAKE_CASE : Any = 'not installed' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE : Union[str, Any] = xformers.__version__ SCREAMING_SNAKE_CASE : Optional[int] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowercase__ ) ) return info @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
251
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
0
from __future__ import annotations def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
57
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : List[Any] =XLMRobertaTokenizer UpperCamelCase__ : Union[str, Any] =XLMRobertaTokenizerFast UpperCamelCase__ : int =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Dict =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _lowerCamelCase : Tuple ='<pad>' _lowerCamelCase : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : str =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1002 ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : List[Any] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : List[str] =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int =self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : List[Any] =self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : int =tempfile.mkdtemp() _lowerCamelCase : List[str] =tokenizer_r.save_pretrained(lowercase_ ) _lowerCamelCase : int =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[Any] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : Any =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Dict =tempfile.mkdtemp() _lowerCamelCase : int =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Optional[Any] =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : str =tempfile.mkdtemp() _lowerCamelCase : Optional[Any] =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Any =tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : str =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[str] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @cached_property def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) _lowerCamelCase : Union[str, Any] =XLMRobertaTokenizer(f.name , keep_accents=lowercase_ ) _lowerCamelCase : Dict =pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any =self.get_tokenizer() _lowerCamelCase : Optional[int] =self.get_rust_tokenizer() _lowerCamelCase : Tuple ='I was born in 92000, and this is falsé.' _lowerCamelCase : Any =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[str] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : int =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Dict =self.get_rust_tokenizer() _lowerCamelCase : Optional[int] =tokenizer.encode(lowercase_ ) _lowerCamelCase : Optional[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] ='Hello World!' _lowerCamelCase : Union[str, Any] =[0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCamelCase : Union[str, Any] =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCamelCase : List[str] =[ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] ={'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
464
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCamelCase = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCamelCase = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] UpperCamelCase = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCamelCase = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
35
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 3_2 def lowercase__ ( __UpperCamelCase , __UpperCamelCase = 16 )-> Dict: UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ = mocked_dataloaders # noqa: F811 def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase ,UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def lowercase__ ( )-> List[Any]: UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__UpperCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
35
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase = get_logger(__name__) lowerCamelCase = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowercase__ : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowercase__ : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Any , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> jnp.ndarray: '''simple docstring''' for processor in self: UpperCAmelCase_ = inspect.signature(processor.__call__ ).parameters if len(_UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) else: UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : float ) -> List[Any]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) UpperCAmelCase_ = temperature def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = scores / self.temperature return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : float , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) UpperCAmelCase_ = top_p UpperCAmelCase_ = filter_value UpperCAmelCase_ = min_tokens_to_keep def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , scores.shape[-1] ) UpperCAmelCase_ = jnp.full_like(_UpperCAmelCase , self.filter_value ) UpperCAmelCase_ = jax.nn.softmax(_UpperCAmelCase , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase_ = jnp.roll(_UpperCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_UpperCAmelCase ) # min tokens to keep UpperCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCAmelCase ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jax.lax.sort_key_val(_UpperCAmelCase , _UpperCAmelCase )[-1] return next_scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) UpperCAmelCase_ = max(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = filter_value def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = scores.shape UpperCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase_ = topk_scores.flatten() UpperCAmelCase_ = topk_indices.flatten() + shift UpperCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCAmelCase ) UpperCAmelCase_ = next_scores_flat.reshape(_UpperCAmelCase , _UpperCAmelCase ) return next_scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = bos_token_id def __call__( self : Optional[Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase_ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = max_length UpperCAmelCase_ = eos_token_id def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) UpperCAmelCase_ = min_length UpperCAmelCase_ = eos_token_id def __call__( self : List[str] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = list(_UpperCAmelCase ) UpperCAmelCase_ = begin_index def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : list ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = list(_UpperCAmelCase ) def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = dict(_UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase_ = force_token_array.at[index].set(_UpperCAmelCase ) UpperCAmelCase_ = jnp.intaa(_UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' def _force_token(_UpperCAmelCase : Optional[Any] ): UpperCAmelCase_ = scores.shape[0] UpperCAmelCase_ = self.force_token_array[generation_idx] UpperCAmelCase_ = jnp.ones_like(_UpperCAmelCase , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase_ = lax.dynamic_update_slice(_UpperCAmelCase , _UpperCAmelCase , (0, current_token) ) return new_scores UpperCAmelCase_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCAmelCase ) , lambda: scores , ) , ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = generate_config.eos_token_id UpperCAmelCase_ = generate_config.no_timestamps_token_id UpperCAmelCase_ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_UpperCAmelCase , "max_initial_timestamp_index" ): UpperCAmelCase_ = generate_config.max_initial_timestamp_index else: UpperCAmelCase_ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase_ = model_config.vocab_size def __call__( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_UpperCAmelCase : int , _UpperCAmelCase : int ): UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCAmelCase , ) UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCAmelCase , _UpperCAmelCase , ) return jnp.where( _UpperCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCAmelCase , ) UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCAmelCase , ) UpperCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase_ = jnp.where( _UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase_ = jax.nn.log_softmax(_UpperCAmelCase , axis=-1 ) def handle_cumulative_probs(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ): UpperCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCAmelCase , ) UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) return scores
82
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase :List[Any] = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Dict = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Any = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Optional[int] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowerCAmelCase :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase :str = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase :Optional[int] = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
278
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( __UpperCamelCase ): def _A ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''width_multiplier''' ) ) class __magic_name__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str]=1_3 , lowerCamelCase__ : List[Any]=6_4 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Optional[int]="swish" , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : int=3_2 , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : str=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=1_0 , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : List[Any]=0.2_5 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : str=0.0 , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Tuple = patch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : Dict = make_divisible(5_1_2 * width_multiplier , divisor=8 ) lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : str = conv_kernel_size lowerCAmelCase : int = output_stride lowerCAmelCase : Optional[Any] = classifier_dropout_prob lowerCAmelCase : Any = use_labels lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : List[str] = num_labels lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = scope lowerCAmelCase : Tuple = width_multiplier lowerCAmelCase : Optional[Any] = ffn_dropout lowerCAmelCase : Optional[int] = attn_dropout def _A ( self : Tuple ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _A ( self : List[str] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _A ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] ): lowerCAmelCase : List[Any] = MobileViTVaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase : int = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _A ( self : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Tuple = MobileViTVaForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ): lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : Any = MobileViTVaForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase : Optional[Any] = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase : List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _A ( self : Optional[int] ): lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = config_and_inputs lowerCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): _lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def _A ( self : Any ): lowerCAmelCase : Any = MobileViTVaModelTester(self ) lowerCAmelCase : Optional[Any] = MobileViTVaConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _A ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _A ( self : Optional[int] ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _A ( self : Optional[Any] ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _A ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _A ( self : Dict ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _A ( self : str ): pass def _A ( self : Tuple ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _A ( self : List[Any] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _A ( self : List[Any] ): def check_hidden_states_output(lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any] ): lowerCAmelCase : int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase : str = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase : Tuple = outputs.hidden_states lowerCAmelCase : List[str] = 5 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase : List[Any] = 2 for i in range(len(lowerCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _A ( self : int ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _A ( self : int ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) @slow def _A ( self : Dict ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = MobileViTVaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _A ( self : Tuple ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _A ( self : str ): lowerCAmelCase : Any = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowerCamelCase__ ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : Tuple = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase : str = model(**lowerCamelCase__ ) # verify the logits lowerCAmelCase : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowerCAmelCase : List[str] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _A ( self : str ): lowerCAmelCase : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase : Any = model.to(lowerCamelCase__ ) lowerCAmelCase : int = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : List[str] = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase : List[Any] = model(**lowerCamelCase__ ) lowerCAmelCase : Any = outputs.logits # verify the logits lowerCAmelCase : Optional[int] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowerCamelCase__ ) lowerCAmelCase : Any = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _A ( self : Optional[Any] ): lowerCAmelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase : str = model.to(lowerCamelCase__ ) lowerCAmelCase : Dict = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : str = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Tuple = model(**lowerCamelCase__ ) lowerCAmelCase : Optional[Any] = outputs.logits.detach().cpu() lowerCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(5_0, 6_0)] ) lowerCAmelCase : str = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) lowerCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
348
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = '''char''' A = '''bpe''' A = '''wp''' _a : str = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''image_processor''', '''char_tokenizer'''] A = '''ViTImageProcessor''' A = '''MgpstrTokenizer''' def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) __lowerCamelCase = tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained("""gpt2""" ) __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCamelCase = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None: __lowerCamelCase = self.char_tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase = encodings["""input_ids"""] return inputs def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = sequences __lowerCamelCase = char_preds.size(0 ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """char""" ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """bpe""" ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(UpperCAmelCase , """wp""" ) __lowerCamelCase = [] __lowerCamelCase = [] for i in range(UpperCAmelCase ): __lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase = scores.index(max(UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase = {} __lowerCamelCase = final_strs __lowerCamelCase = final_scores __lowerCamelCase = char_strs __lowerCamelCase = bpe_strs __lowerCamelCase = wp_strs return out def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): if format == DecodeType.CHARACTER: __lowerCamelCase = self.char_decode __lowerCamelCase = 1 __lowerCamelCase = """[s]""" elif format == DecodeType.BPE: __lowerCamelCase = self.bpe_decode __lowerCamelCase = 2 __lowerCamelCase = """#""" elif format == DecodeType.WORDPIECE: __lowerCamelCase = self.wp_decode __lowerCamelCase = 1_0_2 __lowerCamelCase = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = pred_logits.size(0 ) __lowerCamelCase = pred_logits.size(1 ) __lowerCamelCase , __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase , sorted=UpperCAmelCase ) __lowerCamelCase = preds_index.view(-1 , UpperCAmelCase )[:, 1:] __lowerCamelCase = decoder(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase = torch.nn.functional.softmax(UpperCAmelCase , dim=2 ).max(dim=2 ) __lowerCamelCase = preds_max_prob[:, 1:] for index in range(UpperCAmelCase ): __lowerCamelCase = preds_str[index].find(UpperCAmelCase ) __lowerCamelCase = preds_str[index][:pred_eos] __lowerCamelCase = preds_index[index].cpu().tolist() __lowerCamelCase = pred_index.index(UpperCAmelCase ) if eos_token in pred_index else -1 __lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCAmelCase ) conf_scores.append(UpperCAmelCase ) return dec_strs, conf_scores def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase )] return decode_strs def lowerCamelCase_ ( self , UpperCAmelCase ): return self.bpe_tokenizer.batch_decode(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase )] return decode_strs
479
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def lowerCamelCase_ ( lowerCAmelCase: Accelerator , lowerCAmelCase: int = 16 , lowerCAmelCase: str = "bert-base-cased" )-> Tuple: _snake_case : str = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) _snake_case : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCAmelCase: str ): # max_length=None => use the model max length (it's actually the default) _snake_case : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _snake_case : Optional[Any] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCAmelCase: List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _snake_case : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) _snake_case : str = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Dict )-> Tuple: model.eval() _snake_case : List[str] = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Union[str, Any] = model(**UpperCAmelCase__ ) _snake_case : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _snake_case : List[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: _snake_case : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _snake_case : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) _snake_case : List[str] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> List[str]: # Initialize accelerator _snake_case : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : List[Any] = config["""lr"""] _snake_case : int = int(config['num_epochs'] ) _snake_case : Dict = int(config['seed'] ) _snake_case : Optional[Any] = int(config['batch_size'] ) _snake_case : Tuple = args.model_name_or_path set_seed(UpperCAmelCase__ ) _snake_case : Tuple = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : int = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer _snake_case : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _snake_case : str = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: _snake_case : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _snake_case : List[Any] = 1 _snake_case : List[str] = (len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _snake_case : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: _snake_case : str = DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case : Optional[int] = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over _snake_case : Any = 0 # We also need to keep track of the stating epoch so files are named properly _snake_case : Optional[Any] = 0 _snake_case : Union[str, Any] = evaluate.load('glue' , 'mrpc' ) _snake_case : Optional[Any] = num_epochs if args.partial_train_epoch is not None: _snake_case : List[str] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _snake_case : Optional[int] = args.resume_from_checkpoint.split('epoch_' )[1] _snake_case : str = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _snake_case : Union[str, Any] = int(UpperCAmelCase__ ) + 1 _snake_case : Optional[Any] = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.print('resumed checkpoint performance:' , UpperCAmelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , 'r' ) as f: _snake_case : Any = json.load(UpperCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _snake_case : Optional[int] = {} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): _snake_case : Union[str, Any] = model(**UpperCAmelCase__ ) _snake_case : Dict = outputs.loss _snake_case : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _snake_case : List[str] = F"""epoch_{epoch}""" _snake_case : Dict = os.path.join(args.output_dir , UpperCAmelCase__ ) accelerator.save_state(UpperCAmelCase__ ) _snake_case : Dict = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _snake_case : Optional[int] = accuracy _snake_case : List[str] = lr_scheduler.get_lr()[0] _snake_case : List[str] = optimizer.param_groups[0]["""lr"""] _snake_case : List[str] = epoch _snake_case : List[str] = overall_step accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( )-> str: _snake_case : Optional[int] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase__ , default=2 , help='Number of train epochs.' , ) _snake_case : Dict = parser.parse_args() _snake_case : Tuple = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
708
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
0
'''simple docstring''' from itertools import count def lowercase (_A = 5_0 ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = [1] * min_block_length for n in count(_A ): fill_count_functions.append(1 ) for block_length in range(_A , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
444
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCAmelCase : Tuple = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "rag" __magic_name__ = True def __init__( self , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=" / " , snake_case__=" // " , snake_case__=5 , snake_case__=300 , snake_case__=768 , snake_case__=8 , snake_case__="wiki_dpr" , snake_case__="train" , snake_case__="compressed" , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=0.0 , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( bos_token_id=snake_case__ , pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , prefix=snake_case__ , vocab_size=snake_case__ , **snake_case__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : Optional[Any] = kwargs.pop('question_encoder' ) _lowerCAmelCase : List[Any] = question_encoder_config.pop('model_type' ) _lowerCAmelCase : List[str] = kwargs.pop('generator' ) _lowerCAmelCase : Tuple = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : Union[str, Any] = AutoConfig.for_model(snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = AutoConfig.for_model(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[int] = reduce_loss _lowerCAmelCase : Optional[Any] = label_smoothing _lowerCAmelCase : Dict = exclude_bos_score _lowerCAmelCase : Optional[int] = do_marginalize _lowerCAmelCase : List[str] = title_sep _lowerCAmelCase : Optional[Any] = doc_sep _lowerCAmelCase : str = n_docs _lowerCAmelCase : Optional[int] = max_combined_length _lowerCAmelCase : Dict = dataset _lowerCAmelCase : Optional[int] = dataset_split _lowerCAmelCase : str = index_name _lowerCAmelCase : Tuple = retrieval_vector_size _lowerCAmelCase : Any = retrieval_batch_size _lowerCAmelCase : Any = passages_path _lowerCAmelCase : Tuple = index_path _lowerCAmelCase : Any = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : List[str] = do_deduplication _lowerCAmelCase : Optional[int] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator , 'forced_eos_token_id' , snake_case__ ) @classmethod def a ( cls , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[str] = self.question_encoder.to_dict() _lowerCAmelCase : Optional[Any] = self.generator.to_dict() _lowerCAmelCase : Optional[int] = self.__class__.model_type return output
444
1
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 while number > 0: SCREAMING_SNAKE_CASE__ = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def A ( snake_case__ = 1_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = factorial(snake_case__ ) SCREAMING_SNAKE_CASE__ = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
616
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase (unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ort.SessionOptions() SCREAMING_SNAKE_CASE__ = False return options def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """A red cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=__UpperCAmelCase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
616
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Dict = config_class SCREAMING_SNAKE_CASE : Optional[Any] = has_text_modality SCREAMING_SNAKE_CASE : List[str] = kwargs SCREAMING_SNAKE_CASE : List[Any] = common_properties def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE : Dict = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase_ ): try: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase_ ): try: SCREAMING_SNAKE_CASE : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=f'''`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE : Any = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Dict = os.path.join(UpperCAmelCase_ , "config.json" ) config_first.to_json_file(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.config_class.from_json_file(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.config_class.from_pretrained(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE : Dict = "test" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) config_first.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.config_class.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) SCREAMING_SNAKE_CASE : List[Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _A ( self : str ): if self.config_class.is_composition: return SCREAMING_SNAKE_CASE : Optional[int] = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = self.config_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase_ , UpperCAmelCase_ ) != value: wrong_values.append((key, getattr(UpperCAmelCase_ , UpperCAmelCase_ ), value) ) if len(UpperCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE : Any = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _A ( self : Tuple ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
62
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[Any] , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) requires_backends(self , "vision") requires_backends(self , "torch") if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") self.check_model_type(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , **UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] ={} lowerCamelCase__: Tuple ={} lowerCamelCase__: str ={} # preprocess args if "points_per_batch" in kwargs: lowerCamelCase__: Optional[Any] =kwargs["points_per_batch"] if "points_per_crop" in kwargs: lowerCamelCase__: int =kwargs["points_per_crop"] if "crops_n_layers" in kwargs: lowerCamelCase__: Any =kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: lowerCamelCase__: Tuple =kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: lowerCamelCase__: List[Any] =kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: lowerCamelCase__: List[str] =kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: lowerCamelCase__: int =kwargs["stability_score_offset"] if "mask_threshold" in kwargs: lowerCamelCase__: Optional[int] =kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: lowerCamelCase__: str =kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: lowerCamelCase__: Any =kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: lowerCamelCase__: List[Any] =kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: lowerCamelCase__: List[str] =kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self : int , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=64 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : float = 512 / 1_500 , UpperCAmelCase_ : Optional[int] = 32 , UpperCAmelCase_ : Optional[int] = 1 , ) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =load_image(UpperCAmelCase_) lowerCamelCase__: List[str] =self.image_processor.size["longest_edge"] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: str =self.image_processor(images=UpperCAmelCase_ , return_tensors="pt") with self.device_placement(): if self.framework == "pt": lowerCamelCase__: str =self.get_inference_context() with inference_context(): lowerCamelCase__: Union[str, Any] =self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device) lowerCamelCase__: Optional[Any] =self.model.get_image_embeddings(model_inputs.pop("pixel_values")) lowerCamelCase__: str =image_embeddings lowerCamelCase__: int =grid_points.shape[1] lowerCamelCase__: int =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None") for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =grid_points[:, i : i + points_per_batch, :, :] lowerCamelCase__: Optional[Any] =input_labels[:, i : i + points_per_batch] lowerCamelCase__: Dict =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=0.88 , UpperCAmelCase_ : Optional[Any]=0.95 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : Any=1 , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =model_inputs.pop("input_boxes") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: int =model_inputs.pop("original_sizes").tolist() lowerCamelCase__: Union[str, Any] =model_inputs.pop("reshaped_input_sizes").tolist() lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowerCamelCase__: Optional[int] =model_outputs["pred_masks"] lowerCamelCase__: Union[str, Any] =self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model_outputs["iou_scores"] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[int]=0.7 , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =[] lowerCamelCase__: Optional[int] =[] lowerCamelCase__: List[str] =[] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores")) all_masks.extend(model_output.pop("masks")) all_boxes.append(model_output.pop("boxes")) lowerCamelCase__: str =torch.cat(UpperCAmelCase_) lowerCamelCase__: List[str] =torch.cat(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =defaultdict(UpperCAmelCase_) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_) lowerCamelCase__: Any ={} if output_rle_mask: lowerCamelCase__: Union[str, Any] =rle_mask if output_bboxes_mask: lowerCamelCase__: int =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
59
0
def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True __lowercase = 4 __lowercase = (1 << p) - 1 for _ in range(p - 2 ): __lowercase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
576
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> list[float]: '''simple docstring''' __lowercase , __lowercase = coefficient_matrix.shape __lowercase , __lowercase = constant_matrix.shape if rowsa != colsa: __lowercase = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if colsa != 1: __lowercase = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __lowercase = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __lowercase = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(_UpperCAmelCase )} and {rowsa}''' ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __lowercase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowercase , __lowercase = table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __lowercase = [] for row in range(_UpperCAmelCase ): __lowercase = 0 for col in range(_UpperCAmelCase ): if col == row: __lowercase = table[row][col] elif col == cols - 1: __lowercase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowercase = (temp + val) / denom new_val.append(_UpperCAmelCase ) __lowercase = new_val return [float(_UpperCAmelCase ) for i in new_val] def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' __lowercase , __lowercase = table.shape __lowercase = True for i in range(0 , _UpperCAmelCase ): __lowercase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
576
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging SCREAMING_SNAKE_CASE_ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ): """simple docstring""" UpperCamelCase = XLNetConfig.from_json_file(_lowercase ) UpperCamelCase = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCamelCase = finetuning_task UpperCamelCase = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCamelCase = XLNetForSequenceClassification(_lowercase ) elif "squad" in finetuning_task: UpperCamelCase = finetuning_task UpperCamelCase = XLNetForQuestionAnswering(_lowercase ) else: UpperCamelCase = XLNetLMHeadModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowercase ,_lowercase ,_lowercase ) # Save pytorch-model UpperCamelCase = os.path.join(_lowercase ,_lowercase ) UpperCamelCase = os.path.join(_lowercase ,_lowercase ) print(f'Save PyTorch model to {os.path.abspath(_lowercase )}' ) torch.save(model.state_dict() ,_lowercase ) print(f'Save configuration file to {os.path.abspath(_lowercase )}' ) with open(_lowercase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
34
'''simple docstring''' from numpy import exp, pi, sqrt def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
494
0
from PIL import Image def snake_case__ ( UpperCAmelCase : Image , UpperCAmelCase : float ): def brightness(UpperCAmelCase : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _a : Tuple = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
702
def snake_case__ ( UpperCAmelCase : Tuple ): lowerCAmelCase__ :List[Any] = len(UpperCAmelCase ) for i in range(length - 1 ): lowerCAmelCase__ :Union[str, Any] = i for k in range(i + 1 , UpperCAmelCase ): if collection[k] < collection[least]: lowerCAmelCase__ :Any = k if least != i: lowerCAmelCase__ ,lowerCAmelCase__ :int = (collection[i], collection[least]) return collection if __name__ == "__main__": _a : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() _a : Any = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
111
0
def lowercase ( _lowerCAmelCase ): return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = credit_card_number UpperCAmelCase__ = 0 UpperCAmelCase__ = len(_UpperCAmelCase ) - 2 for i in range(_UpperCAmelCase , -1 , -2 ): # double the value of every second digit UpperCAmelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCAmelCase__ = cc_number[:i] + str(_UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_UpperCAmelCase ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(_UpperCAmelCase ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_UpperCAmelCase ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
392
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) _A = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size for training."} ) _A = field(default=2 , metadata={"help": "Batch size for evaluation."} ) _A = field(default=0.1 , metadata={"help": "Value of weight decay."} ) _A = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _A = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) _A = field(default="cosine" , metadata={"help": "Learning rate."} ) _A = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _A = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) _A = field( default=__snake_case , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _A = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) _A = field(default=1 , metadata={"help": "Training seed."} ) _A = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) _A = field( default=__snake_case , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _A = field(default=__snake_case , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) _A = field( default=__snake_case , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) _A = field( default=__snake_case , metadata={"help": "Sample from the language model's output distribution."} ) _A = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) _A = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) _A = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) _A = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) _A = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) _A = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _A = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowercase : _A = field( default=__snake_case , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) _A = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) _A = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) _A = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _A = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _A = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _A = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _A = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) _A = field( default=__snake_case , metadata={"help": "If True, near-duplicate samples are removed."} ) _A = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowercase : _A = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) _A = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) _A = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) _A = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) _A = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowercase : _A = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) _A = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} )
461
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): @slow def _a ( self ) -> List[str]: __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_lowercase ).to(_lowercase ) __UpperCamelCase =AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase =tokenizer('Hello there' , return_tensors='pt' ).input_ids __UpperCamelCase =tokenizer('Hi I am' , return_tensors='pt' ).input_ids __UpperCamelCase =model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss __UpperCamelCase =-(labels.shape[-1] * loss.item()) __UpperCamelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "efficientnet" def __init__( self : List[Any] , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 600 , _lowerCAmelCase : float = 2.0 , _lowerCAmelCase : float = 3.1 , _lowerCAmelCase : int = 8 , _lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , _lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , _lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , _lowerCAmelCase : List[int] = [] , _lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , _lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , _lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , _lowerCAmelCase : float = 0.25 , _lowerCAmelCase : str = "swish" , _lowerCAmelCase : int = 2_560 , _lowerCAmelCase : str = "mean" , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 0.001 , _lowerCAmelCase : float = 0.99 , _lowerCAmelCase : float = 0.5 , _lowerCAmelCase : float = 0.2 , **_lowerCAmelCase : str , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(_lowerCAmelCase ) * 4 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1E-5
31
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def _A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : str = inputs["prompt"] lowerCAmelCase__ : Optional[Any] = inputs["generator"] lowerCAmelCase__ : str = inputs["num_inference_steps"] lowerCAmelCase__ : int = inputs["output_type"] if "image" in inputs: lowerCAmelCase__ : Optional[int] = inputs["image"] else: lowerCAmelCase__ : str = None if "mask_image" in inputs: lowerCAmelCase__ : List[str] = inputs["mask_image"] else: lowerCAmelCase__ : str = None if "original_image" in inputs: lowerCAmelCase__ : Optional[int] = inputs["original_image"] else: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ , lowerCAmelCase__ : Dict = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings lowerCAmelCase__ : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowerCAmelCase__ : Optional[Any] = image if mask_image is not None: lowerCAmelCase__ : Optional[int] = mask_image if original_image is not None: lowerCAmelCase__ : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) lowerCAmelCase__ : Optional[int] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) lowerCAmelCase__ : Tuple = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Any = inputs["generator"] lowerCAmelCase__ : Union[str, Any] = inputs["num_inference_steps"] lowerCAmelCase__ : str = inputs["output_type"] # inputs with prompt converted to embeddings lowerCAmelCase__ : int = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowerCAmelCase__ : Tuple = image if mask_image is not None: lowerCAmelCase__ : int = mask_image if original_image is not None: lowerCAmelCase__ : List[Any] = original_image lowerCAmelCase__ : Dict = pipe_loaded(**a__ )[0] lowerCAmelCase__ : int = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 ) def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : int = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Any = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Union[str, Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) lowerCAmelCase__ : str = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase__ : str = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Union[str, Any] = pipe_loaded(**a__ )[0] lowerCAmelCase__ : Union[str, Any] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 )
378
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Optional[int] , _snake_case : int ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) A__ = {'source': 'What is love ?', 'target': 'life'} A__ = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: A__ = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_snake_case , F'''{split}.{field}''' ) , 'w' ) as f: f.write(_snake_case ) def _a ( self : Union[str, Any] , _snake_case : int , _snake_case : str = "pytorch" ): """simple docstring""" A__ = self.get_auto_remove_tmp_dir() A__ = os.path.join(_snake_case , 'output' ) A__ = os.path.join(_snake_case , 'data' ) self._create_dummy_data(data_dir=_snake_case ) A__ = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) A__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_snake_case , env=self.get_env() ) A__ = os.path.join(_snake_case , 'metrics.json' ) with open(_snake_case ) as f: A__ = json.load(_snake_case ) return result @require_torch_gpu def _a ( self : Dict ): """simple docstring""" A__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def _a ( self : Tuple ): """simple docstring""" A__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def _a ( self : List[Any] ): """simple docstring""" A__ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def _a ( self : Optional[int] ): """simple docstring""" A__ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
52
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = ["image_processor", "tokenizer"] A__ : Optional[Any] = "BridgeTowerImageProcessor" A__ : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] ): """simple docstring""" super().__init__(_snake_case , _snake_case ) def __call__( self : List[Any] , _snake_case : int , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[int] , ): """simple docstring""" A__ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel_values + pixel_mask A__ = self.image_processor( _snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case ) encoding.update(_snake_case ) return encoding def _a ( self : Any , *_snake_case : Tuple , **_snake_case : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : Dict , *_snake_case : Dict , **_snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _a ( self : Tuple ): """simple docstring""" A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
52
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowercase_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['DPTFeatureExtractor'] lowercase_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
291
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 10**9) -> int: '''simple docstring''' __UpperCamelCase : int = 1 __UpperCamelCase : Any = 2 __UpperCamelCase : Dict = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCamelCase : Optional[int] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
557
0
import argparse import copy def __A ( _A ): """simple docstring""" __a = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __a = [] _list.append([line.split()[1], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __a = [] _list.append([line.split()[0], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __A ( _A , _A ): """simple docstring""" with open(_A ) as f: __a = f.read(1 ) __a = start_node __a = [] __a = start_node __a = 0 while visiting not in first_solution: __a = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: __a = k[1] __a = k[0] first_solution.append(_A ) __a = distance_of_first_solution + int(_A ) __a = best_node first_solution.append(_A ) __a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __A ( _A , _A ): """simple docstring""" __a = [] for n in solution[1:-1]: __a = solution.index(_A ) for kn in solution[1:-1]: __a = solution.index(_A ) if n == kn: continue __a = copy.deepcopy(_A ) __a = kn __a = n __a = 0 for k in _tmp[:-1]: __a = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __a = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __A ( _A , _A , _A , _A , _A ): """simple docstring""" __a = 1 __a = first_solution __a = [] __a = distance_of_first_solution __a = solution while count <= iters: __a = find_neighborhood(_A , _A ) __a = 0 __a = neighborhood[index_of_best_solution] __a = len(_A ) - 1 __a = False while not found: __a = 0 while i < len(_A ): if best_solution[i] != solution[i]: __a = best_solution[i] __a = solution[i] break __a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __a = True __a = best_solution[:-1] __a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __a = cost __a = solution else: __a = index_of_best_solution + 1 __a = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) __a = count + 1 return best_solution_ever, best_cost def __A ( _A=None ): """simple docstring""" __a = generate_neighbours(args.File ) __a , __a = generate_first_solution( args.File , _A ) __a , __a = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
525
from __future__ import annotations SCREAMING_SNAKE_CASE : Optional[int] = [] def __A ( _A , _A , _A ): """simple docstring""" for i in range(len(_A ) ): if board[row][i] == 1: return False for i in range(len(_A ) ): if board[i][column] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , len(_A ) ) ): if board[i][j] == 1: return False return True def __A ( _A , _A ): """simple docstring""" if row >= len(_A ): solution.append(_A ) printboard(_A ) print() return True for i in range(len(_A ) ): if is_safe(_A , _A , _A ): __a = 1 solve(_A , row + 1 ) __a = 0 return False def __A ( _A ): """simple docstring""" for i in range(len(_A ) ): for j in range(len(_A ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE : List[str] = 8 SCREAMING_SNAKE_CASE : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
525
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> list: if n_term == "": return [] lowercase__: list = [] for temp in range(int(__UpperCAmelCase ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": __A = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
586
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase__: Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase__: Optional[int] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase__: List[str] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase__: str = model(_UpperCAmelCase , labels=_UpperCAmelCase ).loss lowercase__: List[str] = -tf.math.reduce_mean(_UpperCAmelCase ).numpy() lowercase__: List[str] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
586
1
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> Optional[int]: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.25) = }""") print(F"""{price_plus_tax(125.50, 0.05) = }""")
702
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Any = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = AlbertTokenizer SCREAMING_SNAKE_CASE = AlbertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : List[Any] = AlbertTokenizer(_SCREAMING_SNAKE_CASE) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int]) -> str: """simple docstring""" __lowerCAmelCase : int = "this is a test" __lowerCAmelCase : Any = "this is a test" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = "<pad>" __lowerCAmelCase : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<pad>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "▁eloquent") self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 3_0000) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Dict = self.get_rust_tokenizer() __lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." __lowerCAmelCase : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.get_rust_tokenizer() __lowerCAmelCase : str = tokenizer.encode(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = AlbertTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = tokenizer.tokenize("This is a test") self.assertListEqual(_SCREAMING_SNAKE_CASE , ["▁this", "▁is", "▁a", "▁test"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) , [48, 25, 21, 1289]) __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( _SCREAMING_SNAKE_CASE , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]) __lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) __lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE) self.assertListEqual( _SCREAMING_SNAKE_CASE , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase : int = AlbertTokenizer(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = tokenizer.encode("sequence builders") __lowerCAmelCase : List[Any] = tokenizer.encode("multi-sequence build") __lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
615
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Tuple = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
def __lowerCamelCase ( __a :int ) -> bool: """simple docstring""" if not isinstance(__a , __a ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) A__ = str(__a ) A__ = """""".join(sorted(__a ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCamelCase ( __a :float = 9_9 ) -> int: """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError("""solution() only accepts values from 0 to 100""" ) A__ = 0 A__ = 1 while True: if check_bouncy(__a ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(9_9)}''')
247
import os import string import sys A : Dict = 1 << 8 A : Dict = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 2_7, '''up''': 6_5 + ARROW_KEY_FLAG, '''down''': 6_6 + ARROW_KEY_FLAG, '''right''': 6_7 + ARROW_KEY_FLAG, '''left''': 6_8 + ARROW_KEY_FLAG, '''mod_int''': 9_1, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 5_0, '''delete''': 5_1, '''pg_up''': 5_3, '''pg_down''': 5_4, } A : Any = KEYMAP['''up'''] A : Optional[Any] = KEYMAP['''left'''] if sys.platform == "win32": A : Optional[Any] = [] A : str = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(1_0): A : Tuple = ord(str(i)) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" if os.name == "nt": import msvcrt A__ = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke A__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) A__ = chr(KEYMAP["""esc"""] ) except KeyError: A__ = cha[1] else: A__ = ch.decode(__a ) else: A__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ = sys.stdin.fileno() A__ = termios.tcgetattr(__a ) try: tty.setraw(__a ) A__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: A__ = get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: A__ = get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
247
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
186
'''simple docstring''' import math import tensorflow as tf from packaging import version def a_ ( __UpperCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case: str =tf.convert_to_tensor(__UpperCAmelCase ) snake_case: int =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: Optional[int] =tf.convert_to_tensor(__UpperCAmelCase ) snake_case: Tuple =tf.cast(math.pi , x.dtype ) snake_case: Dict =tf.cast(0.04_4715 , x.dtype ) snake_case: List[str] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCAmelCase , 3 )) )) return x * cdf def a_ ( __UpperCAmelCase ) -> Tuple: """simple docstring""" snake_case: Optional[int] =tf.convert_to_tensor(__UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(__UpperCAmelCase ) ) def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: List[str] =tf.convert_to_tensor(__UpperCAmelCase ) snake_case: Dict =tf.cast(0.04_4715 , x.dtype ) snake_case: List[str] =tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a_ ( __UpperCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case: Union[str, Any] =tf.convert_to_tensor(__UpperCAmelCase ) snake_case: Tuple =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" return tf.clip_by_value(_gelu(__UpperCAmelCase ) , -10 , 10 ) def a_ ( __UpperCAmelCase , __UpperCAmelCase=-1 ) -> List[str]: """simple docstring""" snake_case , snake_case: int =tf.split(__UpperCAmelCase , 2 , axis=__UpperCAmelCase ) return a * tf.math.sigmoid(__UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" return tf.keras.activations.gelu(__UpperCAmelCase , approximate=__UpperCAmelCase ) a = tf.keras.activations.gelu a = approximate_gelu_wrap else: a = _gelu a = _gelu_new a = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
350
0
"""simple docstring""" from __future__ import annotations def __A ( a_ :list) -> list: if len(a_) == 0: return [] __a , __a : Optional[Any] = min(a_), max(a_) __a : Optional[Any] = int(max_value - min_value) + 1 __a : list[list] = [[] for _ in range(a_)] for i in my_list: buckets[int(i - min_value)].append(a_) return [v for bucket in buckets for v in sorted(a_)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
101
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=768 ): super().__init__(_UpperCAmelCase ) __a : str = proj_size __a : Optional[Any] = CLIPVisionModel(_UpperCAmelCase ) __a : List[Any] = PaintByExampleMapper(_UpperCAmelCase ) __a : int = nn.LayerNorm(config.hidden_size ) __a : List[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __a : int = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ): __a : str = self.model(pixel_values=_UpperCAmelCase ) __a : Union[str, Any] = clip_output.pooler_output __a : Optional[int] = self.mapper(latent_states[:, None] ) __a : int = self.final_layer_norm(_UpperCAmelCase ) __a : Optional[Any] = self.proj_out(_UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() __a : List[str] = (config.num_hidden_layers + 1) // 5 __a : Optional[Any] = config.hidden_size __a : str = 1 __a : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , activation_fn='''gelu''' , attention_bias=_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ] ) def _lowerCamelCase ( self , _UpperCAmelCase ): for block in self.blocks: __a : Union[str, Any] = block(_UpperCAmelCase ) return hidden_states
101
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a : Dict = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' a : List[Any] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' a : int = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase(datasets.Metric ): def lowercase__ ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" a__ = compute_bleu( reference_corpus=__SCREAMING_SNAKE_CASE , translation_corpus=__SCREAMING_SNAKE_CASE , max_order=__SCREAMING_SNAKE_CASE , smooth=__SCREAMING_SNAKE_CASE ) ((a__) , (a__) , (a__) , (a__) , (a__) , (a__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
273
"""simple docstring""" from itertools import product def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: a__ = sides_number a__ = max_face_number * dice_number a__ = [0] * (max_total + 1) a__ = 1 a__ = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): a__ = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def __magic_name__ ( ) -> float: a__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) a__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) a__ = 0 a__ = 9 a__ = 4 * 9 a__ = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a__ = (4**9) * (6**6) a__ = peter_wins_count / total_games_number a__ = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
273
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int) -> List[Any]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __UpperCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ('weight',) __UpperCamelCase : str = torch.permute(lowerCAmelCase__ , (0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase__): # linear layer __UpperCamelCase : Dict = flax_key_tuple[:-1] + ('weight',) __UpperCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCamelCase : Optional[int] = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple) -> Any: '''simple docstring''' if "metadata" in layer: __UpperCamelCase : List[Any] = layer.split("metadata") __UpperCamelCase : Any = ''.join(split_layer[0])[:-1] __UpperCamelCase : Any = [tuple(("metadata" + split_layer[1]).split("/"))] elif "kvstore" in layer: __UpperCamelCase : int = layer.split("kvstore") __UpperCamelCase : Dict = ''.join(split_layer[0])[:-1] __UpperCamelCase : Union[str, Any] = [tuple(("kvstore" + split_layer[1]).split("/"))] else: __UpperCamelCase : List[str] = layer.split("/") __UpperCamelCase : int = '/'.join(split_layer[:-1]) __UpperCamelCase : List[str] = (split_layer[-1],) if "kvstore/path" in layer: __UpperCamelCase : Dict = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: __UpperCamelCase : str = 'file' else: __UpperCamelCase : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str]) -> Dict: '''simple docstring''' __UpperCamelCase : Dict = rename_keys(lowerCAmelCase__) __UpperCamelCase : Any = {} for k, v in current_block.items(): __UpperCamelCase : Any = v __UpperCamelCase : Dict = new_current_block torch.save(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : str = WEIGHTS_NAME) -> List[str]: '''simple docstring''' __UpperCamelCase : str = convert_file_size_to_int(lowerCAmelCase__) __UpperCamelCase : Tuple = [] __UpperCamelCase : List[Any] = {} __UpperCamelCase : List[Any] = 0 __UpperCamelCase : int = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb") as fp: __UpperCamelCase : Optional[Any] = serialization.msgpack_restore(fp.read())['optimizer']['target'] __UpperCamelCase : Dict = flatten_dict(lowerCAmelCase__ , sep="/") __UpperCamelCase : int = {} for layer in checkpoint_info.keys(): __UpperCamelCase : Union[str, Any] = get_key_and_tensorstore_dict( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if curr_real_layer_name in all_layers: __UpperCamelCase : Any = content else: __UpperCamelCase : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __UpperCamelCase : str = ts.open(unflatten_dict(all_layers[key])).result().read().result() __UpperCamelCase : Union[str, Any] = torch.tensor(lowerCAmelCase__) __UpperCamelCase : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts __UpperCamelCase : Optional[int] = rename_base_flax_keys(tuple(key.split("/")) , lowerCAmelCase__) __UpperCamelCase : Optional[Any] = '/'.join(lowerCAmelCase__) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __UpperCamelCase : List[Any] = os.path.join( lowerCAmelCase__ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase__)+1:05d}-of-???.bin')) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__) sharded_state_dicts.append(current_block.keys()) del current_block __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : str = 0 __UpperCamelCase : Optional[int] = raw_weights.to(getattr(lowerCAmelCase__ , lowerCAmelCase__)) current_block_size += weight_size total_size += weight_size # Add the last block __UpperCamelCase : List[str] = os.path.join(lowerCAmelCase__ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase__)+1:05d}-of-???.bin')) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(lowerCAmelCase__) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = {} for idx, shard in enumerate(lowerCAmelCase__): __UpperCamelCase : int = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(lowerCAmelCase__):05d}.bin') # len(sharded_state_dicts):05d} __UpperCamelCase : str = os.path.join(lowerCAmelCase__ , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin')) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__)) __UpperCamelCase : Optional[int] = shard for key in shard: __UpperCamelCase : Optional[Any] = shard_file # Add the metadata __UpperCamelCase : Optional[int] = {'total_size': total_size} __UpperCamelCase : int = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__) , "w" , encoding="utf-8") as f: __UpperCamelCase : Union[str, Any] = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__) + '\n' f.write(lowerCAmelCase__) return metadata, index if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) lowercase : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __UpperCamelCase : Optional[Any] = SwitchTransformersConfig.from_pretrained("google/switch-base-8") config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted") __UpperCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto") __UpperCamelCase : Any = TaTokenizer.from_pretrained("t5-small") __UpperCamelCase : Dict = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __UpperCamelCase : int = tokenizer(lowerCAmelCase__ , return_tensors="pt").input_ids __UpperCamelCase : List[Any] = model.generate(lowerCAmelCase__ , decoder_start_token_id=0) print(tokenizer.decode(out[0]))
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
0