code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCamelCase__ : List[str] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) UpperCamelCase__ : str = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCamelCase__ : str = str(__SCREAMING_SNAKE_CASE ) dataset_info.write_to_directory(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = DatasetInfo.from_directory(__SCREAMING_SNAKE_CASE ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'dataset_info.json' ) ) def _lowercase ( ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCamelCase__ : List[Any] = dataset_info._to_yaml_dict() assert sorted(__SCREAMING_SNAKE_CASE ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCamelCase__ : Union[str, Any] = yaml.safe_dump(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = yaml.safe_load(__SCREAMING_SNAKE_CASE ) assert dataset_info_yaml_dict == reloaded def _lowercase ( ) -> List[Any]: UpperCamelCase__ : int = DatasetInfo() UpperCamelCase__ : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCamelCase__ : List[Any] = str(__SCREAMING_SNAKE_CASE ) dataset_infos_dict.write_to_directory(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCamelCase__ : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCamelCase__ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'README.md' ) )
410
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase__ : Optional[int] = False @skip_mps class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline UpperCamelCase_ = False UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) UpperCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str: if str(UpperCamelCase).startswith('mps'): UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase) else: UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase) UpperCamelCase__ : List[Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase) pipe.to(UpperCamelCase) pipe.set_progress_bar_config(disable=UpperCamelCase) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCamelCase__ : str = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase , 1E-3) def lowerCAmelCase__ ( self) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase__ ( self) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def lowerCAmelCase__ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def lowerCAmelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_local(expected_max_difference=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Dict = torch.manual_seed(51) UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa) pipe.to('cuda') UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses' UpperCamelCase__ : Dict = [5, 7] UpperCamelCase__ : Optional[int] = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] UpperCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5E-1
410
1
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase = {} def __A ( self , snake_case_ ) -> None: _UpperCAmelCase = {} def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: if nodea not in self.connections: self.add_node(snake_case_ ) if nodea not in self.connections: self.add_node(snake_case_ ) _UpperCAmelCase = probability def __A ( self ) -> list[str]: return list(self.connections ) def __A ( self , snake_case_ ) -> str: _UpperCAmelCase = 0 _UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A__ ( A__ , A__ , A__ ): '''simple docstring''' _UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A__ , A__ , A__ ) _UpperCAmelCase = Counter(graph.get_nodes() ) _UpperCAmelCase = start for _ in range(A__ ): _UpperCAmelCase = graph.transition(A__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger() def A__ ( A__ , A__ , A__ , A__ , A__ = True ) -> Any: '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": _UpperCAmelCase = timm.create_model("levit_128s" , pretrained=A__ ) else: _UpperCAmelCase = timm.create_model("levit_128" , pretrained=A__ ) if hidden_sizes == 192: _UpperCAmelCase = timm.create_model("levit_192" , pretrained=A__ ) if hidden_sizes == 256: _UpperCAmelCase = timm.create_model("levit_256" , pretrained=A__ ) if hidden_sizes == 384: _UpperCAmelCase = timm.create_model("levit_384" , pretrained=A__ ) from_model.eval() _UpperCAmelCase = LevitForImageClassificationWithTeacher(A__ ).eval() _UpperCAmelCase = OrderedDict() _UpperCAmelCase = from_model.state_dict() _UpperCAmelCase = list(from_model.state_dict().keys() ) _UpperCAmelCase = list(our_model.state_dict().keys() ) print(len(A__ ) , len(A__ ) ) for i in range(len(A__ ) ): _UpperCAmelCase = weights[og_keys[i]] our_model.load_state_dict(A__ ) _UpperCAmelCase = torch.randn((2, 3, 224, 224) ) _UpperCAmelCase = from_model(A__ ) _UpperCAmelCase = our_model(A__ ).logits assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." _UpperCAmelCase = name print(A__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _UpperCAmelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def A__ ( A__ , A__ = None , A__ = True ) -> Dict: '''simple docstring''' _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = 1000 _UpperCAmelCase = (1, num_labels) _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(A__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) _UpperCAmelCase = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } _UpperCAmelCase = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
579
0
A_ : Optional[int] = [0, 2, 4, 6, 8] A_ : List[Any] = [1, 3, 5, 7, 9] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase = 0 for digit in range(1_0 ): __UpperCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result __UpperCAmelCase = 0 for digita in range(1_0 ): __UpperCAmelCase = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase = ODD_DIGITS else: __UpperCAmelCase = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def __a ( SCREAMING_SNAKE_CASE = 9 ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F"""{solution() = }""")
303
from __future__ import annotations def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() A_ : Any = int(input('Enter the last number (nth term) of the P-Series')) A_ : List[str] = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
303
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case_ : int =False class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> str: return 12 @property def _lowerCamelCase ( self ) -> str: return 12 @property def _lowerCamelCase ( self ) -> Optional[int]: return 32 @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) __A = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _lowerCamelCase ( self ) -> int: __A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self ) -> int: torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowercase__ ) @property def _lowerCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __A = 12 __A = 12 __A = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } __A = TransformeraDModel(**lowercase__ ) return model def _lowerCamelCase ( self ) -> List[str]: __A = "cpu" __A = self.dummy_vqvae __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_transformer __A = VQDiffusionScheduler(self.num_embed ) __A = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase__ ) __A = VQDiffusionPipeline( vqvae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , transformer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , ) __A = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A = "teddy bear playing in the pool" __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = pipe([prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="np" ) __A = output.images __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = pipe( [prompt] , generator=lowercase__ , output_type="np" , return_dict=lowercase__ , num_inference_steps=2 )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __A = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ) -> str: __A = "cpu" __A = self.dummy_vqvae __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_transformer __A = VQDiffusionScheduler(self.num_embed ) __A = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __A = VQDiffusionPipeline( vqvae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , transformer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , ) __A = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A = "teddy bear playing in the pool" __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = pipe([prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="np" ) __A = output.images __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = pipe( [prompt] , generator=lowercase__ , output_type="np" , return_dict=lowercase__ , num_inference_steps=2 )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __A = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> Dict: __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) __A = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) __A = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __A = torch.Generator(device=lowercase__ ).manual_seed(0 ) __A = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=lowercase__ , output_type="np" , ) __A = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
205
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case_ : Optional[Any] =Lock() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __A = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __A = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] __A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __A = temp_rs __A = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __A = temp_rs __A = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __A = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): '''simple docstring''' __A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowerCAmelCase__ ) __A = odd_even_transposition(lowerCAmelCase__ ) print("Sorted List\n" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
205
1
def a__ ( __UpperCamelCase , __UpperCamelCase ): while second != 0: SCREAMING_SNAKE_CASE_ = first & second first ^= second SCREAMING_SNAKE_CASE_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A : Any = int(input("Enter the first number: ").strip()) A : Optional[int] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
140
def a__ ( __UpperCamelCase ): if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
140
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a : Optional[Any] = logging.get_logger(__name__) __a : Union[str, Any] = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : Optional[int] = """swin""" a : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCamelCase=224 , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=96 , lowerCamelCase=[2, 2, 6, 2] , lowerCamelCase=[3, 6, 12, 24] , lowerCamelCase=7 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase=32 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) lowercase__ : Dict = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Tuple = embed_dim lowercase__ : Optional[int] = depths lowercase__ : Tuple = len(lowerCamelCase ) lowercase__ : str = num_heads lowercase__ : List[Any] = window_size lowercase__ : List[str] = mlp_ratio lowercase__ : Optional[Any] = qkv_bias lowercase__ : int = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Optional[Any] = drop_path_rate lowercase__ : Optional[int] = hidden_act lowercase__ : List[Any] = use_absolute_embeddings lowercase__ : str = layer_norm_eps lowercase__ : str = initializer_range lowercase__ : Optional[int] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ : Any = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) lowercase__ : Optional[int] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] lowercase__ , lowercase__ : Optional[int] = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names ) class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Tuple = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self ) -> float: """simple docstring""" return 1E-4
298
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> int: """simple docstring""" lowercase__ : str = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[int] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(lowerCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : List[Any] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits lowercase__ : Any = optax.softmax_cross_entropy(lowerCamelCase , onehot(lowerCamelCase , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Any = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
298
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Union[str, Any] = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "mobilenet_v2" def __init__( self , snake_case=3 , snake_case=2_2_4 , snake_case=1.0 , snake_case=8 , snake_case=8 , snake_case=6 , snake_case=3_2 , snake_case=True , snake_case=True , snake_case="relu6" , snake_case=True , snake_case=0.8 , snake_case=0.02 , snake_case=0.001 , snake_case=2_5_5 , **snake_case , ): '''simple docstring''' super().__init__(**snake_case ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase : Dict = num_channels UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : str = depth_multiplier UpperCAmelCase : int = depth_divisible_by UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : List[Any] = expand_ratio UpperCAmelCase : List[Any] = output_stride UpperCAmelCase : Optional[int] = first_layer_is_expansion UpperCAmelCase : Optional[Any] = finegrained_output UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : str = tf_padding UpperCAmelCase : Optional[int] = classifier_dropout_prob UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Dict = semantic_loss_ignore_index class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = version.parse("1.11" ) @property def A_ ( self ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A_ ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A_ ( self ): '''simple docstring''' return 1e-4
679
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self , snake_case ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as input_file: UpperCAmelCase : Dict = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase : Tuple = input_file.read() UpperCAmelCase : List[Any] = regexp.search(snake_case ) return match def A_ ( self , snake_case ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as input_file: UpperCAmelCase : List[str] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : str = regexp.finditer(snake_case ) UpperCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = Path("./datasets" ) UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Path("./datasets" ) UpperCAmelCase : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
679
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a= { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''OwlViTFeatureExtractor'''] a= ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup a= logging.get_logger(__name__) class __lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self , **_lowerCamelCase ): requires_backends(self , ['bs4'] ) super().__init__(**_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : str = [] __UpperCamelCase : Dict = [] __UpperCamelCase : Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCamelCase : str = parent.find_all(child.name , recursive=_lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) ) __UpperCamelCase : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : List[str] = BeautifulSoup(_lowerCamelCase , 'html.parser' ) __UpperCamelCase : int = [] __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = [] for element in html_code.descendants: if type(_lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCamelCase : Tuple = html.unescape(_lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.xpath_soup(_lowerCamelCase ) stringaxtag_seq.append(_lowerCamelCase ) stringaxsubs_seq.append(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Dict = '' for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , _lowerCamelCase ): __UpperCamelCase : List[Any] = False # Check that strings has a valid type if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : List[str] = True elif isinstance(_lowerCamelCase , (list, tuple) ): if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ): __UpperCamelCase : Optional[int] = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"""but is of type {type(_lowerCamelCase )}.""" ) __UpperCamelCase : Dict = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) ) if not is_batched: __UpperCamelCase : Tuple = [html_strings] # Get nodes + xpaths __UpperCamelCase : Tuple = [] __UpperCamelCase : Tuple = [] for html_string in html_strings: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.get_three_from_single(_lowerCamelCase ) nodes.append(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = [] for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[Any] = self.construct_xpath(_lowerCamelCase , _lowerCamelCase ) xpath_strings.append(_lowerCamelCase ) xpaths.append(_lowerCamelCase ) # return as Dict __UpperCamelCase : Optional[int] = {'nodes': nodes, 'xpaths': xpaths} __UpperCamelCase : Union[str, Any] = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) return encoded_inputs
287
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _snake_case ,_snake_case = None ,_snake_case = None ): if start is None: UpperCAmelCase__ : List[str] = 0 if end is None: UpperCAmelCase__ : str = len(_snake_case ) - 1 if start >= end: return UpperCAmelCase__ : Optional[int] = (start + end) // 2 slowsort(_snake_case ,_snake_case ,_snake_case ) slowsort(_snake_case ,mid + 1 ,_snake_case ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Dict = sequence[mid], sequence[end] slowsort(_snake_case ,_snake_case ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
110
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ) -> Tuple: # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: A = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: # This test is for deprecated behavior and can be removed in v5 try: A = tempfile.mktemp() with open(__UpperCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , __UpperCamelCase ) A = AlbertTokenizer.from_pretrained(__UpperCamelCase ) finally: os.remove(__UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , __UpperCamelCase ) A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self : str ) -> int: # This test is for deprecated behavior and can be removed in v5 A = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): A_ : str = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCamelCase ( cls : Tuple ) -> Dict: A = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def __UpperCamelCase ( cls : Any ) -> Dict: try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizer(__UpperCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase , repo_id='test-tokenizer' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self : List[str] ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizer(__UpperCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __UpperCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self : Any ) -> Union[str, Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = CustomTokenizer(__UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizerFast.from_pretrained(__UpperCamelCase ) bert_tokenizer.save_pretrained(__UpperCamelCase ) A = CustomTokenizerFast.from_pretrained(__UpperCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) A = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__UpperCamelCase , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Any: A = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self : Dict ) -> Tuple: A = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self : Any ) -> Optional[int]: A = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: A = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: A = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self : List[str] ) -> Tuple: A = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. A = Trie() A = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__UpperCamelCase , ['AB', 'C'] )
106
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> list[float]: '''simple docstring''' __lowercase , __lowercase = coefficient_matrix.shape __lowercase , __lowercase = constant_matrix.shape if rowsa != colsa: __lowercase = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if colsa != 1: __lowercase = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __lowercase = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __lowercase = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(_UpperCAmelCase )} and {rowsa}''' ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __lowercase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowercase , __lowercase = table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __lowercase = [] for row in range(_UpperCAmelCase ): __lowercase = 0 for col in range(_UpperCAmelCase ): if col == row: __lowercase = table[row][col] elif col == cols - 1: __lowercase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowercase = (temp + val) / denom new_val.append(_UpperCAmelCase ) __lowercase = new_val return [float(_UpperCAmelCase ) for i in new_val] def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' __lowercase , __lowercase = table.shape __lowercase = True for i in range(0 , _UpperCAmelCase ): __lowercase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
711
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None class snake_case ( __snake_case ): """simple docstring""" def __init__( self , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=512 , lowerCAmelCase_="cls" , lowerCAmelCase_=False , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowercase = project_dim __lowercase = pooler_fn __lowercase = learn_encoder __lowercase = use_attention_mask class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = [r"""pooler""", r"""logit_scale"""] __lowerCAmelCase = [r"""position_ids""", r"""predictions.decoder.bias"""] __lowerCAmelCase = """roberta""" __lowerCAmelCase = RobertaSeriesConfig def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) __lowercase = XLMRobertaModel(lowerCAmelCase_ ) __lowercase = nn.Linear(config.hidden_size , config.project_dim ) __lowercase = getattr(lowerCAmelCase_ , "has_pre_transformation" , lowerCAmelCase_ ) if self.has_pre_transformation: __lowercase = nn.Linear(config.hidden_size , config.project_dim ) __lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def snake_case__ ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.base_model( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase_ , ) if self.has_pre_transformation: __lowercase = outputs["hidden_states"][-2] __lowercase = self.pre_LN(lowerCAmelCase_ ) __lowercase = self.transformation_pre(lowerCAmelCase_ ) return TransformationModelOutput( projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __lowercase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
576
0
"""simple docstring""" import argparse import json import subprocess def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) __lowerCAmelCase = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) __lowerCAmelCase = output.stdout.decode("utf-8" ) __lowerCAmelCase = json.loads(_UpperCamelCase ) __lowerCAmelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: __lowerCAmelCase = '''\n'''.join([x["name"] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return values.split("," ) A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) A : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
636
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): def __magic_name__( self , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = 3 lowerCAmelCase__ : Tuple = 250 lowerCAmelCase__ : List[Any] = ids_tensor((batch_size, length) , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.ones((batch_size, length) , device=__UpperCAmelCase , dtype=torch.float ) / length return input_ids, scores def __magic_name__( self ): lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_tensors(5 ) lowerCAmelCase__ : List[str] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__( self ): lowerCAmelCase__ : Tuple = MaxLengthCriteria(max_length=10 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__( self ): lowerCAmelCase__ : Optional[int] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ : int = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __magic_name__( self ): lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_tensors(5 ) lowerCAmelCase__ : Any = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__UpperCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase__ : List[str] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__UpperCAmelCase ) , 1 )
678
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class lowerCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase = '''blip_text_model''' def __init__( self ,lowerCamelCase_=3_0_5_2_4 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=8 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=1E-12 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=2 ,lowerCamelCase_=0 ,lowerCamelCase_=1_0_2 ,lowerCamelCase_=True ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Tuple: super().__init__( pad_token_id=__a ,bos_token_id=__a ,eos_token_id=__a ,sep_token_id=__a ,**__a ,) A = vocab_size A = hidden_size A = encoder_hidden_size A = intermediate_size A = projection_dim A = hidden_dropout_prob A = num_hidden_layers A = num_attention_heads A = max_position_embeddings A = layer_norm_eps A = hidden_act A = initializer_range A = attention_probs_dropout_prob A = is_decoder A = use_cache @classmethod def UpperCamelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) A = cls.get_config_dict(__a ,**__a ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": A = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__a ,**__a ) class lowerCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase = '''blip_vision_model''' def __init__( self ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_8_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_="gelu" ,lowerCamelCase_=1E-5 ,lowerCamelCase_=0.0 ,lowerCamelCase_=1E-10 ,**lowerCamelCase_ ,) -> int: super().__init__(**__a ) A = hidden_size A = intermediate_size A = projection_dim A = num_hidden_layers A = num_attention_heads A = patch_size A = image_size A = initializer_range A = attention_dropout A = layer_norm_eps A = hidden_act @classmethod def UpperCamelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) A = cls.get_config_dict(__a ,**__a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__a ,**__a ) class lowerCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase = '''blip''' _lowerCamelCase = True def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=2.65_92 ,lowerCamelCase_=2_5_6 ,**lowerCamelCase_ ,) -> List[str]: super().__init__(**__a ) if text_config is None: A = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: A = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) A = BlipTextConfig(**__a ) A = BlipVisionConfig(**__a ) A = self.vision_config.hidden_size A = projection_dim A = logit_scale_init_value A = 1.0 A = 0.02 A = image_text_hidden_size @classmethod def UpperCamelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__a ) def UpperCamelCase__ ( self ) -> Any: A = copy.deepcopy(self.__dict__ ) A = self.text_config.to_dict() A = self.vision_config.to_dict() A = self.__class__.model_type return output
717
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> Dict: A = path_or_paths A = split if split or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else """train""" A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> int: A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, IterableDataset]: pass
255
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : List[str] ={ """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'imagegpt' snake_case__ : Dict = ['past_key_values'] snake_case__ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __lowerCAmelCase=512 + 1 , __lowerCAmelCase=32 * 32 , __lowerCAmelCase=512 , __lowerCAmelCase=24 , __lowerCAmelCase=8 , __lowerCAmelCase=None , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = n_positions lowercase = n_embd lowercase = n_layer lowercase = n_head lowercase = n_inner lowercase = activation_function lowercase = resid_pdrop lowercase = embd_pdrop lowercase = attn_pdrop lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = scale_attn_weights lowercase = use_cache lowercase = scale_attn_by_inverse_layer_idx lowercase = reorder_and_upcast_attn lowercase = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase ) class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 3 , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , ): """simple docstring""" lowercase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = dict(preprocessor(images=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) return inputs
359
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :str ) -> set[str]: '''simple docstring''' lowercase , lowercase = set(lowerCAmelCase__ ), [start] while stack: lowercase = stack.pop() explored.add(lowerCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCAmelCase__ ) return explored __lowerCAmelCase : str ={ """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
359
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> str: __snake_case = 0 if start < end: __snake_case = randint(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case , __snake_case = _in_place_partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += _in_place_quick_sort(_UpperCAmelCase , _UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(_UpperCAmelCase , p + 1 , _UpperCAmelCase ) return count def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Any: __snake_case = 0 __snake_case = randint(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case = start - 1 for index in range(_UpperCAmelCase , _UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __snake_case = new_pivot_index + 1 __snake_case = a[new_pivot_index] __snake_case = a[index] __snake_case = temp __snake_case = a[new_pivot_index + 1] __snake_case = a[end] __snake_case = temp return new_pivot_index + 1, count a : Dict = TemporaryFile() a : List[Any] = 100 # 1000 elements are to be sorted a , a : Tuple = 0, 1 # mean and standard deviation a : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a : Optional[Any] = np.load(outfile) a : Union[str, Any] = len(M) - 1 a : List[str] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = len(_lowercase ) for _ in range(_lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCAmelCase_, UpperCAmelCase_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __a = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
30
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : str = KandinskyVaaControlnetPipeline lowercase : Any = ['image_embeds', 'negative_image_embeds', 'hint'] lowercase : List[str] = ['image_embeds', 'negative_image_embeds', 'hint'] lowercase : Dict = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Dict = False @property def a_ ( self ): return 32 @property def a_ ( self ): return 32 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 100 @property def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase : List[str] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def a_ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self ): UpperCamelCase : Optional[Any] = self.dummy_unet UpperCamelCase : int = self.dummy_movq UpperCamelCase : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create hint UpperCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a_ ( self ): UpperCamelCase : Dict = """cpu""" UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Union[str, Any] = output.images UpperCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] UpperCamelCase : int = image[0, -3:, -3:, -1] UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): UpperCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCamelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCamelCase : Any = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 255.0 UpperCamelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCamelCase : str = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = """A robot, 4k photo""" UpperCamelCase : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : List[Any] = pipe_prior( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase : List[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase : Dict = pipeline( image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , output_type="""np""" , ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
499
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = """blip_text_model""" def __init__( self : Dict , __UpperCamelCase : List[Any]=30_524 , __UpperCamelCase : int=768 , __UpperCamelCase : Dict=768 , __UpperCamelCase : int=3_072 , __UpperCamelCase : List[Any]=768 , __UpperCamelCase : int=12 , __UpperCamelCase : Tuple=8 , __UpperCamelCase : Optional[Any]=512 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Any=1e-1_2 , __UpperCamelCase : str=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : int=0.02 , __UpperCamelCase : str=30_522 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : List[Any]=102 , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , **__UpperCamelCase : Tuple , ): super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , sep_token_id=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = encoder_hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = projection_dim _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = is_decoder _UpperCAmelCase = use_cache @classmethod def UpperCAmelCase__ ( cls : Any , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Any ): cls._set_token_in_kwargs(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": _UpperCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[Any] = """blip_vision_model""" def __init__( self : Optional[Any] , __UpperCamelCase : List[str]=768 , __UpperCamelCase : Dict=3_072 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Dict=12 , __UpperCamelCase : Optional[Any]=384 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Dict=1e-1_0 , **__UpperCamelCase : Dict , ): super().__init__(**__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = projection_dim _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = patch_size _UpperCAmelCase = image_size _UpperCAmelCase = initializer_range _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = hidden_act @classmethod def UpperCAmelCase__ ( cls : Optional[int] , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Optional[Any] ): cls._set_token_in_kwargs(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": _UpperCAmelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Any = """blip""" __SCREAMING_SNAKE_CASE : Dict = True def __init__( self : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : str=512 , __UpperCamelCase : Dict=2.6592 , __UpperCamelCase : Optional[Any]=256 , **__UpperCamelCase : Optional[Any] , ): super().__init__(**__UpperCamelCase ) if text_config is None: _UpperCAmelCase = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: _UpperCAmelCase = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) _UpperCAmelCase = BlipTextConfig(**__UpperCamelCase ) _UpperCAmelCase = BlipVisionConfig(**__UpperCamelCase ) _UpperCAmelCase = self.vision_config.hidden_size _UpperCAmelCase = projection_dim _UpperCAmelCase = logit_scale_init_value _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.02 _UpperCAmelCase = image_text_hidden_size @classmethod def UpperCAmelCase__ ( cls : int , __UpperCamelCase : BlipTextConfig , __UpperCamelCase : BlipVisionConfig , **__UpperCamelCase : Any ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
705
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=[30, 30] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=3 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Any=32 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Tuple=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=10 , __UpperCamelCase : Any=0.02 , __UpperCamelCase : str=3 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : str=10 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = n_targets _UpperCAmelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _UpperCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) _UpperCAmelCase = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _UpperCAmelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _UpperCAmelCase = [] for i in range(self.batch_size ): _UpperCAmelCase = {} _UpperCAmelCase = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__UpperCamelCase ) _UpperCAmelCase = torch.rand(self.n_targets , 4 , device=__UpperCamelCase ) labels.append(__UpperCamelCase ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Tuple ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : str ): _UpperCAmelCase = YolosModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int ): _UpperCAmelCase = YolosForObjectDetection(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(pixel_values=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _UpperCAmelCase = model(pixel_values=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : int = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Dict = False def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str=False ): _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _UpperCAmelCase = [] for i in range(self.model_tester.batch_size ): _UpperCAmelCase = {} _UpperCAmelCase = torch.ones( size=(self.model_tester.n_targets,) , device=__UpperCamelCase , dtype=torch.long ) _UpperCAmelCase = torch.ones( self.model_tester.n_targets , 4 , device=__UpperCamelCase , dtype=torch.float ) labels.append(__UpperCamelCase ) _UpperCAmelCase = labels return inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = YolosModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any] ): # YOLOS does not use inputs_embeds pass def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True # in YOLOS, the seq_len is different _UpperCAmelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCAmelCase = len(__UpperCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = 1 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__ ( self : Tuple ): def check_hidden_states_output(__UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # YOLOS has a different seq_length _UpperCAmelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Optional[int] ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = YolosModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCamelCase ( ) -> Any: _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(__UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(inputs.pixel_values ) # verify outputs _UpperCAmelCase = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__UpperCamelCase , ) _UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify postprocessing _UpperCAmelCase = image_processor.post_process_object_detection( __UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _UpperCAmelCase = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__UpperCamelCase ) _UpperCAmelCase = [75, 75, 17, 63, 17] _UpperCAmelCase = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__UpperCamelCase ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , __UpperCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , __UpperCamelCase ) self.assertTrue(torch.allclose(results["boxes"][0, :] , __UpperCamelCase ) )
129
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
79
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[int] = LongformerTokenizer SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: Tuple = LongformerTokenizerFast SCREAMING_SNAKE_CASE_: Any = True def _UpperCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A__ = dict(zip(__a , range(len(__a ) ) ) ) A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , **__a ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = 'lower newer' A__ = 'lower newer' return input_text, output_text def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = 'lower newer' A__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] A__ = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) A__ = tokenizer.encode( 'sequence builders' , add_special_tokens=__a , add_prefix_space=__a ) A__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__a , add_prefix_space=__a ) A__ = tokenizer.build_inputs_with_special_tokens(__a ) A__ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_tokenizer() A__ = 'Encode this sequence.' A__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) A__ = tokenizer.encode(__a , add_special_tokens=__a ) A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens A__ = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space A__ = tokenizer.convert_tokens_to_ids(__a ) A__ = 'Encode <mask> sequence' A__ = 'Encode <mask>sequence' A__ = tokenizer.encode(__a ) A__ = encoded.index(__a ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) A__ = tokenizer.encode(__a ) A__ = encoded.index(__a ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(__a , **__a ) A__ = self.tokenizer_class.from_pretrained(__a , **__a ) A__ = 'A, <mask> AllenNLP sentence.' A__ = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) A__ = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) A__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) A__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _UpperCAmelCase ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __a ) self.assertEqual(post_processor_state['add_prefix_space'] , __a ) self.assertEqual(post_processor_state['trim_offsets'] , __a ) def _UpperCAmelCase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` A__ = f'''{text_of_1_token} {text_of_1_token}''' A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) A__ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) A__ = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
554
"""simple docstring""" from math import ceil def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = list(range(0 ,lowerCAmelCase__ ) ) A__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check A__ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase__ ) # Missing blocks A__ = [i for i in blocks if i not in device_map_blocks] A__ = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase__ ) ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = list(range(lowerCAmelCase__ ) ) A__ = int(ceil(n_layers / len(lowerCAmelCase__ ) ) ) A__ = [layers[i : i + n_blocks] for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ )] return dict(zip(lowerCAmelCase__ ,lowerCAmelCase__ ) )
554
1
from ..utils import DummyObject, requires_backends class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''torch''', '''torchsde'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(self ,['''torch''', '''torchsde'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls ,['''torch''', '''torchsde'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple: requires_backends(cls ,['''torch''', '''torchsde'''] )
30
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 1_3 , lowerCAmelCase_ = 6_4 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 3_7 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1_0 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = parent _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size _SCREAMING_SNAKE_CASE : List[Any] = image_size _SCREAMING_SNAKE_CASE : int = patch_size _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : List[Any] = is_training _SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range _SCREAMING_SNAKE_CASE : int = encoder_stride _SCREAMING_SNAKE_CASE : Tuple = num_attention_outputs _SCREAMING_SNAKE_CASE : Any = embed_dim _SCREAMING_SNAKE_CASE : str = embed_dim + 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = resolution _SCREAMING_SNAKE_CASE : int = depths _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes _SCREAMING_SNAKE_CASE : Optional[Any] = dim _SCREAMING_SNAKE_CASE : Any = mlp_expansion_ratio def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def A ( self ) -> List[str]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Optional[Any] = TFEfficientFormerModel(config=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = self.type_sequence_label_size _SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_: List[str] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_: List[str] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_: List[Any] = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: List[str] = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: str = False def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFEfficientFormerModelTester(self ) _SCREAMING_SNAKE_CASE : List[str] = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def A ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def A ( self ) -> Dict: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def A ( self ) -> Optional[Any]: pass def A ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : List[Any] = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def A ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _SCREAMING_SNAKE_CASE : Tuple = seq_length * self.model_tester.chunk_length else: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _SCREAMING_SNAKE_CASE : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def A ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def A ( self ) -> str: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def A ( self ) -> List[str]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : str = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _SCREAMING_SNAKE_CASE : List[str] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def A ( self ) -> Any: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _SCREAMING_SNAKE_CASE : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowercase__ ( ): _SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def A ( self ) -> str: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() _SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _SCREAMING_SNAKE_CASE : Dict = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def A ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor _SCREAMING_SNAKE_CASE : List[str] = prepare_img() _SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
621
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase__ : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : Tuple=30 , UpperCAmelCase__ : List[Any]=400 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[str]=None , ) ->str: UpperCAmelCase_ = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_convert_rgb UpperCAmelCase_ = [512, 1024, 2048, 4096] UpperCAmelCase_ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowerCAmelCase__ ( self : Any ) ->Any: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: UpperCAmelCase_ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' UpperCAmelCase_ = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: UpperCAmelCase_ = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Dict ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_convert_rgb''' ) ) def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: UpperCAmelCase_ = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ = 2048 UpperCAmelCase_ = image_processor(UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCAmelCase__ ( self : List[Any] ) ->Any: # Initialize image_processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ = image_processor( UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : List[Any] ) ->Any: # Initialize image_processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase_ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase__ ): UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches UpperCAmelCase_ = '''Hello''' UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ = image_processor( UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: # Initialize image_processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) UpperCAmelCase_ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ = image_processor( UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : Optional[Any] ) ->str: # Initialize image_processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ = image_processor( UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[Any] ) ->Dict: UpperCAmelCase_ = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase_ = 3 @property def lowerCAmelCase__ ( self : int ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : List[str] ) ->Any: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_convert_rgb''' ) ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: # Initialize image_processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ = image_processor( UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
43
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ): '''simple docstring''' UpperCAmelCase_ = '''''' for word_or_phrase in separated: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
43
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Path , __SCREAMING_SNAKE_CASE : Union[str, None] = None , __SCREAMING_SNAKE_CASE : Union[List[str], None] = None , __SCREAMING_SNAKE_CASE : Union[str, List[str], None] = None , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[str]: __UpperCAmelCase =[file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )] if identifier is not None: __UpperCAmelCase =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for n_ in n_identifier: __UpperCAmelCase =[file for file in files if n_ not in file] else: __UpperCAmelCase =[file for file in files if n_identifier not in file] __UpperCAmelCase =ignore_files or [] ignore_files.append("""__init__.py""" ) __UpperCAmelCase =[file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __SCREAMING_SNAKE_CASE ) if only_modules: __UpperCAmelCase =file.split(""".""" )[0] try: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =doctest.DocTestSuite(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __UpperCAmelCase =doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""modeling""" __UpperCAmelCase =[ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""tokenization""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""configuration""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Tuple: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase =["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase =Path("""docs/source""" ) __UpperCAmelCase =["""favicon.ico"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
68
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''dpr''' def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=30_522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1e-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Tuple = projection_dim UpperCamelCase__ : List[str] = position_embedding_type
596
0
from __future__ import annotations def _UpperCAmelCase ( a : str , a : list[str] | None = None ): snake_case__ = word_bank or [] # create a table snake_case__ = len(a ) + 1 snake_case__ = [] for _ in range(a ): table.append([] ) # seed value snake_case__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(a ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a )] == word: snake_case__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a )]: combination.reverse() return table[len(a )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
99
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _UpperCAmelCase ( a : int=32 , a : int=10 , a : Tuple=100 , a : str=1026 , a : Union[str, Any]=True , a : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , a : Tuple="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set snake_case__ , snake_case__ = generate_datasets( a , a , number=a , min_len=1026 , trim=a ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model snake_case__ = load_gpta("""gpt2""" ).to(a ) print("""computing perplexity on objective set""" ) snake_case__ = compute_perplexity(a , a , a ).item() print("""perplexity on objective set:""" , a ) # collect igf pairs and save to file demo.jbl collect_objective_set(a , a , a , a , a , a , a , a ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _UpperCAmelCase ( a : int , a : Dict=15 , a : Optional[int]=128 , a : str=100 , a : Optional[int]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model snake_case__ = SecondaryLearner(a ) # Train secondary learner snake_case__ = train_secondary_learner( a , a , max_epochs=a , batch_size=a , eval_freq=100 , igf_model_path=a , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _UpperCAmelCase ( a : Tuple , a : List[Any] , a : str , a : List[Any]=32 , a : Any=1000 , a : str=16 , a : Tuple=1.0 , a : str=recopy_gpta , a : Any=None , a : Optional[int]=10 , a : Tuple="gpt2_finetuned.pt" , ): snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) snake_case__ = RandomSampler(a ) snake_case__ = DataLoader(a , sampler=a ) snake_case__ = max_steps // (len(a )) + 1 snake_case__ = 0 snake_case__ = torch.zeros((1, context_len) , dtype=torch.long , device=a ) snake_case__ , snake_case__ , snake_case__ = recopy_model(a , a , a ) model.train() if secondary_learner is not None: secondary_learner.to(a ) secondary_learner.eval() snake_case__ = [] snake_case__ = 0 snake_case__ = [] snake_case__ = [] # Compute the performance of the transformer model at the beginning snake_case__ = compute_perplexity(a , a , a ) test_perps.append(a ) print("""Test perplexity, step""" , a , """:""" , a ) for epoch in range(int(a ) ): for step, example in enumerate(a ): torch.cuda.empty_cache() snake_case__ = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case__ = model(a , labels=a ) snake_case__ = True if secondary_learner is not None: snake_case__ = secondary_learner.forward( torch.tensor(a , dtype=torch.long , device=a ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case__ = -1 if predicted_q < threshold: snake_case__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case__ = compute_perplexity(a , a , a ) test_perps.append(a ) print("""Test perplexity, step""" , a , """:""" , a ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=a , type=a , required=a , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=a , type=a , required=a , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=a , default=a , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=a , default=a , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=a , type=a , required=a , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=a , type=a , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=a , default=a , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=a , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=a , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=a , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=a , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=a , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=a , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=a , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=a , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=a , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=a , type=a , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=a , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=a , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=a , type=a , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=a , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner snake_case__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner snake_case__ = training_secondary_learner( a , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case__ , snake_case__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=a ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a , a , a , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=a , secondary_learner=a , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
99
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ : str = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 2_55 , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_24} UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCAmelCase : List[Any] = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : str = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Any = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : List[str] = rescale_factor UpperCAmelCase : List[str] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_flip_channel_order def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PIL.Image.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Dict = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(lowercase , data_format=lowercase ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ): '''simple docstring''' UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : int = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : List[str] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase : Dict = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase : Tuple = [self.flip_channel_order(image=lowercase ) for image in images] UpperCAmelCase : Tuple = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def __lowerCAmelCase ( self : Dict , lowercase : Union[str, Any] , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase ): UpperCAmelCase : Optional[Any] = target_sizes.numpy() UpperCAmelCase : Tuple = [] for idx in range(len(lowercase ) ): UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase ) UpperCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase : Dict = logits.argmax(dim=1 ) UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
595
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = {"""vocab_file""": """vocab.txt"""} snake_case_ : Optional[Any] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } snake_case_ : Optional[Any] = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def lowercase_ ( _lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = collections.OrderedDict() with open(_lowercase , "r" , encoding="utf-8" ) as reader: UpperCAmelCase : Tuple = reader.readlines() for index, token in enumerate(_lowercase ): UpperCAmelCase : Union[str, Any] = token.rstrip("\n" ) UpperCAmelCase : Tuple = index return vocab class snake_case__ ( lowerCAmelCase_ ): def __init__( self : List[Any] , lowercase : str , lowercase : Any="<unk>" , lowercase : Optional[Any]=2_00 ): '''simple docstring''' UpperCAmelCase : Optional[int] = vocab UpperCAmelCase : Tuple = unk_token UpperCAmelCase : Optional[Any] = max_input_chars_per_word def __lowerCAmelCase ( self : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : str = list(lowercase ) if len(lowercase ) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = [] while start < len(lowercase ): UpperCAmelCase : List[Any] = len(lowercase ) UpperCAmelCase : Any = None while start < end: UpperCAmelCase : Optional[Any] = "".join(chars[start:end] ) if substr in self.vocab: UpperCAmelCase : List[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase ) UpperCAmelCase : Dict = end return sub_tokens class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = False def __init__( self : Tuple , lowercase : Union[str, Any] , lowercase : Tuple="<d>" , lowercase : Tuple="</d>" , lowercase : Optional[int]="<s>" , lowercase : List[Any]="</s>" , lowercase : Tuple="<pad>" , lowercase : List[Any]="<unk>" , lowercase : Any="</n>" , lowercase : Dict="</_>" , lowercase : int="left" , **lowercase : int , ): '''simple docstring''' requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowercase , eod_token=lowercase , bos_token=lowercase , eos_token=lowercase , pad_token=lowercase , unk_token=lowercase , line_token=lowercase , space_token=lowercase , padding_side=lowercase , **lowercase , ) UpperCAmelCase : int = bod_token UpperCAmelCase : int = eod_token UpperCAmelCase : Dict = load_vocab(lowercase ) UpperCAmelCase : Optional[Any] = self.encoder[space_token] UpperCAmelCase : int = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase : x[1] ) ) UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return self.encoder[self.bod_token] @property def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.encoder[self.eod_token] @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return self.encoder["\n"] @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return len(self.encoder ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Dict , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase : Optional[int] = [] for x in jieba.cut(lowercase , cut_all=lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase ) ) return output_tokens def __lowerCAmelCase ( self : Union[str, Any] , lowercase : Tuple , **lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase : int = [i for i in token_ids if i >= 0] UpperCAmelCase : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase , **lowercase ) def __lowerCAmelCase ( self : Dict , lowercase : int ): '''simple docstring''' return token in self.encoder def __lowerCAmelCase ( self : str , lowercase : List[str] ): '''simple docstring''' return "".join(lowercase ) def __lowerCAmelCase ( self : str , lowercase : Any ): '''simple docstring''' return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Dict , lowercase : Dict ): '''simple docstring''' return self.decoder.get(lowercase , self.unk_token ) def __lowerCAmelCase ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if os.path.isdir(lowercase ): UpperCAmelCase : Dict = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCAmelCase : str = (filename_prefix + "-" if filename_prefix else "") + save_directory UpperCAmelCase : Optional[Any] = 0 if " " in self.encoder: UpperCAmelCase : int = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase : List[str] = self.encoder["\n"] del self.encoder["\n"] UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase : x[1] ) ) with open(lowercase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase : int = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : List[int] = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return [1] + ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) return [1] + ([0] * len(lowercase ))
595
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE_ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE_ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE_ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE_ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE_ = np.ones(7_5) SCREAMING_SNAKE_CASE_ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
116
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : str = "pegasus" __snake_case : List[Any] = ["past_key_values"] __snake_case : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict ,lowerCamelCase__ : List[str]=50265 ,lowerCamelCase__ : int=1024 ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : str=4096 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : Tuple=1024 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Union[str, Any]=0 ,lowerCamelCase__ : Optional[int]=1 ,lowerCamelCase__ : Any=1 ,**lowerCamelCase__ : Dict ,) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,forced_eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' return self.d_model
116
1
from __future__ import annotations from math import pi, sqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple: if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
235
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCamelCase () -> Optional[Any]: lowercase__ = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowercase__ = Dataset.from_dict(_SCREAMING_SNAKE_CASE ) return dataset class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = get_dataset() lowercase__ = make_duplicate_clusters(a , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Dict: """simple docstring""" lowercase__ = get_dataset() lowercase__ , lowercase__ = deduplicate_dataset(a ) self.assertEqual(len(a ) , 2 ) print(a ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a )
235
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE_ = "\\n\n" SCREAMING_SNAKE_CASE_ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" SCREAMING_SNAKE_CASE_ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int = 1_6 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __a = """cuda""" else: __a = """cuda""" if torch.cuda.is_available() else """cpu""" __a = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ ) __a = model.to(lowerCAmelCase_ ) __a = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __a = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCAmelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __a = model.config.max_length - 1 else: __a = model.config.max_length __a = tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors="""pt""" , return_attention_mask=lowerCAmelCase_ , ).to(lowerCAmelCase_ ) __a = encodings["""input_ids"""] __a = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __a = [] __a = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ): __a = min(start_index + batch_size , len(lowerCAmelCase_ ) ) __a = encoded_texts[start_index:end_index] __a = attn_masks[start_index:end_index] if add_start_token: __a = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCAmelCase_ ) __a = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __a = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCAmelCase_ ), attn_mask] , dim=1 ) __a = encoded_batch with torch.no_grad(): __a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).logits __a = out_logits[..., :-1, :].contiguous() __a = labels[..., 1:].contiguous() __a = attn_mask[..., 1:].contiguous() __a = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowerCAmelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase_ )}
712
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" a_ :List[Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ :List[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ :List[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ :Tuple ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __a ( self : int ): '''simple docstring''' __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) __a = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) __a = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) __a = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior __a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) __a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) __a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) __a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] , ) @require_torch def __a ( self : Optional[int] ): '''simple docstring''' import torch __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def __a ( self : List[str] ): '''simple docstring''' __a = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def __a ( self : int ): '''simple docstring''' __a = pipeline("""text-classification""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def __a ( self : Union[str, Any] ): '''simple docstring''' __a = pipeline("""text-classification""" , framework="""tf""" ) __a = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __a = """HuggingFace is in""" __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __a = ["""HuggingFace is in """, """Paris is in France"""] __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}, {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __a = text_classifier(SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ ) __a = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N, [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N] , ) __a = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __a = text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __a = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): text_classifier(SCREAMING_SNAKE_CASE__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __a = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
201
0
from typing import Any def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> list: _validation( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # Creates data structures and fill initial step UpperCamelCase_: dict = {} UpperCamelCase_: dict = {} for state in states_space: UpperCamelCase_: Any = observations_space[0] UpperCamelCase_: Tuple = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase_: List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCAmelCase__ ) ): UpperCamelCase_: List[Any] = observations_space[o] UpperCamelCase_: Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase_: List[Any] = '' UpperCamelCase_: Optional[Any] = -1 for k_state in states_space: UpperCamelCase_: str = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase_: Optional[Any] = probability UpperCamelCase_: Optional[Any] = k_state # Update probabilities and pointers dicts UpperCamelCase_: List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase_: Dict = arg_max # The final observation UpperCamelCase_: Dict = observations_space[len(UpperCAmelCase__ ) - 1] # argmax for given final observation UpperCamelCase_: int = '' UpperCamelCase_: Optional[Any] = -1 for k_state in states_space: UpperCamelCase_: Tuple = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase_: int = probability UpperCamelCase_: List[str] = k_state UpperCamelCase_: Optional[Any] = arg_max # Process pointers backwards UpperCamelCase_: Tuple = last_state UpperCamelCase_: Tuple = [] for o in range(len(UpperCAmelCase__ ) - 1 , -1 , -1 ): result.append(UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: _validate_not_empty( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) _validate_lists(UpperCAmelCase__ , UpperCAmelCase__ ) _validate_dicts( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None: _validate_list(UpperCAmelCase__ , 'observations_space' ) _validate_list(UpperCAmelCase__ , 'states_space' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None: if not isinstance(_object , UpperCAmelCase__ ): UpperCamelCase_: Optional[Any] = F'''{var_name} must be a list''' raise ValueError(UpperCAmelCase__ ) else: for x in _object: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: List[str] = F'''{var_name} must be a list of strings''' raise ValueError(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None: _validate_dict(UpperCAmelCase__ , 'initial_probabilities' , UpperCAmelCase__ ) _validate_nested_dict(UpperCAmelCase__ , 'transition_probabilities' ) _validate_nested_dict(UpperCAmelCase__ , 'emission_probabilities' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None: _validate_dict(_object , UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values(): _validate_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> None: if not isinstance(_object , UpperCAmelCase__ ): UpperCamelCase_: Union[str, Any] = F'''{var_name} must be a dict''' raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object ): UpperCamelCase_: int = F'''{var_name} all keys must be strings''' raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values() ): UpperCamelCase_: str = 'nested dictionary ' if nested else '' UpperCamelCase_: Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(UpperCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
57
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Any = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) snake_case : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case : Any = model(UpperCamelCase__ )['''last_hidden_state'''] snake_case : int = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. snake_case : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
638
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( lowerCamelCase_ :int = 4 ): '''simple docstring''' snake_case_ : Union[str, Any] = abs(__snake_case ) or 4 return [[1 + x + y * row_size for x in range(__snake_case )] for y in range(__snake_case )] def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' return reverse_row(transpose(__snake_case ) ) # OR.. transpose(reverse_column(matrix)) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' return reverse_row(reverse_column(__snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' return reverse_column(transpose(__snake_case ) ) # OR.. transpose(reverse_row(matrix)) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : int = [list(__snake_case ) for x in zip(*__snake_case )] return matrix def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : Optional[int] = matrix[::-1] return matrix def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : Dict = [x[::-1] for x in matrix] return matrix def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' for i in matrix: print(*__snake_case ) if __name__ == "__main__": __A : int = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __A : Optional[int] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __A : List[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
713
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
267
0
from pathlib import Path import numpy as np from PIL import Image def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = np.zeros_like(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _UpperCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _UpperCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _UpperCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ = Path(__file__).resolve().parent / "image_data" / "lena.jpg" UpperCAmelCase_ = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
32
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCamelCase ( snake_case__ ): return np.dot(a_ , a_ ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__(self , *, lowerCAmelCase_ = np.inf , lowerCAmelCase_ = "linear" , lowerCAmelCase_ = 0.0 , ): A_ : Optional[int] = regularization A_ : Optional[Any] = gamma if kernel == "linear": A_ : Tuple = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) A_ : Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: A_ : str = f"""Unknown kernel: {kernel}""" raise ValueError(__snake_case ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): return np.dot(__snake_case , __snake_case ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = observations A_ : Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (A_ ) : str = np.shape(__snake_case ) def to_minimize(lowerCAmelCase_ ) -> float: A_ : Dict = 0 (A_ ) : Dict = np.shape(__snake_case ) for i in range(__snake_case ): for j in range(__snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__snake_case ) A_ : Tuple = LinearConstraint(__snake_case , 0 , 0 ) A_ : Dict = Bounds(0 , self.regularization ) A_ : Union[str, Any] = minimize( __snake_case , np.ones(__snake_case ) , bounds=__snake_case , constraints=[ly_contraint] ).x A_ : List[str] = l_star # calculating mean offset of separation plane to points A_ : Union[str, Any] = 0 for i in range(__snake_case ): for j in range(__snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) A_ : Any = s / n def lowerCamelCase(self , lowerCAmelCase_ ): A_ : List[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _lowerCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = git.Repo(search_parent_directories=snake_case__ ) A_ : List[str] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(snake_case__ , """git_log.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def __UpperCamelCase ( snake_case__ ): if params.n_gpu <= 0: A_ : Dict = 0 A_ : str = -1 A_ : int = True A_ : Union[str, Any] = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ : str = int(os.environ["""WORLD_SIZE"""] ) A_ : int = int(os.environ["""N_GPU_NODE"""] ) A_ : int = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ : Optional[int] = params.world_size // params.n_gpu_per_node A_ : Optional[int] = params.global_rank // params.n_gpu_per_node A_ : Tuple = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ : Dict = 1 A_ : Tuple = 0 A_ : Dict = 0 A_ : Optional[int] = 0 A_ : List[str] = 1 A_ : List[Any] = 1 A_ : List[Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ : Optional[int] = params.node_id == 0 and params.local_rank == 0 A_ : Optional[Any] = params.n_nodes > 1 # summary A_ : str = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def __UpperCamelCase ( snake_case__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
480
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'Speech2TextFeatureExtractor' UpperCamelCase : Optional[Any] = 'Speech2TextTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor SCREAMING_SNAKE_CASE_: List[Any] =False def __call__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""raw_speech""" ) else: SCREAMING_SNAKE_CASE_: int =kwargs.pop("""audio""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""sampling_rate""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""text""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: List[str] =args[0] SCREAMING_SNAKE_CASE_: List[str] =args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_: Any =encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @contextmanager def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =True SCREAMING_SNAKE_CASE_: Dict =self.tokenizer yield SCREAMING_SNAKE_CASE_: int =self.feature_extractor SCREAMING_SNAKE_CASE_: str =False
409
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a : List[str] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class snake_case__ ( unittest.TestCase): def A ( self : int ) -> Optional[int]: debug_launcher(test_script.main ) def A ( self : str ) -> Union[str, Any]: debug_launcher(test_ops.main )
541
'''simple docstring''' import collections import os import re from pathlib import Path _UpperCamelCase : Optional[int] = 'src/transformers' # Matches is_xxx_available() _UpperCamelCase : int = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _UpperCamelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _UpperCamelCase : List[str] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _UpperCamelCase : Any = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _UpperCamelCase : Dict = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _UpperCamelCase : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _UpperCamelCase : Union[str, Any] = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _UpperCamelCase : str = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _UpperCamelCase : Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _UpperCamelCase : Optional[int] = re.compile(R'^\s*try:') # Catches a line with else: _UpperCamelCase : List[Any] = re.compile(R'^\s*else:') def __UpperCAmelCase ( A : Any ) -> Tuple: if _re_test_backend.search(A ) is None: return None UpperCAmelCase_ : str = [b[0] for b in _re_backend.findall(A )] backends.sort() return "_and_".join(A ) def __UpperCAmelCase ( A : List[Any] ) -> Optional[int]: with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ : str = f.readlines() UpperCAmelCase_ : List[str] = 0 while line_index < len(A ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ : Tuple = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A ): UpperCAmelCase_ : str = _re_one_line_import_struct.search(A ).groups()[0] UpperCAmelCase_ : Any = re.findall(r'''\[([^\]]+)\]''' , A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCAmelCase_ : Dict = _re_import_struct_key_value.search(A ) if single_line_import_search is not None: UpperCAmelCase_ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A ) > 0] objects.extend(A ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ : int = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCAmelCase_ : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(A ) is not None: objects.append(_re_import_struct_add_one.search(A ).groups()[0] ) elif _re_import_struct_add_many.search(A ) is not None: UpperCAmelCase_ : Dict = _re_import_struct_add_many.search(A ).groups()[0].split(''', ''' ) UpperCAmelCase_ : Dict = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_between_brackets.search(A ) is not None: UpperCAmelCase_ : int = _re_between_brackets.search(A ).groups()[0].split(''', ''' ) UpperCAmelCase_ : List[Any] = [obj[1:-1] for obj in imports if len(A ) > 0] objects.extend(A ) elif _re_quote_object.search(A ) is not None: objects.append(_re_quote_object.search(A ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 UpperCAmelCase_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ : Union[str, Any] = [] while ( line_index < len(A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCAmelCase_ : int = lines[line_index] UpperCAmelCase_ : int = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ : int = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCAmelCase_ : Tuple = lines[line_index] UpperCAmelCase_ : Tuple = _re_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 UpperCAmelCase_ : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( A : Dict , A : Union[str, Any] ) -> Optional[Any]: def find_duplicates(A : Optional[int] ): return [k for k, v in collections.Counter(A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ : str = [] for key in import_dict_objects.keys(): UpperCAmelCase_ : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCAmelCase_ : Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ : Optional[int] = '''base imports''' if key == '''none''' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] for root, _, files in os.walk(A ): if "__init__.py" in files: UpperCAmelCase_ : List[Any] = os.path.join(A , '''__init__.py''' ) UpperCAmelCase_ : str = parse_init(A ) if objects is not None: UpperCAmelCase_ : List[str] = analyze_results(*A ) if len(A ) > 0: UpperCAmelCase_ : Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(A ) ) if len(A ) > 0: raise ValueError('''\n\n'''.join(A ) ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Any = [] for path, directories, files in os.walk(A ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCAmelCase_ : Union[str, Any] = str((Path(A ) / folder).relative_to(A ) ) UpperCAmelCase_ : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(A ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ : Optional[Any] = str((Path(A ) / fname).relative_to(A ) ) UpperCAmelCase_ : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A ) return submodules _UpperCamelCase : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def __UpperCAmelCase ( ) -> int: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCAmelCase_ : Dict = direct_transformers_import(A ) UpperCAmelCase_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A , '''__init__.py''' ) , '''r''' ) as f: UpperCAmelCase_ : Dict = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , A ) ) ) UpperCAmelCase_ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A ) > 0: UpperCAmelCase_ : Optional[Any] = '''\n'''.join(F"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
541
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCamelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } __UpperCamelCase = { 'camembert-base': 5_1_2, } __UpperCamelCase = '▁' class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=["<s>NOTUSED", "</s>NOTUSED"] , snake_case = None , **snake_case , ): '''simple docstring''' UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) UpperCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCamelCase__ = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} UpperCamelCase__ = len(self.fairseq_tokens_to_ids ) UpperCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , snake_case , snake_case = None , snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self , snake_case ): '''simple docstring''' return self.sp_model.encode(snake_case , out_type=snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = "" UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def __getstate__( self ): '''simple docstring''' UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case ): '''simple docstring''' UpperCamelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
185
from typing import Any class lowerCamelCase__ : """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' UpperCamelCase__ = data UpperCamelCase__ = None class lowerCamelCase__ : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase__ = None def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.head while temp is not None: print(temp.data , end=" " ) UpperCamelCase__ = temp.next print() def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = Node(snake_case ) UpperCamelCase__ = self.head UpperCamelCase__ = new_node def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' if node_data_a == node_data_a: return else: UpperCamelCase__ = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase__ = node_a.next UpperCamelCase__ = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase__ = node_a.next if node_a is None or node_a is None: return UpperCamelCase__, UpperCamelCase__ = node_a.data, node_a.data if __name__ == "__main__": __UpperCamelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
185
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __UpperCAmelCase = { '''allenai/led-base-16384''': 1_6384, } class __UpperCAmelCase ( a_ ): __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = LEDTokenizer __lowerCamelCase : int = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , a_ : Any=None , a_ : Optional[int]=None , a_ : List[Any]=None , a_ : Optional[Any]="replace" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="</s>" , a_ : Tuple="</s>" , a_ : Optional[int]="<s>" , a_ : Union[str, Any]="<unk>" , a_ : Optional[Any]="<pad>" , a_ : List[str]="<mask>" , a_ : Union[str, Any]=False , a_ : Optional[int]=True , **a_ : Tuple , ) -> str: '''simple docstring''' super().__init__( a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: a__ : Optional[Any] = getattr(a_ , pre_tok_state.pop("type" ) ) a__ : Dict = add_prefix_space a__ : Optional[Any] = pre_tok_class(**a_ ) a__ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : str = 'post_processor' a__ : List[str] = getattr(self.backend_tokenizer , a_ , a_ ) if tokenizer_component_instance: a__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : int = tuple(state["sep"] ) if "cls" in state: a__ : Optional[int] = tuple(state["cls"] ) a__ : List[Any] = False if state.get("add_prefix_space" , a_ ) != add_prefix_space: a__ : Union[str, Any] = add_prefix_space a__ : Union[str, Any] = True if state.get("trim_offsets" , a_ ) != trim_offsets: a__ : Tuple = trim_offsets a__ : Dict = True if changes_to_apply: a__ : int = getattr(a_ , state.pop("type" ) ) a__ : Optional[Any] = component_class(**a_ ) setattr(self.backend_tokenizer , a_ , a_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self : List[Any] , a_ : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value a__ : Union[str, Any] = value def UpperCAmelCase ( self : Optional[Any] , *a_ : Dict , **a_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : int = kwargs.get("is_split_into_words" , a_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def UpperCAmelCase ( self : Tuple , *a_ : Union[str, Any] , **a_ : Any ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = kwargs.get("is_split_into_words" , a_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def UpperCAmelCase ( self : str , a_ : str , a_ : Optional[str] = None ) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def UpperCAmelCase ( self : Optional[int] , a_ : Optional[int] , a_ : int=None ) -> int: '''simple docstring''' a__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ) -> int: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self : List[str] , a_ : Union[Dict[str, EncodedInput], BatchEncoding] , a_ : Optional[int] = None , a_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a_ : Optional[int] = None , a_ : Optional[bool] = None , ) -> int: '''simple docstring''' a__ : List[Any] = super()._pad( encoded_inputs=a_ , max_length=a_ , padding_strategy=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , ) # Load from model defaults if return_attention_mask is None: a__ : List[Any] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : int = len(encoded_inputs["global_attention_mask"] ) != len(a_ ) if needs_to_be_padded: a__ : str = len(a_ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : Optional[Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": a__ : str = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
642
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowerCamelCase : """simple docstring""" a = 42 a = None a = None A : Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCAmelCase__ ( lowerCamelCase : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCamelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCamelCase ) != count_coins(lowerCamelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCamelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) _A , _A : Optional[Any] = get_distrib(node.left ) _A , _A : Any = get_distrib(node.right ) _A : str = 1 - left_distrib_excess _A : Union[str, Any] = 1 - right_distrib_excess _A : Any = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase ) + abs(lowerCamelCase ) ) _A : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase ,lowerCamelCase ) return get_distrib(lowerCamelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase ( UpperCAmelCase__ : int ) -> str: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowercase_ : Optional[Any] = precision lowercase_ : List[Any] = ceil(precision / 14 ) lowercase_ : Optional[int] = 426880 * Decimal(10005 ).sqrt() lowercase_ : List[str] = 1 lowercase_ : List[Any] = 13591409 lowercase_ : Union[str, Any] = Decimal(UpperCAmelCase__ ) for k in range(1 , UpperCAmelCase__ ): lowercase_ : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowercase : int = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
717
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: lowercase_ : str = 1.5 lowercase_ : List[Any] = int(factor * num_class_images ) lowercase_ : int = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=UpperCAmelCase__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase_ : List[str] = client.query(text=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase_ : List[str] = int(factor * num_images ) lowercase_ : List[str] = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 , ) lowercase_ : List[str] = 0 lowercase_ : Dict = 0 lowercase_ : Tuple = tqdm(desc="""downloading real regularization images""" , total=UpperCAmelCase__ ) with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open( F'''{class_data_dir}/images.txt''' , """w""" ) as fa: while total < num_class_images: lowercase_ : str = class_images[count] count += 1 try: lowercase_ : Union[str, Any] = requests.get(images["""url"""] ) if img.status_code == 200: lowercase_ : List[str] = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Any = argparse.ArgumentParser("""""" , add_help=UpperCAmelCase__ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=UpperCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": _lowercase : Dict = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
30
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __lowerCAmelCase =models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __lowerCAmelCase =tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __lowerCAmelCase =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __lowerCAmelCase =train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) __lowerCAmelCase =test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __lowerCAmelCase =tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) __lowerCAmelCase =tf.keras.preprocessing.image.img_to_array(test_image) __lowerCAmelCase =np.expand_dims(test_image, axis=0) __lowerCAmelCase =classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __lowerCAmelCase ="Normal" if result[0][0] == 1: __lowerCAmelCase ="Abnormality detected"
333
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCAmelCase =pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = path + ".py" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase = path + ".py" assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs UpperCAmelCase = expected_configs[0] assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
333
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCamelCase( _A : str ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __UpperCamelCase( _A : int , _A : str ): '''simple docstring''' return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def __UpperCamelCase( _A : Optional[Any] , _A : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def __UpperCamelCase( _A : Dict , _A : Optional[int] , _A : List[Any] , _A : str=7_00_00 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.zeros(x.shape[1] ) for iterations in range(_A ): UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Optional[Any] = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Tuple = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = cost_function(_A , _A ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ : str = datasets.load_iris() UpperCamelCase__ : Tuple = iris.data[:, :2] UpperCamelCase__ : str = (iris.target != 0) * 1 UpperCamelCase__ : Any = 0.1 UpperCamelCase__ : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCamelCase( _A : Any ): '''simple docstring''' return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCamelCase__) , (UpperCamelCase__)) : Any = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ : str = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
496
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCamelCase__ : int = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def __UpperCamelCase( _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = EfficientNetConfig() UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase__ : Optional[Any] = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase__ : Optional[int] = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase__ : Any = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase__ : Tuple = '''huggingface/label-files''' UpperCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCAmelCase__ : List[Any] = 10_00 UpperCAmelCase__ : Union[str, Any] = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase__ : Union[str, Any] = {int(_A ): v for k, v in idalabel.items()} UpperCAmelCase__ : Dict = idalabel UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ : List[str] = Image.open(requests.get(_A , stream=_A ).raw ) return im def __UpperCamelCase( _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ : Tuple = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_A , ) return preprocessor def __UpperCamelCase( _A : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase__ : List[str] = sorted(set(_A ) ) UpperCAmelCase__ : Optional[Any] = len(_A ) UpperCAmelCase__ : int = {b: str(_A ) for b, i in zip(_A , range(_A ) )} UpperCAmelCase__ : int = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase__ : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase__ : List[str] = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase__ : str = '''efficientnet.''' + item[1] UpperCAmelCase__ : List[str] = '''classifier.weight''' UpperCAmelCase__ : Union[str, Any] = '''classifier.bias''' return key_mapping def __UpperCamelCase( _A : Optional[Any] , _A : List[Any] , _A : Optional[Any] ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase__ : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase__ : List[str] = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase__ : Dict = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase__ : Optional[int] = torch.from_numpy(np.transpose(_A ) ) else: UpperCAmelCase__ : str = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def __UpperCamelCase( _A : Tuple , _A : str , _A : Union[str, Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = model_classes[model_name]( include_top=_A , weights='''imagenet''' , input_tensor=_A , input_shape=_A , pooling=_A , classes=10_00 , classifier_activation='''softmax''' , ) UpperCAmelCase__ : Dict = original_model.trainable_variables UpperCAmelCase__ : Optional[Any] = original_model.non_trainable_variables UpperCAmelCase__ : List[str] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase__ : Union[str, Any] = param.numpy() UpperCAmelCase__ : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase__ : Union[str, Any] = get_efficientnet_config(_A ) UpperCAmelCase__ : Any = EfficientNetForImageClassification(_A ).eval() UpperCAmelCase__ : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase__ : Tuple = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image UpperCAmelCase__ : List[Any] = convert_image_processor(_A ) UpperCAmelCase__ : List[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = hf_model(**_A ) UpperCAmelCase__ : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase__ : str = False UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase__ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase__ : List[Any] = image.img_to_array(_A ) UpperCAmelCase__ : List[Any] = np.expand_dims(_A , axis=0 ) UpperCAmelCase__ : List[Any] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase__ : Any = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCamelCase__ : Union[str, Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
496
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[Any] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
from __future__ import annotations import requests def SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: """simple docstring""" A__ = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowercase_ ).json() def SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> list[dict]: """simple docstring""" A__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' A__ = requests.get(lowercase_ ).json()[:max_stories] return [get_hackernews_story(lowercase_ ) for story_id in story_ids] def SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> str: """simple docstring""" A__ = hackernews_top_stories(lowercase_ ) return "\n".join('''* [{title}]({url})'''.format(**lowercase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
87
1
from string import ascii_uppercase lowercase__ :List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(snake_case_ , snake_case_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(snake_case_ , snake_case_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) lowercase : Union[str, Any] = "" lowercase : List[Any] = 0 lowercase : str = 0 while div != 1: lowercase : Optional[Any] = divmod(snake_case_ , snake_case_ ) if base >= 11 and 9 < mod < 36: lowercase : Union[str, Any] = ALPHABET_VALUES[str(snake_case_ )] else: lowercase : Optional[Any] = str(snake_case_ ) new_value += actual_value lowercase : Any = num // base lowercase : Any = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(snake_case_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
703
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
633
0
'''simple docstring''' from __future__ import annotations from typing import Any class A_ : def __init__( self : int , snake_case_ : int , snake_case_ : int , snake_case_ : float = 0 ): _UpperCAmelCase = row, column _UpperCAmelCase = [[default_value for c in range(snake_case_ )] for r in range(snake_case_ )] def __str__( self : int ): _UpperCAmelCase = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier _UpperCAmelCase = 0 for row_vector in self.array: for obj in row_vector: _UpperCAmelCase = max(snake_case_ , len(str(snake_case_ ) ) ) _UpperCAmelCase = f'%{max_element_length}s' # Make string and return def single_line(snake_case_ : list[float] ) -> str: nonlocal string_format_identifier _UpperCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(snake_case_ ) for row_vector in self.array ) return s def __repr__( self : Union[str, Any] ): return str(self ) def lowercase ( self : int , snake_case_ : tuple[int, int] ): if not (isinstance(snake_case_ , (list, tuple) ) and len(snake_case_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , snake_case_ : tuple[int, int] ): assert self.validate_indicies(snake_case_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Any , snake_case_ : tuple[int, int] , snake_case_ : float ): assert self.validate_indicies(snake_case_ ) _UpperCAmelCase = value def __add__( self : Tuple , snake_case_ : Matrix ): assert isinstance(snake_case_ , snake_case_ ) assert self.row == another.row and self.column == another.column # Add _UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _UpperCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : Union[str, Any] ): _UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _UpperCAmelCase = -self[r, c] return result def __sub__( self : Any , snake_case_ : Matrix ): return self + (-another) def __mul__( self : List[Any] , snake_case_ : int | float | Matrix ): if isinstance(snake_case_ , (int, float) ): # Scalar multiplication _UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _UpperCAmelCase = self[r, c] * another return result elif isinstance(snake_case_ , snake_case_ ): # Matrix multiplication assert self.column == another.row _UpperCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _UpperCAmelCase = f'Unsupported type given for another ({type(snake_case_ )})' raise TypeError(snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _UpperCAmelCase = self[r, c] return result def lowercase ( self : int , snake_case_ : Matrix , snake_case_ : Matrix ): assert isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _UpperCAmelCase = v.transpose() _UpperCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase_ ( ) -> None: '''simple docstring''' _UpperCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): _UpperCAmelCase = 1 print(f'a^(-1) is {ainv}' ) # u, v _UpperCAmelCase = Matrix(3 , 1 , 0 ) _UpperCAmelCase = 1, 2, -3 _UpperCAmelCase = Matrix(3 , 1 , 0 ) _UpperCAmelCase = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def UpperCAmelCase_ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
236
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter A = '''Create a default config file for Accelerate with only a few flags set.''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any="no" , lowerCAmelCase__ : str = default_json_config_file , lowerCAmelCase__ : bool = False) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = Path(lowerCAmelCase__) path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''') return False _lowercase : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''') _lowercase : str = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _lowercase : str = torch.cuda.device_count() _lowercase : Optional[Any] = num_gpus _lowercase : Tuple = False if num_gpus > 1: _lowercase : Tuple = 'MULTI_GPU' else: _lowercase : Any = 'NO' elif is_xpu_available() and use_xpu: _lowercase : List[str] = torch.xpu.device_count() _lowercase : Union[str, Any] = num_xpus _lowercase : List[Any] = False if num_xpus > 1: _lowercase : Tuple = 'MULTI_XPU' else: _lowercase : List[str] = 'NO' elif is_npu_available(): _lowercase : Optional[int] = torch.npu.device_count() _lowercase : Any = num_npus _lowercase : List[Any] = False if num_npus > 1: _lowercase : int = 'MULTI_NPU' else: _lowercase : Dict = 'NO' else: _lowercase : List[Any] = 0 _lowercase : Optional[int] = True _lowercase : List[str] = 1 _lowercase : List[Any] = 'NO' _lowercase : Union[str, Any] = ClusterConfig(**lowerCAmelCase__) config.to_json_file(lowerCAmelCase__) return path def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = parser.add_parser('default' , parents=lowerCAmelCase__ , help=lowerCAmelCase__ , formatter_class=lowerCAmelCase__) parser.add_argument( '--config_file' , default=lowerCAmelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCAmelCase__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCAmelCase__) return parser def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[Any]) -> Dict: '''simple docstring''' _lowercase : Tuple = write_basic_config(args.mixed_precision , args.save_location) if config_file: print(F'''accelerate configuration saved at {config_file}''')
125
0
import os def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Any = os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Tuple = os.path.join(__lowerCamelCase, "triangle.txt" ) with open(__lowerCamelCase ) as f: _SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines() _SCREAMING_SNAKE_CASE : Optional[int] = [] for line in triangle: _SCREAMING_SNAKE_CASE : str = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__lowerCamelCase ) ) a.append(__lowerCamelCase ) for i in range(1, len(__lowerCamelCase ) ): for j in range(len(a[i] ) ): _SCREAMING_SNAKE_CASE : Optional[int] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _SCREAMING_SNAKE_CASE : Optional[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__lowerCamelCase, __lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
381
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ =logging.get_logger(__name__) set_seed(770) UpperCamelCase__ ={ 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } UpperCamelCase__ ={ 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } UpperCamelCase__ =os.path.dirname(os.path.abspath(__file__)) UpperCamelCase__ =os.path.join(os.path.expanduser('~'), '.cache') UpperCamelCase__ =os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase, REMOTE_MODEL_PATHS[key]["file_name"] ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase, filename=__lowerCamelCase, local_dir=__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type == "text": _SCREAMING_SNAKE_CASE : List[Any] = BarkSemanticModel _SCREAMING_SNAKE_CASE : Any = BarkSemanticConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": _SCREAMING_SNAKE_CASE : List[str] = BarkCoarseModel _SCREAMING_SNAKE_CASE : Any = BarkCoarseConfig _SCREAMING_SNAKE_CASE : str = BarkCoarseGenerationConfig elif model_type == "fine": _SCREAMING_SNAKE_CASE : Optional[int] = BarkFineModel _SCREAMING_SNAKE_CASE : List[str] = BarkFineConfig _SCREAMING_SNAKE_CASE : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() _SCREAMING_SNAKE_CASE : List[str] = f"""{model_type}_small""" if use_small else model_type _SCREAMING_SNAKE_CASE : Optional[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"], model_info["file_name"] ) _SCREAMING_SNAKE_CASE : str = torch.load(__lowerCamelCase, map_location=__lowerCamelCase ) # this is a hack _SCREAMING_SNAKE_CASE : Any = checkpoint["model_args"] if "input_vocab_size" not in model_args: _SCREAMING_SNAKE_CASE : Optional[int] = model_args["vocab_size"] _SCREAMING_SNAKE_CASE : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _SCREAMING_SNAKE_CASE : List[Any] = model_args.pop("n_head" ) _SCREAMING_SNAKE_CASE : Dict = model_args.pop("n_embd" ) _SCREAMING_SNAKE_CASE : Tuple = model_args.pop("n_layer" ) _SCREAMING_SNAKE_CASE : Tuple = ConfigClass(**checkpoint["model_args"] ) _SCREAMING_SNAKE_CASE : int = ModelClass(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = GenerationConfigClass() _SCREAMING_SNAKE_CASE : Optional[int] = model_generation_config _SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint["model"] # fixup checkpoint _SCREAMING_SNAKE_CASE : Optional[Any] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation _SCREAMING_SNAKE_CASE : Optional[int] = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: _SCREAMING_SNAKE_CASE : Tuple = new_k.replace(__lowerCamelCase, new_layer_name_dict[old_layer_name] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) _SCREAMING_SNAKE_CASE : int = {k for k in extra_keys if not k.endswith(".attn.bias" )} _SCREAMING_SNAKE_CASE : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _SCREAMING_SNAKE_CASE : List[str] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(__lowerCamelCase ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(__lowerCamelCase ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = model.num_parameters(exclude_embeddings=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1e6, 1 )}M params, {round(__lowerCamelCase, 3 )} loss""" ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _SCREAMING_SNAKE_CASE : Union[str, Any] = "cpu" # do conversion on cpu _SCREAMING_SNAKE_CASE : Union[str, Any] = _get_ckpt_path(__lowerCamelCase, use_small=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _load_model(__lowerCamelCase, __lowerCamelCase, model_type=__lowerCamelCase, use_small=__lowerCamelCase ) # load bark initial model _SCREAMING_SNAKE_CASE : Union[str, Any] = _bark_load_model(__lowerCamelCase, "cpu", model_type=__lowerCamelCase, use_small=__lowerCamelCase ) if model_type == "text": _SCREAMING_SNAKE_CASE : str = bark_model["model"] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _SCREAMING_SNAKE_CASE : Optional[Any] = 5 _SCREAMING_SNAKE_CASE : Optional[int] = 10 if model_type in ["text", "coarse"]: _SCREAMING_SNAKE_CASE : Any = torch.randint(256, (batch_size, sequence_length), dtype=torch.int ) _SCREAMING_SNAKE_CASE : Optional[int] = bark_model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) # take last logits _SCREAMING_SNAKE_CASE : List[str] = output_new_model_total.logits[:, [-1], :] else: _SCREAMING_SNAKE_CASE : Tuple = 3 _SCREAMING_SNAKE_CASE : Union[str, Any] = 8 _SCREAMING_SNAKE_CASE : Optional[Any] = torch.randint(256, (batch_size, sequence_length, n_codes_total), dtype=torch.int ) _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = bark_model(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Dict = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Dict = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE : int = BarkSemanticModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = BarkCoarseModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE : Any = BarkConfig.from_sub_model_configs( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config ) _SCREAMING_SNAKE_CASE : str = BarkModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = semantic _SCREAMING_SNAKE_CASE : Tuple = coarseAcoustic _SCREAMING_SNAKE_CASE : List[str] = fineAcoustic _SCREAMING_SNAKE_CASE : Tuple = codec _SCREAMING_SNAKE_CASE : Tuple = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase, repo_id=__lowerCamelCase, push_to_hub=__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') UpperCamelCase__ =parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
381
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCamelCase__ = 2_5_0_0_0_4 UpperCamelCase__ = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a__ ( UpperCamelCase_ , unittest.TestCase ): snake_case__ = MBartaaTokenizer snake_case__ = MBartaaTokenizerFast snake_case__ = True snake_case__ = True def __UpperCamelCase ( self : int) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase:Tuple = MBartaaTokenizer(a__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=a__) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : Tuple) -> int: """simple docstring""" _lowerCAmelCase:List[Any] = '''<s>''' _lowerCAmelCase:Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__) ,a__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__) ,a__) def __UpperCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _lowerCAmelCase:Any = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] ,'''<s>''') self.assertEqual(vocab_keys[1] ,'''<pad>''') self.assertEqual(vocab_keys[-1] ,'''<mask>''') self.assertEqual(len(a__) ,1054) def __UpperCamelCase ( self : List[str]) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,1054) def __UpperCamelCase ( self : Dict) -> Dict: """simple docstring""" _lowerCAmelCase:List[str] = MBartaaTokenizer(a__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=a__) _lowerCAmelCase:str = tokenizer.tokenize('''This is a test''') self.assertListEqual(a__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _lowerCAmelCase:str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( a__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] ,) _lowerCAmelCase:Optional[int] = tokenizer.convert_tokens_to_ids(a__) self.assertListEqual( a__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) _lowerCAmelCase:Tuple = tokenizer.convert_ids_to_tokens(a__) self.assertListEqual( a__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] ,) @slow def __UpperCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _lowerCAmelCase:List[str] = {'''input_ids''': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ ,model_name='''facebook/mbart-large-50''' ,revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' ,) def __UpperCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase:Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): _lowerCAmelCase:Optional[Any] = self.rust_tokenizer_class.from_pretrained(a__ ,**a__) _lowerCAmelCase:Optional[Any] = self.tokenizer_class.from_pretrained(a__ ,**a__) _lowerCAmelCase:Dict = tempfile.mkdtemp() _lowerCAmelCase:Optional[int] = tokenizer_r.save_pretrained(a__) _lowerCAmelCase:Optional[Any] = tokenizer_p.save_pretrained(a__) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) _lowerCAmelCase:str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f) self.assertSequenceEqual(a__ ,a__) # Checks everything loads correctly in the same way _lowerCAmelCase:Optional[int] = tokenizer_r.from_pretrained(a__) _lowerCAmelCase:Optional[int] = tokenizer_p.from_pretrained(a__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ ,a__)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a__) # Save tokenizer rust, legacy_format=True _lowerCAmelCase:Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase:Tuple = tokenizer_r.save_pretrained(a__ ,legacy_format=a__) _lowerCAmelCase:Dict = tokenizer_p.save_pretrained(a__) # Checks it save with the same files self.assertSequenceEqual(a__ ,a__) # Checks everything loads correctly in the same way _lowerCAmelCase:Tuple = tokenizer_r.from_pretrained(a__) _lowerCAmelCase:Union[str, Any] = tokenizer_p.from_pretrained(a__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ ,a__)) shutil.rmtree(a__) # Save tokenizer rust, legacy_format=False _lowerCAmelCase:Optional[int] = tempfile.mkdtemp() _lowerCAmelCase:Optional[Any] = tokenizer_r.save_pretrained(a__ ,legacy_format=a__) _lowerCAmelCase:Optional[Any] = tokenizer_p.save_pretrained(a__) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCAmelCase:List[str] = tokenizer_r.from_pretrained(a__) _lowerCAmelCase:Dict = tokenizer_p.from_pretrained(a__) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ ,a__)) shutil.rmtree(a__) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): snake_case__ = '''facebook/mbart-large-50-one-to-many-mmt''' snake_case__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] snake_case__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] snake_case__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __UpperCamelCase ( cls : Optional[Any]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''') _lowerCAmelCase:int = 1 return cls def __UpperCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] ,25_0001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] ,25_0004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] ,25_0020) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] ,25_0038) def __UpperCamelCase ( self : List[Any]) -> str: """simple docstring""" _lowerCAmelCase:Any = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens ,a__) def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self.assertIn(a__ ,self.tokenizer.all_special_ids) _lowerCAmelCase:Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase:Tuple = self.tokenizer.decode(a__ ,skip_special_tokens=a__) _lowerCAmelCase:Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=a__) self.assertEqual(a__ ,a__) self.assertNotIn(self.tokenizer.eos_token ,a__) def __UpperCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _lowerCAmelCase:Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] ,a__) _lowerCAmelCase:Union[str, Any] = 10 _lowerCAmelCase:Union[str, Any] = self.tokenizer(a__ ,max_length=a__ ,truncation=a__).input_ids[0] self.assertEqual(ids[0] ,a__) self.assertEqual(ids[-1] ,2) self.assertEqual(len(a__) ,a__) def __UpperCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR''']) ,[25_0053, 25_0001]) def __UpperCamelCase ( self : Dict) -> str: """simple docstring""" _lowerCAmelCase:Dict = tempfile.mkdtemp() _lowerCAmelCase:str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__) _lowerCAmelCase:List[str] = MBartaaTokenizer.from_pretrained(a__) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,a__) @require_torch def __UpperCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:List[Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=a__ ,return_tensors='''pt''') _lowerCAmelCase:Any = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self : Any) -> int: """simple docstring""" _lowerCAmelCase:List[str] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=a__ ,truncation=a__ ,max_length=len(self.expected_src_tokens) ,return_tensors='''pt''' ,) _lowerCAmelCase:Any = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id) self.assertIsInstance(a__ ,a__) self.assertEqual((2, 14) ,batch.input_ids.shape) self.assertEqual((2, 14) ,batch.attention_mask.shape) _lowerCAmelCase:Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,a__) self.assertEqual(2 ,batch.decoder_input_ids[0, 0]) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id]) def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" _lowerCAmelCase:List[str] = self.tokenizer(self.src_text ,padding=a__ ,truncation=a__ ,max_length=3 ,return_tensors='''pt''') _lowerCAmelCase:Optional[Any] = self.tokenizer( text_target=self.tgt_text ,padding=a__ ,truncation=a__ ,max_length=10 ,return_tensors='''pt''') _lowerCAmelCase:Any = targets['''input_ids'''] _lowerCAmelCase:Dict = shift_tokens_right(a__ ,self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] ,3) self.assertEqual(batch.decoder_input_ids.shape[1] ,10) @require_torch def __UpperCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:int = self.tokenizer._build_translation_inputs( '''A test''' ,return_tensors='''pt''' ,src_lang='''en_XX''' ,tgt_lang='''ar_AR''') self.assertEqual( nested_simplify(a__) ,{ # en_XX, A, test, EOS '''input_ids''': [[25_0004, 62, 3034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } ,)
227
"""simple docstring""" import argparse import datetime def UpperCAmelCase ( snake_case : str ): _lowerCAmelCase:Dict = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _lowerCAmelCase:Union[str, Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _lowerCAmelCase:int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _lowerCAmelCase:str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _lowerCAmelCase:int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _lowerCAmelCase:str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _lowerCAmelCase:int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _lowerCAmelCase:int = datetime.date(int(snake_case ) , int(snake_case ) , int(snake_case ) ) # Start math if m <= 2: _lowerCAmelCase:Optional[Any] = y - 1 _lowerCAmelCase:str = m + 12 # maths var _lowerCAmelCase:int = int(str(snake_case )[:2] ) _lowerCAmelCase:int = int(str(snake_case )[2:] ) _lowerCAmelCase:int = int(2.6 * m - 5.39 ) _lowerCAmelCase:int = int(c / 4 ) _lowerCAmelCase:int = int(k / 4 ) _lowerCAmelCase:int = int(d + k ) _lowerCAmelCase:int = int(t + u + v + x ) _lowerCAmelCase:int = int(z - (2 * c) ) _lowerCAmelCase:int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _lowerCAmelCase:str = F'Your date {date_input}, is a {days[str(snake_case )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase__ = parser.parse_args() zeller(args.date_input)
227
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
275
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] for part_id in partition_order: _UpperCAmelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(1_00 ).repartition(1 ) _UpperCAmelCase = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(2 ) _UpperCAmelCase = [1, 0] _UpperCAmelCase = _generate_iterable_examples(lowercase ,lowercase ) # Reverse the partitions. _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(1 ) _UpperCAmelCase = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: _UpperCAmelCase = lambda lowercase : x.reverse() _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[2, 1, 0] ) _UpperCAmelCase = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 ,num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 ,num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(1_00 ).repartition(1 ) _UpperCAmelCase = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
275
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase=[32, 64, 128] , _UpperCamelCase=[1, 2, 1] , _UpperCamelCase=[2, 2, 4] , _UpperCamelCase=2 , _UpperCamelCase=2.0 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=10 , _UpperCamelCase=8 , _UpperCamelCase=["stage1", "stage2"] , _UpperCamelCase=[1, 2] , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForMaskedImageModeling(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __A : Union[str, Any] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __A : int = False __A : int = False __A : Dict = False __A : str = False __A : Tuple = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # FocalNet has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @slow def UpperCamelCase( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FocalNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def UpperCamelCase( self ): _UpperCAmelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = (FocalNetBackbone,) if is_torch_available() else () __A : str = FocalNetConfig __A : Any = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self )
32
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCAmelCase ( unittest.TestCase , lowercase ): """simple docstring""" def _UpperCAmelCase ( self : List[str] ): A_ = load_tool("text-classification" ) self.tool.setup() A_ = load_tool("text-classification" , remote=lowerCAmelCase ) def _UpperCAmelCase ( self : Union[str, Any] ): A_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : str ): A_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : str ): A_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : List[Any] ): A_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" )
452
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _A = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _A = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ _A = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = 0.0 for i, j in zip(UpperCamelCase , UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase , UpperCamelCase ) else 0.0 lowerCAmelCase__ : Optional[int] = n_correct / len(UpperCamelCase ) return { "accuracy": accuracy, }
710
"""simple docstring""" from math import isqrt def lowercase_ ( __UpperCAmelCase ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) ) def lowercase_ ( __UpperCAmelCase = 10**6 ) -> int: lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
507
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class a_ : pass
263
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase__ ={ 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def UpperCamelCase_ ( A__ , A__ , A__ , A__=None ): # Initialise PyTorch model a_ = XLNetConfig.from_json_file(A__ ) a_ = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) a_ = finetuning_task a_ = GLUE_TASKS_NUM_LABELS[finetuning_task] a_ = XLNetForSequenceClassification(A__ ) elif "squad" in finetuning_task: a_ = finetuning_task a_ = XLNetForQuestionAnswering(A__ ) else: a_ = XLNetLMHeadModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(A__ , A__ , A__ ) # Save pytorch-model a_ = os.path.join(A__ , A__ ) a_ = os.path.join(A__ , A__ ) print(F'''Save PyTorch model to {os.path.abspath(A__ )}''' ) torch.save(model.state_dict() , A__ ) print(F'''Save configuration file to {os.path.abspath(A__ )}''' ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowercase__ =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
263
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a ( snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) lowercase_ = emb.weight.data return lin_layer def a ( snake_case__: Dict , snake_case__: Dict=None ): '''simple docstring''' lowercase_ = {} for old_key in state_dict.keys(): lowercase_ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase_ = key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowercase_ = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowercase_ = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowercase_ = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowercase_ = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowercase_ = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowercase_ = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowercase_ = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowercase_ = state_dict[old_key] return new_dict def a ( snake_case__: List[str] , snake_case__: Dict , snake_case__: str , snake_case__: str , snake_case__: str = WEIGHTS_NAME ): '''simple docstring''' lowercase_ = [] lowercase_ = 0 os.makedirs(snake_case__ , exist_ok=snake_case__ ) for expert in range(snake_case__ ): lowercase_ = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(snake_case__ ): lowercase_ = torch.load(snake_case__ )['''model'''] remove_ignore_keys_(snake_case__ ) lowercase_ = rename_fairseq_keys(snake_case__ , snake_case__ ) lowercase_ = os.path.join( snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) torch.save(snake_case__ , snake_case__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(snake_case__ )[0]].dtype ) # Add the last block lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) lowercase_ = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(snake_case__ ) lowercase_ = rename_fairseq_keys(snake_case__ , snake_case__ ) lowercase_ = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(snake_case__ ) == 1: lowercase_ = os.path.join(snake_case__ , snake_case__ ) torch.save(snake_case__ , snake_case__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(snake_case__ , snake_case__ ) # Otherwise, let's build the index lowercase_ = {} for idx, shard in enumerate(snake_case__ ): lowercase_ = weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin''' ) lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) for key in shard: lowercase_ = shard_file # Add the metadata lowercase_ = {'''total_size''': total_size} lowercase_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f: lowercase_ = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n''' f.write(snake_case__ ) return metadata, index if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __a = parser.parse_args() __a , __a = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __a = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
409
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : int=2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , ) -> Union[str, Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = patch_size lowercase_ = max_length lowercase_ = num_mel_bins lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = frequency_stride lowercase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase_ = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase_ = frequency_out_dimension * time_out_dimension lowercase_ = num_patches + 2 def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, input_values, labels def _lowercase ( self : List[Any] ) -> Any: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: lowercase_ = ASTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) a :List[Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) a :Optional[Any] = False a :str = False a :Optional[int] = False a :int = False def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = ASTModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _lowercase ( self : Tuple ) -> str: pass def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _lowercase ( self : int ) -> List[str]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''input_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( ): '''simple docstring''' lowercase_ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) lowercase_ , lowercase_ = torchaudio.load(snake_case__ ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Tuple ) -> Any: return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _lowercase ( self : List[str] ) -> Any: lowercase_ = self.default_feature_extractor lowercase_ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.default_feature_extractor lowercase_ , lowercase_ = prepare_audio() lowercase_ = audio.squeeze().numpy() lowercase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
409
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(batch_size=2 ,length=snake_case__ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(snake_case__ ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ : Any = jax.nn.softmax(temp_dist_warper_sharper(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : int = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ : int = 5 SCREAMING_SNAKE_CASE_ : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp_safety_check(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : List[str] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, 1) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 20 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Tuple = 5 SCREAMING_SNAKE_CASE_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 4) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 4 SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # with processor list SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : Any = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Dict = 15 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = 10 # no processor list def run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores # with processor list def run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : List[str] = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores SCREAMING_SNAKE_CASE_ : Tuple = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = jitted_run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = jitted_run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
105
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ : List[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ) -> Any: """simple docstring""" inspect_dataset(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" inspect_metric(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = path + '.py' assert script_name in os.listdir(lowerCamelCase_ ) assert "__pycache__" not in os.listdir(lowerCamelCase_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ) -> List[Any]: """simple docstring""" with pytest.raises(lowerCamelCase_ ): get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_dataset_config_names(lowerCamelCase_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = get_dataset_infos(lowerCamelCase_ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE_ : Optional[Any] = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE_ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_dataset_infos(lowerCamelCase_ ) assert expected_config in infos SCREAMING_SNAKE_CASE_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ) -> int: """simple docstring""" with pytest.raises(lowerCamelCase_ ): get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_ )
105
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCamelCase : Any = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ __lowerCamelCase : Tuple = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ __lowerCamelCase : int = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ : Optional[int] = 0.0 for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0 lowerCamelCase_ : Union[str, Any] = n_correct / len(UpperCamelCase_ ) return { "accuracy": accuracy, }
701
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCamelCase : Union[str, Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __lowerCamelCase : Union[str, Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __lowerCamelCase : Union[str, Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return float((preds == labels).mean() ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="binary" ): """simple docstring""" lowerCamelCase_ : str = simple_accuracy(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = float(fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average=__UpperCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = {} for id_pred, label in zip(__UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : List[str] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCamelCase_ : List[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ : Optional[Any] = [(pred, label)] lowerCamelCase_ , lowerCamelCase_ : List[str] = [], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ : Any = zip(*__UpperCAmelCase ) lowerCamelCase_ : Dict = fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average='''macro''' ) fas.append(__UpperCAmelCase ) lowerCamelCase_ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCAmelCase ) ) ems.append(__UpperCAmelCase ) lowerCamelCase_ : int = float(sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) ) lowerCamelCase_ : str = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) lowerCamelCase_ : str = float(fa_score(y_true=__UpperCAmelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> Optional[Any]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name == "cb": return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCamelCase_ : List[str] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCamelCase_ : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(UpperCamelCase_ , UpperCamelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
418
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase : Tuple = 2 class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[int] , *, # begin keyword-only arguments lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Union[str, Any]=None , ) -> Any: snake_case__ , snake_case__ , snake_case__ , snake_case__ = bos, unk, pad, eos snake_case__ = [] snake_case__ = [] snake_case__ = {} snake_case__ = self.add_symbol(lowerCAmelCase__ ) snake_case__ = self.add_symbol(lowerCAmelCase__ ) snake_case__ = self.add_symbol(lowerCAmelCase__ ) snake_case__ = self.add_symbol(lowerCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase__ ) snake_case__ = len(self.symbols ) def __eq__( self : int , lowerCAmelCase__ : Dict ) -> Optional[int]: return self.indices == other.indices def __getitem__( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[int] ) -> str: return len(self.symbols ) def __contains__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: return sym in self.indices @classmethod def UpperCAmelCase_ ( cls : Dict , lowerCAmelCase__ : List[Any] ) -> Tuple: snake_case__ = cls() d.add_from_file(lowerCAmelCase__ ) return d def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=False ) -> Optional[Any]: if word in self.indices and not overwrite: snake_case__ = self.indices[word] snake_case__ = self.count[idx] + n return idx else: snake_case__ = len(self.symbols ) snake_case__ = idx self.symbols.append(lowerCAmelCase__ ) self.count.append(lowerCAmelCase__ ) return idx def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : Optional[int] ) -> Any: return 0 def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : str ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowerCAmelCase__ ) ) return snake_case__ = f.readlines() snake_case__ = self._load_meta(lowerCAmelCase__ ) for line in lines[indices_start_line:]: try: snake_case__ , snake_case__ = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": snake_case__ = True snake_case__ , snake_case__ = line.rsplit(""" """ , 1 ) else: snake_case__ = False snake_case__ = int(lowerCAmelCase__ ) snake_case__ = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(lowerCAmelCase__ ) ) self.add_symbol(lowerCAmelCase__ , n=lowerCAmelCase__ , overwrite=lowerCAmelCase__ ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def _lowercase ( __UpperCamelCase : Dict ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} snake_case__ = dict((re.sub(R"""@@$""" , """""" , __UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , __UpperCamelCase ), v) for k, v in d.items() ) snake_case__ = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] snake_case__ = d[k] # restore return da def _lowercase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ): # prep if not os.path.exists(__UpperCamelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models snake_case__ = os.path.join(__UpperCamelCase , """checkpoint.pt""" ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) snake_case__ = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case__ = chkpt["""cfg"""]["""model"""] # dicts snake_case__ = os.path.join(__UpperCamelCase , """dict.txt""" ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) snake_case__ = Dictionary.load(__UpperCamelCase ) snake_case__ = rewrite_dict_keys(src_dict.indices ) snake_case__ = len(__UpperCamelCase ) snake_case__ = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # merges_file (bpecodes) snake_case__ = os.path.join(__UpperCamelCase , """bpecodes""" ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) snake_case__ = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(__UpperCamelCase , __UpperCamelCase ) # model config snake_case__ = os.path.join(__UpperCamelCase , """config.json""" ) snake_case__ = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.0_2, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # tokenizer config snake_case__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) snake_case__ = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # model snake_case__ = chkpt["""model"""] # remove unneeded keys snake_case__ = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(__UpperCamelCase , __UpperCamelCase ) snake_case__ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): snake_case__ = model_state_dict.pop(__UpperCamelCase ) else: snake_case__ = model_state_dict.pop(__UpperCamelCase ) snake_case__ = BioGptConfig.from_pretrained(__UpperCamelCase ) snake_case__ = BioGptForCausalLM(__UpperCamelCase ) # check that it loads ok model_new.load_state_dict(__UpperCamelCase ) # save snake_case__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__UpperCamelCase , __UpperCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase : Dict = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
214
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[Any] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
214
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : str ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "dpr" def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_ = 0 , **lowercase_ , ) -> Optional[Any]: super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : int = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : str = projection_dim lowerCAmelCase : Optional[Any] = position_embedding_type
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
__UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCamelCase ( snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> str: assert len(str(snake_case__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase : Dict = year // 100 UpperCamelCase : Optional[Any] = (5 * (century % 4) + 2) % 7 UpperCamelCase : Union[str, Any] = year % 100 UpperCamelCase : Dict = centurian % 12 UpperCamelCase : Optional[int] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase : Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase : Tuple = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
296
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Any = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Any = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
18
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
'''simple docstring''' import datasets from .evaluate import evaluate lowercase__ = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" lowercase__ = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" lowercase__ = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} snake_case : Dict = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] snake_case : int = evaluate(dataset=UpperCamelCase__ , predictions=UpperCamelCase__ ) return score
638
1
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping A_ : List[Any] = True for i in range(0 , len(lowerCamelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: A_, A_ : int = input_list[i + 1], input_list[i] # swapping if elements not in order A_ : Any = False for i in range(1 , len(lowerCamelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: A_, A_ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order A_ : Dict = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase :List[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase :Union[str, Any] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
686
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Optional[int] = field A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : Optional[Any] = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Union[str, Any] = None A_ : int = None A_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : str = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Any = dataset A_ : List[str] = path_or_buf A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : List[Any] = """utf-8""" A_ : int = to_json_kwargs def _a (self ): A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : List[str] = args A_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Any = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
686
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """pegasus""" __snake_case = ["""past_key_values"""] __snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: List[Any] , a: Any=5_0265 , a: List[str]=1024 , a: Tuple=12 , a: List[str]=4096 , a: List[Any]=16 , a: int=12 , a: List[str]=4096 , a: str=16 , a: List[Any]=0.0 , a: List[Any]=0.0 , a: Tuple=True , a: List[Any]=True , a: str="gelu" , a: str=1024 , a: int=0.1 , a: Union[str, Any]=0.0 , a: Any=0.0 , a: Optional[Any]=0.0_2 , a: Dict=0 , a: Optional[Any]=False , a: Tuple=0 , a: Union[str, Any]=1 , a: List[Any]=1 , **a: Any , ): __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Union[str, Any] = d_model __lowerCamelCase : Union[str, Any] = encoder_ffn_dim __lowerCamelCase : str = encoder_layers __lowerCamelCase : int = encoder_attention_heads __lowerCamelCase : Dict = decoder_ffn_dim __lowerCamelCase : int = decoder_layers __lowerCamelCase : Optional[Any] = decoder_attention_heads __lowerCamelCase : Dict = dropout __lowerCamelCase : Optional[Any] = attention_dropout __lowerCamelCase : Tuple = activation_dropout __lowerCamelCase : Tuple = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : Optional[int] = encoder_layerdrop __lowerCamelCase : List[Any] = decoder_layerdrop __lowerCamelCase : int = use_cache __lowerCamelCase : Dict = encoder_layers __lowerCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) @property def _snake_case ( self: Any ): return self.encoder_attention_heads @property def _snake_case ( self: str ): return self.d_model
669
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """char""" __snake_case = """bpe""" __snake_case = """wp""" lowercase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = ["""image_processor""", """char_tokenizer"""] __snake_case = """ViTImageProcessor""" __snake_case = """MgpstrTokenizer""" def __init__( self: int , a: Dict=None , a: Optional[int]=None , **a: List[str] ): __lowerCamelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) __lowerCamelCase : Optional[Any] = kwargs.pop('feature_extractor' ) __lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) __lowerCamelCase : Any = tokenizer __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('gpt2' ) __lowerCamelCase : int = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(a , a ) def __call__( self: Optional[int] , a: Optional[int]=None , a: List[Any]=None , a: int=None , **a: str ): if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __lowerCamelCase : Dict = self.image_processor(a , return_tensors=a , **a ) if text is not None: __lowerCamelCase : Dict = self.char_tokenizer(a , return_tensors=a , **a ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : List[str] = encodings['input_ids'] return inputs def _snake_case ( self: List[str] , a: List[Any] ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = sequences __lowerCamelCase : List[str] = char_preds.size(0 ) __lowerCamelCase , __lowerCamelCase : str = self._decode_helper(a , 'char' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = self._decode_helper(a , 'bpe' ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._decode_helper(a , 'wp' ) __lowerCamelCase : Tuple = [] __lowerCamelCase : List[Any] = [] for i in range(a ): __lowerCamelCase : List[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase : Any = scores.index(max(a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase : List[str] = {} __lowerCamelCase : Optional[int] = final_strs __lowerCamelCase : Dict = final_scores __lowerCamelCase : Dict = char_strs __lowerCamelCase : List[Any] = bpe_strs __lowerCamelCase : Tuple = wp_strs return out def _snake_case ( self: int , a: Optional[int] , a: Optional[Any] ): if format == DecodeType.CHARACTER: __lowerCamelCase : Optional[Any] = self.char_decode __lowerCamelCase : Union[str, Any] = 1 __lowerCamelCase : List[str] = '[s]' elif format == DecodeType.BPE: __lowerCamelCase : Dict = self.bpe_decode __lowerCamelCase : List[str] = 2 __lowerCamelCase : Any = '#' elif format == DecodeType.WORDPIECE: __lowerCamelCase : List[str] = self.wp_decode __lowerCamelCase : int = 102 __lowerCamelCase : Dict = '[SEP]' else: raise ValueError(F'Format {format} is not supported.' ) __lowerCamelCase , __lowerCamelCase : int = [], [] __lowerCamelCase : Tuple = pred_logits.size(0 ) __lowerCamelCase : List[Any] = pred_logits.size(1 ) __lowerCamelCase , __lowerCamelCase : Dict = pred_logits.topk(1 , dim=-1 , largest=a , sorted=a ) __lowerCamelCase : List[str] = preds_index.view(-1 , a )[:, 1:] __lowerCamelCase : Dict = decoder(a ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = torch.nn.functional.softmax(a , dim=2 ).max(dim=2 ) __lowerCamelCase : List[str] = preds_max_prob[:, 1:] for index in range(a ): __lowerCamelCase : str = preds_str[index].find(a ) __lowerCamelCase : Tuple = preds_str[index][:pred_eos] __lowerCamelCase : Any = preds_index[index].cpu().tolist() __lowerCamelCase : Any = pred_index.index(a ) if eos_token in pred_index else -1 __lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a ) conf_scores.append(a ) return dec_strs, conf_scores def _snake_case ( self: Tuple , a: Optional[int] ): __lowerCamelCase : Dict = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(a )] return decode_strs def _snake_case ( self: Optional[int] , a: Tuple ): return self.bpe_tokenizer.batch_decode(a ) def _snake_case ( self: Optional[int] , a: List[Any] ): __lowerCamelCase : int = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(a )] return decode_strs
669
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } UpperCamelCase = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Tuple = EfficientNetConfig() A_ : List[Any] = CONFIG_MAP[model_name]['''hidden_dim'''] A_ : Union[str, Any] = CONFIG_MAP[model_name]['''width_coef'''] A_ : Optional[int] = CONFIG_MAP[model_name]['''depth_coef'''] A_ : List[Any] = CONFIG_MAP[model_name]['''image_size'''] A_ : List[Any] = CONFIG_MAP[model_name]['''dropout_rate'''] A_ : List[str] = CONFIG_MAP[model_name]['''dw_padding'''] A_ : Optional[int] = '''huggingface/label-files''' A_ : Tuple = '''imagenet-1k-id2label.json''' A_ : Any = 1_000 A_ : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) A_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( ): A_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Dict = CONFIG_MAP[model_name]['''image_size'''] A_ : List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=SCREAMING_SNAKE_CASE , ) return preprocessor def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A_ : Any = sorted(set(SCREAMING_SNAKE_CASE ) ) A_ : Optional[int] = len(SCREAMING_SNAKE_CASE ) A_ : Dict = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )} A_ : Optional[Any] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A_ : Tuple = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A_ : Any = {} for item in rename_keys: if item[0] in original_param_names: A_ : Optional[Any] = '''efficientnet.''' + item[1] A_ : List[str] = '''classifier.weight''' A_ : Dict = '''classifier.bias''' return key_mapping def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for key, value in tf_params.items(): if "normalization" in key: continue A_ : int = key_mapping[key] if "_conv" in key and "kernel" in key: A_ : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A_ : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A_ : str = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) ) else: A_ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE , weights='''imagenet''' , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1_000 , classifier_activation='''softmax''' , ) A_ : Any = original_model.trainable_variables A_ : int = original_model.non_trainable_variables A_ : List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A_ : List[Any] = param.numpy() A_ : List[str] = list(tf_params.keys() ) # Load HuggingFace model A_ : List[Any] = get_efficientnet_config(SCREAMING_SNAKE_CASE ) A_ : List[str] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() A_ : List[str] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A_ : Optional[int] = rename_keys(SCREAMING_SNAKE_CASE ) replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image A_ : Union[str, Any] = convert_image_processor(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A_ : str = hf_model(**SCREAMING_SNAKE_CASE ) A_ : Dict = outputs.logits.detach().numpy() # Original model inference A_ : int = False A_ : str = CONFIG_MAP[model_name]['''image_size'''] A_ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A_ : str = image.img_to_array(SCREAMING_SNAKE_CASE ) A_ : str = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 ) A_ : Optional[Any] = original_model.predict(SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.mkdir(SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) A_ : Tuple = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
152
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } UpperCamelCase = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off UpperCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ["input_ids", "attention_mask"] snake_case = MBartTokenizer snake_case = [] snake_case = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' A_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = vocab_file A_ : List[Any] = False if not self.vocab_file else True A_ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) A_ : List[Any] = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ : int = src_lang if src_lang is not None else '''en_XX''' A_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) A_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self )->str: '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]: '''simple docstring''' A_ : List[str] = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : str = src_lang A_ : Optional[int] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : Any = tgt_lang_id return inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , )->BatchEncoding: '''simple docstring''' A_ : Optional[int] = src_lang A_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : str = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : int = [] A_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] A_ : int = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) A_ : str = [] A_ : Tuple = [self.eos_token_id, self.cur_lang_code] A_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) A_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) A_ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
152
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) _a = self.transformer_dir shutil.copy( os.path.join(A , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def a__ (self , A , A , A , A=None ) -> Dict: """simple docstring""" _a = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _a = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _a = black.format_str(A , mode=A ) _a = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(A , '''w''' , newline='''\n''' ) as f: f.write(A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A ) with open(A , '''r''' ) as f: self.assertTrue(f.read() , A ) def a__ (self ) -> List[str]: """simple docstring""" _a = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(A , A ) def a__ (self ) -> Any: """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , A , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , A ) , ) # Copy consistency with a really long name _a = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , A , A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , A , overwrite_result=re.sub('''Bert''' , '''TestModel''' , A ) , ) def a__ (self ) -> int: """simple docstring""" _a = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) _a , _a = check_copies.convert_to_localized_md( A , A , localized_readme['''format_model_list'''] ) self.assertFalse(A ) self.assertEqual(A , A ) _a , _a = check_copies.convert_to_localized_md( A , A , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(A ) _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _a , _a = check_copies.convert_to_localized_md( A , A , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(A , A )
11
from __future__ import annotations def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 UpperCAmelCase_ = sum(A ) create_state_space_tree(A , A , A , A , A , A ) return result def __lowerCAmelCase ( A , A , A , A , A , A , ): if sum(A ) > max_sum or (remaining_nums_sum + sum(A )) < max_sum: return if sum(A ) == max_sum: result.append(A ) return for index in range(A , len(A ) ): create_state_space_tree( A , A , index + 1 , [*path, nums[index]] , A , remaining_nums_sum - nums[index] , ) _a: Optional[int] = [3, 34, 4, 12, 5, 2] _a: int = 9 _a: List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
162
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __A ( a_ : Union[str, Any] ,a_ : int ): # ===== initialization ===== lowerCAmelCase : Optional[int] = Mock() lowerCAmelCase : Union[str, Any] = conn, Mock() lowerCAmelCase : List[str] = iter([1, None] ) lowerCAmelCase : Dict = lambda a_ : next(a_ ) # ===== invoke ===== send_file(filename="mytext.txt" ,testing=a_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
551
'''simple docstring''' from __future__ import annotations lowerCAmelCase = [] def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ): for i in range(len(a_ ) ): if board[row][i] == 1: return False for i in range(len(a_ ) ): if board[i][column] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ): if board[i][j] == 1: return False return True def __A ( a_ : list[list[int]] ,a_ : int ): if row >= len(a_ ): solution.append(a_ ) printboard(a_ ) print() return True for i in range(len(a_ ) ): if is_safe(a_ ,a_ ,a_ ): lowerCAmelCase : Any = 1 solve(a_ ,row + 1 ) lowerCAmelCase : List[Any] = 0 return False def __A ( a_ : list[list[int]] ): for i in range(len(a_ ) ): for j in range(len(a_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCAmelCase = 8 lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
551
1
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class a : """simple docstring""" @property def __A ( self ) -> Any: return self.get_dummy_input() @property def __A ( self ) -> Any: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def __A ( self , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , ) -> int: _UpperCAmelCase = 4 _UpperCAmelCase = 32 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = torch.device(_A ) _UpperCAmelCase = (batch_size, num_channels) + sizes _UpperCAmelCase = randn_tensor(_A , generator=_A , device=_A ) _UpperCAmelCase = {'''hidden_states''': hidden_states} if include_temb: _UpperCAmelCase = 128 _UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=_A , device=_A ) if include_res_hidden_states_tuple: _UpperCAmelCase = torch.manual_seed(1 ) _UpperCAmelCase = (randn_tensor(_A , generator=_A , device=_A ),) if include_encoder_hidden_states: _UpperCAmelCase = floats_tensor((batch_size, 32, 32) ).to(_A ) if include_skip_sample: _UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=_A , device=_A ) return dummy_input def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": _UpperCAmelCase = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __A ( self , snake_case_ ) -> Tuple: _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**_A ) unet_block.to(_A ) unet_block.eval() with torch.no_grad(): _UpperCAmelCase = unet_block(**_A ) if isinstance(_A , _A ): _UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape ) _UpperCAmelCase = output[0, -1, -3:, -3:] _UpperCAmelCase = torch.tensor(_A ).to(_A ) assert torch_all_close(output_slice.flatten() , _A , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def __A ( self ) -> List[Any]: _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**_A ) model.to(_A ) model.train() _UpperCAmelCase = model(**_A ) if isinstance(_A , _A ): _UpperCAmelCase = output[0] _UpperCAmelCase = torch.device(_A ) _UpperCAmelCase = randn_tensor(output.shape , device=_A ) _UpperCAmelCase = torch.nn.functional.mse_loss(_A , _A ) loss.backward()
426
import unittest from knapsack import greedy_knapsack as kp class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : Dict = [10, 20, 30, 40, 50, 60] lowercase : Union[str, Any] = [2, 4, 6, 8, 10, 12] lowercase : Optional[int] = 100 self.assertEqual(kp.calc_profit(_A , _A , _A ) , 210 ) def __a ( self : Dict ) -> int: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : str ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''Weight can not be negative.''' ) def __a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(_A , '''Profit can not be negative.''' ) def __a ( self : Tuple ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertRaisesRegex( _A , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
217
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: Dict ={ 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[int] =['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Dict =[ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[int] =[ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _UpperCamelCase: str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() # fmt: off _lowerCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCAmelCase = {'unk_token': '<unk>'} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) _lowerCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } _lowerCAmelCase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any , **_lowerCAmelCase : List[str] ) -> int: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : str , **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any: _lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) _lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors='np' ) _lowerCAmelCase = processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = processor(text=_lowerCAmelCase ) _lowerCAmelCase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(_lowerCAmelCase ) _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
585
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase__ = uuida().hex lowerCAmelCase__ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __lowercase ( _UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' __lowercase = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase , __UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): ua += "; " + user_agent return ua def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> List[str]: '''simple docstring''' if token is None: __lowercase = HfFolder.get_token() if organization is None: __lowercase = whoami(__UpperCamelCase )['''name'''] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase , "local_rank" ) and args.local_rank not in [-1, 0]: return __lowercase = args.hub_token if hasattr(__UpperCamelCase , "hub_token" ) else None __lowercase = get_full_repo_name(__UpperCamelCase , token=__UpperCamelCase ) __lowercase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCamelCase , model_name=__UpperCamelCase , repo_name=__UpperCamelCase , dataset_name=args.dataset_name if hasattr(__UpperCamelCase , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(__UpperCamelCase , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) __lowercase = os.path.join(args.output_dir , "README.md" ) model_card.save(__UpperCamelCase ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None ) -> Dict: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash __lowercase = str(Path(__UpperCamelCase ).as_posix() ) __lowercase = re.search(R"snapshots/([^/]+)/" , __UpperCamelCase ) if search is None: return None __lowercase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase__ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase__ = os.path.join(hf_cache_home, 'diffusers') def __lowercase ( _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: '''simple docstring''' if new_cache_dir is None: __lowercase = DIFFUSERS_CACHE if old_cache_dir is None: __lowercase = old_diffusers_cache __lowercase = Path(__UpperCamelCase ).expanduser() __lowercase = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __lowercase = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase , __UpperCamelCase ) try: os.symlink(__UpperCamelCase , __UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase__ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase__ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase__ = int(f.read()) except ValueError: lowerCAmelCase__ = 0 if cache_version < 1: lowerCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase__ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple: '''simple docstring''' if variant is not None: __lowercase = weights_name.split("." ) __lowercase = splits[:-1] + [variant] + splits[-1:] __lowercase = '''.'''.join(__UpperCamelCase ) return weights_name def __lowercase ( _UpperCAmelCase , *, _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , ) -> List[Any]: '''simple docstring''' __lowercase = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) ): # Load from a PyTorch checkpoint __lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ): __lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: __lowercase = hf_hub_download( __UpperCamelCase , filename=_add_variant(__UpperCamelCase , __UpperCamelCase ) , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __UpperCamelCase , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase , __UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase , __UpperCamelCase )}\' so that the correct variant file can be added.''' , __UpperCamelCase , ) try: # 2. Load model file as usual __lowercase = hf_hub_download( __UpperCamelCase , filename=__UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
321
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase = 4 ): __lowercase : Dict = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __UpperCAmelCase ( __UpperCamelCase ): return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __UpperCAmelCase ( __UpperCamelCase ): return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __UpperCAmelCase ( __UpperCamelCase ): return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Dict = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = matrix[::-1] return matrix def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Dict = [x[::-1] for x in matrix] return matrix def __UpperCAmelCase ( __UpperCamelCase ): for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) a_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
76
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Dict , __a : Any , ) ->Tuple: lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = 13 lowerCamelCase_ : List[Any] = 7 lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[Any] = True lowerCamelCase_ : List[Any] = True lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : Tuple = True lowerCamelCase_ : Dict = False lowerCamelCase_ : int = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : List[str] = 2 lowerCamelCase_ : Dict = 99 lowerCamelCase_ : str = 0 lowerCamelCase_ : Optional[int] = 32 lowerCamelCase_ : str = 2 lowerCamelCase_ : Optional[Any] = 4 lowerCamelCase_ : Union[str, Any] = 0.1 lowerCamelCase_ : str = 0.1 lowerCamelCase_ : Dict = 512 lowerCamelCase_ : List[Any] = 16 lowerCamelCase_ : Optional[Any] = 2 lowerCamelCase_ : List[Any] = 0.02 lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : Optional[int] = 4 lowerCamelCase_ : Optional[Any] = """last""" lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : List[Any] = 0 def _lowerCAmelCase ( self : Tuple ) ->Tuple: lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ : List[Any] = None if self.use_input_lengths: lowerCamelCase_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ : List[str] = None if self.use_token_type_ids: lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ : List[str] = None lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Any = None if self.use_labels: lowerCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , ) ->Dict: lowerCamelCase_ : Tuple = TFFlaubertModel(config=__a ) lowerCamelCase_ : Any = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowerCamelCase_ : str = model(__a ) lowerCamelCase_ : Optional[int] = [input_ids, input_mask] lowerCamelCase_ : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : int , __a : Dict , __a : str , __a : List[str] , __a : Tuple , __a : int , __a : List[str] , __a : Tuple , ) ->str: lowerCamelCase_ : Any = TFFlaubertWithLMHeadModel(__a ) lowerCamelCase_ : List[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowerCamelCase_ : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Any , __a : List[str] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Tuple , __a : List[str] , __a : List[str] , __a : Optional[int] , __a : List[Any] , ) ->Optional[Any]: lowerCamelCase_ : Any = TFFlaubertForQuestionAnsweringSimple(__a ) lowerCamelCase_ : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowerCamelCase_ : Union[str, Any] = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Dict , __a : int , __a : Tuple , __a : Optional[Any] , __a : str , ) ->Dict: lowerCamelCase_ : Tuple = TFFlaubertForSequenceClassification(__a ) lowerCamelCase_ : int = {"""input_ids""": input_ids, """lengths""": input_lengths} lowerCamelCase_ : Tuple = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Dict , __a : Optional[int] , __a : Tuple , __a : Tuple , __a : Any , ) ->str: lowerCamelCase_ : Any = self.num_labels lowerCamelCase_ : List[str] = TFFlaubertForTokenClassification(config=__a ) lowerCamelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase_ : Union[str, Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : int , __a : List[str] , __a : List[str] , __a : Tuple , __a : Optional[int] , ) ->Optional[int]: lowerCamelCase_ : Dict = self.num_choices lowerCamelCase_ : Optional[int] = TFFlaubertForMultipleChoice(config=__a ) lowerCamelCase_ : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCamelCase_ : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase_ : List[str] = self.prepare_config_and_inputs() ( lowerCamelCase_ ) : Any = config_and_inputs lowerCamelCase_ : Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ (a__ , a__ , unittest.TestCase ): '''simple docstring''' _a = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a = False _a = False def _lowerCAmelCase ( self : Dict , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] ) ->List[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self : List[str] ) ->Optional[int]: lowerCamelCase_ : Dict = TFFlaubertModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=__a , emb_dim=37 ) def _lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ) ->Optional[int]: lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def _lowerCAmelCase ( self : str ) ->Tuple: lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def _lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def _lowerCAmelCase ( self : List[str] ) ->List[str]: lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def _lowerCAmelCase ( self : Optional[int] ) ->Dict: lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__a ) def _lowerCAmelCase ( self : Any ) ->List[Any]: lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__a ) @slow def _lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Tuple = TFFlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self : Any ) ->List[Any]: lowerCamelCase_ : Dict = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowerCamelCase_ : Optional[int] = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ : Optional[int] = model(__a )[0] lowerCamelCase_ : List[str] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. lowerCamelCase_ : str = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
707
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCamelCase ( A__ : Dict ) -> Optional[int]: if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) snake_case__ : Dict = parser.parse_args() snake_case__ : List[str] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
171
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: Dict = logging.get_logger(__name__) __a: Optional[int] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''efficientnet''' def __init__( self : Dict , lowerCamelCase : int = 3 , lowerCamelCase : int = 600 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 3.1 , lowerCamelCase : int = 8 , lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase : List[int] = [] , lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase : float = 0.25 , lowerCamelCase : str = "swish" , lowerCamelCase : int = 2560 , lowerCamelCase : str = "mean" , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 0.001 , lowerCamelCase : float = 0.99 , lowerCamelCase : float = 0.5 , lowerCamelCase : float = 0.2 , **lowerCamelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(lowerCamelCase ) * 4 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase ( self : Dict ) -> float: """simple docstring""" return 1E-5
108
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> List[str]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Union[str, Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
601
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __UpperCAmelCase ): """simple docstring""" def __init__( self :Optional[Any] , **lowerCamelCase__ :str ): requires_backends(self , ["""bs4"""] ) super().__init__(**_lowerCamelCase ) def __a ( self :Optional[Any] , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :int = [] UpperCamelCase__ :Optional[Any] = [] UpperCamelCase__ :Dict = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase__ :Optional[Any] = parent.find_all(child.name , recursive=_lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase__ :str = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __a ( self :List[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :int = BeautifulSoup(_lowerCamelCase , """html.parser""" ) UpperCamelCase__ :List[str] = [] UpperCamelCase__ :Any = [] UpperCamelCase__ :Tuple = [] for element in html_code.descendants: if type(_lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase__ :Optional[int] = html.unescape(_lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.xpath_soup(_lowerCamelCase ) stringaxtag_seq.append(_lowerCamelCase ) stringaxsubs_seq.append(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Tuple = """""" for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] ): UpperCamelCase__ :Any = False # Check that strings has a valid type if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase__ :List[Any] = True elif isinstance(_lowerCamelCase , (list, tuple) ): if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ): UpperCamelCase__ :Optional[Any] = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"""but is of type {type(_lowerCamelCase )}.""" ) UpperCamelCase__ :Optional[int] = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) ) if not is_batched: UpperCamelCase__ :str = [html_strings] # Get nodes + xpaths UpperCamelCase__ :Any = [] UpperCamelCase__ :Union[str, Any] = [] for html_string in html_strings: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.get_three_from_single(_lowerCamelCase ) nodes.append(_lowerCamelCase ) UpperCamelCase__ :Dict = [] for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase__ :Any = self.construct_xpath(_lowerCamelCase , _lowerCamelCase ) xpath_strings.append(_lowerCamelCase ) xpaths.append(_lowerCamelCase ) # return as Dict UpperCamelCase__ :str = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase__ :List[str] = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) return encoded_inputs
701
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Any = StableDiffusionInstructPixaPixPipeline _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} _snake_case : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self :List[Any] ): torch.manual_seed(0 ) UpperCamelCase__ :int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCamelCase__ :Any = CLIPTextModel(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase__ :Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __a ( self :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any]=0 ): UpperCamelCase__ :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ :int = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ) if str(lowerCamelCase__ ).startswith("""mps""" ): UpperCamelCase__ :Dict = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ :Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :List[Any] = self.get_dummy_components() UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) UpperCamelCase__ :str = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = sd_pipe(**lowerCamelCase__ ).images UpperCamelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ :Optional[int] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __a ( self :int ): UpperCamelCase__ :List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Optional[Any] = self.get_dummy_components() UpperCamelCase__ :int = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) UpperCamelCase__ :int = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = """french fries""" UpperCamelCase__ :str = sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) UpperCamelCase__ :str = output.images UpperCamelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ :int = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __a ( self :str ): UpperCamelCase__ :int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Optional[Any] = self.get_dummy_components() UpperCamelCase__ :str = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) UpperCamelCase__ :Dict = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Any = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ :Dict = [inputs["""prompt"""]] * 2 UpperCamelCase__ :List[Any] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 UpperCamelCase__ :int = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ ) UpperCamelCase__ :List[str] = image / 2 + 0.5 UpperCamelCase__ :List[Any] = image.permute(0 , 3 , 1 , 2 ) UpperCamelCase__ :Optional[Any] = image.repeat(2 , 1 , 1 , 1 ) UpperCamelCase__ :Union[str, Any] = sd_pipe(**lowerCamelCase__ ).images UpperCamelCase__ :str = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCamelCase__ :Optional[Any] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __a ( self :str ): UpperCamelCase__ :Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ :Optional[int] = self.get_dummy_components() UpperCamelCase__ :str = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.get_dummy_inputs(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = sd_pipe(**lowerCamelCase__ ).images UpperCamelCase__ :int = image[0, -3:, -3:, -1] UpperCamelCase__ :str = [round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCamelCase__ :Dict = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __a ( self :Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = self.get_dummy_components() UpperCamelCase__ :Tuple = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :List[str] = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) )[0] UpperCamelCase__ :Union[str, Any] = components["""vae"""] UpperCamelCase__ :int = self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCamelCase__ :Any = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCamelCase__ :str = pipe(**lowerCamelCase__ )[0] UpperCamelCase__ :Union[str, Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :int , lowerCamelCase__ :Tuple=0 ): UpperCamelCase__ :Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) UpperCamelCase__ :int = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) UpperCamelCase__ :str = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def __a ( self :Optional[int] ): UpperCamelCase__ :Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase__ :Any = self.get_inputs() UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ).images UpperCamelCase__ :Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __a ( self :Tuple ): UpperCamelCase__ :List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) UpperCamelCase__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase__ :Tuple = self.get_inputs() UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ).images UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[str] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __a ( self :Optional[Any] ): UpperCamelCase__ :int = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase__ :Optional[Any] = self.get_inputs() UpperCamelCase__ :int = pipe(**lowerCamelCase__ ).images UpperCamelCase__ :Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __a ( self :Dict ): UpperCamelCase__ :Optional[Any] = 0 def callback_fn(lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :torch.FloatTensor ) -> None: UpperCamelCase__ :Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase__ :int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ :Tuple = latents[0, -3:, -3:, -1] UpperCamelCase__ :Union[str, Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCamelCase__ :Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ :List[Any] = latents[0, -3:, -3:, -1] UpperCamelCase__ :Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCamelCase__ :Any = False UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) UpperCamelCase__ :Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase__ :str = self.get_inputs() pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self :List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase__ :List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) UpperCamelCase__ :str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase__ :Optional[int] = self.get_inputs() UpperCamelCase__ :List[Any] = pipe(**lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase__ :List[Any] = inputs["""image"""].resize((5_04, 5_04) ) UpperCamelCase__ :Dict = """timbrooks/instruct-pix2pix""" UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ) UpperCamelCase__ :Tuple = output.images[0] UpperCamelCase__ :Optional[int] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
383
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __SCREAMING_SNAKE_CASE : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase__ ( lowerCAmelCase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowerCAmelCase__ ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) lowercase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format lowercase = PipelineDataFormat.from_str( format=lowerCAmelCase__ ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(lowerCAmelCase__ ,lowerCAmelCase__ ) class A_ ( __a ): def __init__( self : List[Any] , snake_case__ : Pipeline , snake_case__ : PipelineDataFormat ): lowercase = nlp lowercase = reader @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case__ : ArgumentParser ): lowercase = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=snake_case__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=snake_case__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=snake_case__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=snake_case__ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=snake_case__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=snake_case__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=snake_case__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=snake_case__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowercase , lowercase = self._nlp, [] for entry in self._reader: lowercase = nlp(**snake_case__ ) if self._reader.is_multi_columns else nlp(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): outputs.append(snake_case__ ) else: outputs += output # Saving data if self._nlp.binary_output: lowercase = self._reader.save_binary(snake_case__ ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(snake_case__ )
428
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( __a , unittest.TestCase ): _A :Tuple = KandinskyVaaInpaintPipeline _A :Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A :Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A :Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A :Union[str, Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**snake_case__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowercase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 ): lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**snake_case__ ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((7_68, 7_68) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
428
1
from jiwer import compute_measures import datasets a_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ a_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ a_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self: Optional[Any] ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any=None , __lowerCAmelCase: int=None , __lowerCAmelCase: Dict=False ) -> List[str]: '''simple docstring''' if concatenate_texts: return compute_measures(__lowerCAmelCase , __lowerCAmelCase )["wer"] else: __UpperCAmelCase = 0 __UpperCAmelCase = 0 for prediction, reference in zip(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase = compute_measures(__lowerCAmelCase , __lowerCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
286
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = ['transformers', 'torch', 'note_seq'] def __init__( self: List[str] , *__lowerCAmelCase: Optional[int] , **__lowerCAmelCase: List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCAmelCase ( cls: Optional[int] , *__lowerCAmelCase: Any , **__lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCAmelCase ( cls: Union[str, Any] , *__lowerCAmelCase: Optional[Any] , **__lowerCAmelCase: Optional[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
286
1
"""simple docstring""" from statistics import mean, stdev def __snake_case ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list: '''simple docstring''' _UpperCAmelCase : str = min(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Any = max(SCREAMING_SNAKE_CASE__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data] def __snake_case ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list: '''simple docstring''' _UpperCAmelCase : int = mean(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = stdev(SCREAMING_SNAKE_CASE__ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
289
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = ["model.decoder.embed_positions.weights"] def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' if "emb" in name: _UpperCAmelCase : int = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _UpperCAmelCase : Any = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _UpperCAmelCase : List[str] = name.replace("linear1" , "fc1" ) if "linear2" in name: _UpperCAmelCase : Any = name.replace("linear2" , "fc2" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _UpperCAmelCase : List[Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _UpperCAmelCase : List[str] = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _UpperCAmelCase : Dict = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCAmelCase : Optional[Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def __snake_case ( SCREAMING_SNAKE_CASE__ : OrderedDict , SCREAMING_SNAKE_CASE__ : int ) -> Tuple[Dict, Dict]: '''simple docstring''' _UpperCAmelCase : Tuple = list(state_dict.keys() ) _UpperCAmelCase : Dict = {} for key in keys: _UpperCAmelCase : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Any = rename_keys(SCREAMING_SNAKE_CASE__ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCAmelCase : Optional[int] = val[:hidden_size, :] _UpperCAmelCase : str = val[hidden_size : 2 * hidden_size, :] _UpperCAmelCase : List[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCAmelCase : Union[str, Any] = val else: _UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values _UpperCAmelCase : Union[str, Any] = 1_024 _UpperCAmelCase : Tuple = 24 _UpperCAmelCase : List[str] = 16 elif checkpoint == "medium": _UpperCAmelCase : List[str] = 1_536 _UpperCAmelCase : List[str] = 48 _UpperCAmelCase : str = 24 elif checkpoint == "large": _UpperCAmelCase : Dict = 2_048 _UpperCAmelCase : Optional[int] = 48 _UpperCAmelCase : Tuple = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) _UpperCAmelCase : Union[str, Any] = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE__ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , ) return config @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = fairseq_model.lm.state_dict() _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = rename_state_dict( SCREAMING_SNAKE_CASE__ , hidden_size=decoder_config.hidden_size ) _UpperCAmelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" ) _UpperCAmelCase : List[str] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCAmelCase : Union[str, Any] = MusicgenForCausalLM(SCREAMING_SNAKE_CASE__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = decoder.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model _UpperCAmelCase : Dict = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE__ , audio_encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE__ ) # check we can do a forward pass _UpperCAmelCase : int = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _UpperCAmelCase : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("t5-base" ) _UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _UpperCAmelCase : Optional[Any] = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # set the appropriate bos/pad token ids _UpperCAmelCase : Optional[int] = 2_048 _UpperCAmelCase : Union[str, Any] = 2_048 # set other default generation config params _UpperCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Dict = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _lowerCAmelCase : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
289
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class snake_case_ ( __lowercase ): A_ = 'data2vec-text' def __init__( self : List[str] , _snake_case : List[Any]=30522 , _snake_case : Optional[Any]=768 , _snake_case : Dict=12 , _snake_case : int=12 , _snake_case : Any=3072 , _snake_case : Tuple="gelu" , _snake_case : List[str]=0.1 , _snake_case : int=0.1 , _snake_case : Dict=512 , _snake_case : List[Any]=2 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=1E-12 , _snake_case : Union[str, Any]=1 , _snake_case : List[Any]=0 , _snake_case : List[str]=2 , _snake_case : Optional[Any]="absolute" , _snake_case : Any=True , _snake_case : List[Any]=None , **_snake_case : Union[str, Any] , )->Any: '''simple docstring''' super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Dict = hidden_act __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : str = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : Dict = position_embedding_type __lowerCAmelCase : Union[str, Any] = use_cache __lowerCAmelCase : List[Any] = classifier_dropout class snake_case_ ( __lowercase ): @property def UpperCAmelCase__ ( self : Optional[int] )->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCAmelCase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
240
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCAmelCase = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _UpperCAmelCase = { 'facebook/xglm-564M': 2048, } class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _snake_case : Dict , _snake_case : List[Any]="<s>" , _snake_case : int="</s>" , _snake_case : List[str]="</s>" , _snake_case : Dict="<s>" , _snake_case : Tuple="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[str] , )->None: '''simple docstring''' __lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowerCAmelCase : Tuple = 7 __lowerCAmelCase : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __lowerCAmelCase : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCAmelCase : Union[str, Any] = len(self.sp_model ) __lowerCAmelCase : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) __lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple )->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : Tuple = None __lowerCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _snake_case : List[Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Tuple = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowerCAmelCase : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : List[Any] , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : Union[str, Any] )->Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase : Union[str, Any] = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[int] )->Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Any )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = """""".join(_snake_case ).replace(_snake_case , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : int = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
240
1
'''simple docstring''' from __future__ import annotations from random import random class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : int | None = None ) -> Union[str, Any]: '''simple docstring''' lowercase : str =value lowercase : Tuple =random() lowercase : Node | None =None lowercase : Node | None =None def __repr__( self : Tuple ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self : Tuple ) -> str: '''simple docstring''' lowercase : Dict =str(self.value ) + ''' ''' lowercase : Optional[Any] =str(self.left or '''''' ) lowercase : int =str(self.right or '''''' ) return value + left + right def lowercase_ ( __A : Node | None , __A : int ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase : Optional[Any] =split(root.left , __A ) return left, root else: lowercase , lowercase : List[str] =split(root.right , __A ) return root, right def lowercase_ ( __A : Node | None , __A : Node | None ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase : Union[str, Any] =merge(left.right , __A ) return left else: lowercase : Union[str, Any] =merge(__A , right.left ) return right def lowercase_ ( __A : Node | None , __A : int ) -> Node | None: """simple docstring""" lowercase : Union[str, Any] =Node(__A ) lowercase , lowercase : Union[str, Any] =split(__A , __A ) return merge(merge(__A , __A ) , __A ) def lowercase_ ( __A : Node | None , __A : int ) -> Node | None: """simple docstring""" lowercase , lowercase : str =split(__A , value - 1 ) lowercase , lowercase : Optional[Any] =split(__A , __A ) return merge(__A , __A ) def lowercase_ ( __A : Node | None ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowercase_ ( __A : Node | None , __A : str ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": lowercase : Tuple =insert(__A , int(arg[1:] ) ) elif arg[0] == "-": lowercase : Optional[int] =erase(__A , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[Any] =None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowercase : Optional[int] =input() while args != "q": lowercase : Tuple =interact_treap(__A , __A ) print(__A ) lowercase : List[str] =input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
94
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Optional[int] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
649
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
576
import math def __lowercase ( _UpperCAmelCase ) -> str: '''simple docstring''' __lowercase = 0 __lowercase = 0 while num > 0: __lowercase = num % 8 __lowercase = octal + (remainder * math.floor(math.pow(10 , _UpperCAmelCase ) )) counter += 1 __lowercase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(_UpperCAmelCase )}''' def __lowercase ( ) -> None: '''simple docstring''' print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
576
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[Any] = tempfile.mkdtemp() a_ : Any = BlipImageProcessor() a_ : Optional[int] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) a_ : Tuple = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) a_ : Dict = InstructBlipProcessor(_lowercase , _lowercase , _lowercase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **_lowercase ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer def UpperCamelCase__ ( self , **_lowercase ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def UpperCamelCase__ ( self , **_lowercase ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).qformer_tokenizer def UpperCamelCase__ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> List[str]: a_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : Optional[Any] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[str] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ : str = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) a_ : List[str] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) self.assertIsInstance(processor.qformer_tokenizer , _lowercase ) def UpperCamelCase__ ( self ) -> str: a_ : Optional[int] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Dict = self.get_qformer_tokenizer() a_ : List[str] = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) a_ : int = self.prepare_image_inputs() a_ : Any = image_processor(_lowercase , return_tensors="""np""" ) a_ : str = processor(images=_lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Any = self.get_image_processor() a_ : Optional[int] = self.get_tokenizer() a_ : str = self.get_qformer_tokenizer() a_ : Tuple = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) a_ : List[Any] = """lower newer""" a_ : int = processor(text=_lowercase ) a_ : Dict = tokenizer(_lowercase , return_token_type_ids=_lowercase ) a_ : Any = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[Any] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Dict = self.get_qformer_tokenizer() a_ : int = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) a_ : Dict = """lower newer""" a_ : Optional[Any] = self.prepare_image_inputs() a_ : str = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCamelCase__ ( self ) -> Tuple: a_ : int = self.get_image_processor() a_ : int = self.get_tokenizer() a_ : Tuple = self.get_qformer_tokenizer() a_ : Dict = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) a_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : int = processor.batch_decode(_lowercase ) a_ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : str = self.get_image_processor() a_ : Dict = self.get_tokenizer() a_ : Optional[int] = self.get_qformer_tokenizer() a_ : Optional[int] = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) a_ : List[str] = """lower newer""" a_ : Union[str, Any] = self.prepare_image_inputs() a_ : Union[str, Any] = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
540
import math def _UpperCAmelCase ( a__ = 1_0_0): '''simple docstring''' a_ : List[str] = sum(i * i for i in range(1 , n + 1)) a_ : Optional[Any] = int(math.pow(sum(range(1 , n + 1)) , 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
540
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = '▁' UpperCamelCase_ = {'vocab_file': 'spiece.model'} UpperCamelCase_ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCamelCase_ = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : List[str] = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=[] , UpperCAmelCase = None , **UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __UpperCAmelCase =vocab_file __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase) @property def A__ (self): '''simple docstring''' return self.sp_model.get_piece_size() def A__ (self): '''simple docstring''' __UpperCAmelCase ={self.convert_ids_to_tokens(UpperCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): '''simple docstring''' __UpperCAmelCase =self.__dict__.copy() __UpperCAmelCase =None return state def __setstate__(self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCAmelCase ={} __UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ (self , UpperCAmelCase): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase) def A__ (self , UpperCAmelCase): '''simple docstring''' if index < self.sp_model.get_piece_size(): __UpperCAmelCase =self.sp_model.IdToPiece(UpperCAmelCase) return token def A__ (self , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =[] __UpperCAmelCase ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase) + token __UpperCAmelCase =[] else: current_sub_tokens.append(UpperCAmelCase) out_string += self.sp_model.decode(UpperCAmelCase) return out_string.strip() def A__ (self , UpperCAmelCase , UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(UpperCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCAmelCase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase , '''wb''') as fi: __UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase) return (out_vocab_file,)
142
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> list: __UpperCAmelCase =[] __UpperCAmelCase , __UpperCAmelCase =input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __UpperCAmelCase =result + left + right return input_list def SCREAMING_SNAKE_CASE ( snake_case__ ) -> list: if len(snake_case__ ) <= 1: return input_list __UpperCAmelCase =list(snake_case__ ) # iteration for two-way merging __UpperCAmelCase =2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): __UpperCAmelCase =i __UpperCAmelCase =i + p - 1 __UpperCAmelCase =(low + high + 1) // 2 __UpperCAmelCase =merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): __UpperCAmelCase =i __UpperCAmelCase =merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCamelCase_ = input('Enter numbers separated by a comma:\n').strip() if user_input == "": UpperCamelCase_ = [] else: UpperCamelCase_ = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
142
1
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = [0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase_ : int = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
30
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase ( a_=None ) -> List[str]: if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser('test' ) else: lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCAmelCase_ = script_name else: lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}''' lowerCAmelCase_ = ['accelerate-launch'] + test_args.split() lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def lowerCamelCase ( ) -> Optional[Any]: lowerCAmelCase_ = test_command_parser() lowerCAmelCase_ = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
318
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:List[Any] = "ClapFeatureExtractor" _UpperCamelCase:List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Any: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> str: lowerCamelCase_ =kwargs.pop("""sampling_rate""" , _SCREAMING_SNAKE_CASE ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if audios is not None: lowerCamelCase_ =self.feature_extractor( _SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and audios is not None: lowerCamelCase_ =audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Tuple: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )-> Dict: lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
75
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : List[str] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __UpperCamelCase ( ) ->List[str]: """simple docstring""" lowerCamelCase_ =_ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase_ =get_sagemaker_input() else: lowerCamelCase_ =get_cluster_input() return config def __UpperCamelCase ( _A : List[str]=None ) ->str: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser("""config""" , description=_A ) else: lowerCamelCase_ =argparse.ArgumentParser("""Accelerate config command""" , description=_A ) parser.add_argument( """--config_file""" , default=_A , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =get_user_input() if args.config_file is not None: lowerCamelCase_ =args.config_file else: if not os.path.isdir(_A ): os.makedirs(_A ) lowerCamelCase_ =default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(_A ) else: config.to_yaml_file(_A ) print(f'accelerate configuration saved at {config_file}' ) def __UpperCamelCase ( ) ->Dict: """simple docstring""" lowerCamelCase_ =config_command_parser() lowerCamelCase_ =parser.parse_args() config_command(_A ) if __name__ == "__main__": main()
75
1
class a_ : def __init__( self , SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE = False ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ = {} # A node will be a leaf if the tree contains its word SCREAMING_SNAKE_CASE_ = is_leaf SCREAMING_SNAKE_CASE_ = prefix def A_( self , SCREAMING_SNAKE_CASE ) -> tuple[str, str, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A_( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for word in words: self.insert(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.prefix == word: SCREAMING_SNAKE_CASE_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: SCREAMING_SNAKE_CASE_ = RadixNode(prefix=SCREAMING_SNAKE_CASE , is_leaf=SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ = self.nodes[word[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: SCREAMING_SNAKE_CASE_ = remaining_prefix SCREAMING_SNAKE_CASE_ = self.nodes[matching_string[0]] SCREAMING_SNAKE_CASE_ = RadixNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = aux_node if remaining_word == "": SCREAMING_SNAKE_CASE_ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE ) def A_( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: SCREAMING_SNAKE_CASE_ = list(self.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf self.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: SCREAMING_SNAKE_CASE_ = False # If there is 1 edge, we merge it with its child else: SCREAMING_SNAKE_CASE_ = list(incoming_node.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes return True def A_( self , SCREAMING_SNAKE_CASE = 0 ) -> None: """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowercase ( ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'banana bananas bandana band apple all beast'.split() SCREAMING_SNAKE_CASE_ = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowercase ( ) -> None: '''simple docstring''' assert test_trie() def lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = RadixNode() SCREAMING_SNAKE_CASE_ = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(SCREAMING_SNAKE_CASE ) print('Words:' , SCREAMING_SNAKE_CASE ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
205
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ : Optional[Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a_ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=14 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=19 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE=25 , SCREAMING_SNAKE_CASE=5 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length SCREAMING_SNAKE_CASE_ = cardinality SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence SCREAMING_SNAKE_CASE_ = embedding_dimension SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = context_length SCREAMING_SNAKE_CASE_ = prediction_length + label_length SCREAMING_SNAKE_CASE_ = label_length SCREAMING_SNAKE_CASE_ = moving_average SCREAMING_SNAKE_CASE_ = autocorrelation_factor def A_( self ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A_( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = config.context_length + max(config.lags_sequence ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length] ) SCREAMING_SNAKE_CASE_ = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE ) return config, inputs_dict def A_( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.create_network_inputs(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) SCREAMING_SNAKE_CASE_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) SCREAMING_SNAKE_CASE_ = encoder(inputs_embeds=SCREAMING_SNAKE_CASE )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) SCREAMING_SNAKE_CASE_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) SCREAMING_SNAKE_CASE_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) SCREAMING_SNAKE_CASE_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) SCREAMING_SNAKE_CASE_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = decoder( trend=SCREAMING_SNAKE_CASE , inputs_embeds=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): A = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A = (AutoformerForPrediction,) if is_torch_available() else () A = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} A = False A = False A = False A = False A = False A = False def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def A_( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertEqual(info['missing_keys'] , [] ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason='Model has no tokens embeddings' ) def A_( self ) -> Union[str, Any]: """simple docstring""" pass def A_( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = inspect.signature(getattr(SCREAMING_SNAKE_CASE , 'forward' ) ) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE ) def A_( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'decoder_seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'encoder_seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'd_model' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'num_attention_heads' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # decoder attentions SCREAMING_SNAKE_CASE_ = outputs.decoder_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions SCREAMING_SNAKE_CASE_ = outputs.cross_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A_( self ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase ( SCREAMING_SNAKE_CASE="train-batch.pt" ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=SCREAMING_SNAKE_CASE , repo_type='dataset' ) SCREAMING_SNAKE_CASE_ = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class a_ ( unittest.TestCase ): def A_( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] SCREAMING_SNAKE_CASE_ = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def A_( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE , rtol=1e-1 ) )
205
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'detr' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int],__A : Tuple=True,__A : List[Any]=None,__A : List[str]=3,__A : Any=1_0_0,__A : Union[str, Any]=6,__A : Union[str, Any]=2_0_4_8,__A : str=8,__A : Dict=6,__A : Tuple=2_0_4_8,__A : Optional[int]=8,__A : int=0.0,__A : Union[str, Any]=0.0,__A : Optional[Any]=True,__A : Union[str, Any]="relu",__A : str=2_5_6,__A : int=0.1,__A : List[str]=0.0,__A : Union[str, Any]=0.0,__A : int=0.02,__A : Union[str, Any]=1.0,__A : str=False,__A : int="sine",__A : List[str]="resnet50",__A : List[Any]=True,__A : Tuple=False,__A : Dict=1,__A : Optional[Any]=5,__A : Optional[int]=2,__A : List[str]=1,__A : int=1,__A : str=5,__A : List[Any]=2,__A : Union[str, Any]=0.1,**__A : Union[str, Any],): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__A,__A ): _lowerCamelCase : Union[str, Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[int] = config_class.from_dict(__A ) # set timm attributes to None _lowerCamelCase : List[Any] = None, None, None _lowerCamelCase : Tuple = use_timm_backbone _lowerCamelCase : Dict = backbone_config _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Union[str, Any] = num_queries _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : int = encoder_attention_heads _lowerCamelCase : Union[str, Any] = decoder_ffn_dim _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Dict = decoder_attention_heads _lowerCamelCase : Optional[Any] = dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : str = init_std _lowerCamelCase : Dict = init_xavier_std _lowerCamelCase : Tuple = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : List[str] = auxiliary_loss _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Union[str, Any] = backbone _lowerCamelCase : str = use_pretrained_backbone _lowerCamelCase : Union[str, Any] = dilation # Hungarian matcher _lowerCamelCase : Any = class_cost _lowerCamelCase : int = bbox_cost _lowerCamelCase : Tuple = giou_cost # Loss coefficients _lowerCamelCase : Union[str, Any] = mask_loss_coefficient _lowerCamelCase : Tuple = dice_loss_coefficient _lowerCamelCase : str = bbox_loss_coefficient _lowerCamelCase : Dict = giou_loss_coefficient _lowerCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=__A,**__A ) @property def lowerCamelCase_ ( self : Tuple ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self : str ): return self.d_model @classmethod def lowerCamelCase_ ( cls : str,__A : PretrainedConfig,**__A : Optional[Any] ): return cls(backbone_config=__A,**__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output class UpperCAmelCase__ ( A ): lowerCAmelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return 1e-5 @property def lowerCamelCase_ ( self : Optional[int] ): return 1_2
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int]=0) ->Union[str, Any]: '''simple docstring''' A__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCAmelCase__)) A__ = torch.manual_seed(UpperCAmelCase__) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs() A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') A__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs() A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs() A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs() A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs() A__ = pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' A__ = ort.SessionOptions() A__ = False return options def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') A__ = init_image.resize((128, 128)) # using the PNDM scheduler by default A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''A fantasy landscape, trending on artstation''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') A__ = init_image.resize((128, 128)) A__ = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=UpperCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''A fantasy landscape, trending on artstation''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
87
'''simple docstring''' from collections.abc import Sequence def _A ( _lowerCAmelCase = None ): """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) __lowercase =nums[0] for i in range(1 , len(_lowerCAmelCase ) ): __lowercase =nums[i] __lowercase =max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase = int(input("""Enter number of elements : """).strip()) lowerCamelCase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
474
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case :str = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Union[str, Any] = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __snake_case :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case :int = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _A ( tr.AbstractTransform ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "): '''simple docstring''' __a = sentence_delimiter def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return list(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE): chars.extend(self.process_string(__SCREAMING_SNAKE_CASE)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1: chars.append(self.sentence_delimiter) return chars __snake_case :Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case :Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case :Optional[int] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case :Tuple = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case :Tuple = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> list: if len(SCREAMING_SNAKE_CASE__ ) == 0: return [] a_ , a_ : Dict = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) a_ : Any = int(max_value - min_value ) + 1 a_ : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE__ ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
237
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: a_ : Tuple = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["projector.weight"] a_ : Dict = downstream_dict["projector.bias"] a_ : Tuple = downstream_dict["model.post_net.linear.weight"] a_ : int = downstream_dict["model.post_net.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = downstream_dict["model.linear.weight"] a_ : List[Any] = downstream_dict["model.linear.bias"] return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) a_ : Any = downstream_dict["connector.weight"] a_ : Tuple = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ : List[str] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ : int = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ : List[str] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location="cpu" ) a_ : List[str] = checkpoint["Downstream"] a_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ : Any = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForXVector" ): a_ : Any = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ : Tuple = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
237
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _A : Optional[int] =300 # TEMPERATURE (unit = K) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> float: if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
631
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """width_multiplier""" ) ) class _lowercase : def __init__( self: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: str=13 , UpperCamelCase__: Any=64 , UpperCamelCase__: Optional[Any]=2 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]="swish" , UpperCamelCase__: Any=3 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Dict=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Any=10 , UpperCamelCase__: int=None , UpperCamelCase__: List[Any]=0.25 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Optional[int]=0.0 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = conv_kernel_size lowerCamelCase__ : Any = output_stride lowerCamelCase__ : Union[str, Any] = classifier_dropout_prob lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : List[Any] = scope lowerCamelCase__ : Tuple = width_multiplier lowerCamelCase__ : List[Any] = ffn_dropout lowerCamelCase__ : Any = attn_dropout def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Union[str, Any] = MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : str = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Dict = MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs lowerCamelCase__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = MobileViTVaModelTester(self ) lowerCamelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Tuple ): pass def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): def check_hidden_states_output(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = outputs.hidden_states lowerCamelCase__ : List[Any] = 5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ : int = 2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Any = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Any = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase__ ) lowerCamelCase__ : str = outputs.logits # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : List[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = outputs.logits.detach().cpu() lowerCamelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) lowerCamelCase__ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) lowerCamelCase__ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
631
1
"""simple docstring""" import numpy as np def lowercase__ ( lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray , lowerCAmelCase : float = 1E-1_2 , lowerCAmelCase : int = 100 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase ) UpperCAmelCase = np.iscomplexobj(lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase = False UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 1E1_2 while not convergence: # Multiple matrix by the vector. UpperCAmelCase = np.dot(lowerCAmelCase , lowerCAmelCase ) # Normalize the resulting output vector. UpperCAmelCase = w / np.linalg.norm(lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase = vector.conj().T if is_complex else vector.T UpperCAmelCase = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) ) # Check convergence. UpperCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase = True UpperCAmelCase = lambda_ if is_complex: UpperCAmelCase = np.real(lambda_ ) return lambda_, vector def lowercase__ ( ) -> None: """simple docstring""" UpperCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase = np.array([41, 4, 20] ) UpperCAmelCase = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase = real_input_matrix UpperCAmelCase = real_vector elif problem_type == "complex": UpperCAmelCase = complex_input_matrix UpperCAmelCase = complex_vector # Our implementation. UpperCAmelCase , UpperCAmelCase = power_iteration(lowerCAmelCase , lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase , UpperCAmelCase = np.linalg.eigh(lowerCAmelCase ) # Last eigenvalue is the maximum one. UpperCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
373
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=2 , lowercase_=9_9 , lowercase_=0 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_2 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=4 , lowercase_="last" , lowercase_=None , lowercase_=None , ) -> str: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_lengths UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = gelu_activation UpperCAmelCase = sinusoidal_embeddings UpperCAmelCase = causal UpperCAmelCase = asm UpperCAmelCase = n_langs UpperCAmelCase = vocab_size UpperCAmelCase = n_special UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = summary_type UpperCAmelCase = use_proj UpperCAmelCase = scope def a_ ( self ) -> int: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a_ ( self ) -> Union[str, Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: UpperCAmelCase = FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , lengths=lowercase_ , langs=lowercase_ ) UpperCAmelCase = model(lowercase_ , langs=lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any: UpperCAmelCase = FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: UpperCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int: UpperCAmelCase = FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , ) UpperCAmelCase = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , ) ((UpperCAmelCase) , ) = result_with_labels.to_tuple() UpperCAmelCase = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) ((UpperCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict: UpperCAmelCase = FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ ) UpperCAmelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: UpperCAmelCase = self.num_labels UpperCAmelCase = FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: UpperCAmelCase = self.num_choices UpperCAmelCase = FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a_ ( self , lowercase_ , lowercase_ , lowercase_=False ) -> List[str]: UpperCAmelCase = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def a_ ( self ) -> List[str]: UpperCAmelCase = FlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , emb_dim=3_7 ) def a_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a_ ( self ) -> Dict: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def a_ ( self ) -> int: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def a_ ( self ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def a_ ( self ) -> str: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def a_ ( self ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def a_ ( self ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def a_ ( self ) -> List[str]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def a_ ( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCAmelCase = True UpperCAmelCase = model_class(config=lowercase_ ) UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase = torch.jit.trace( lowercase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_ , os.path.join(lowercase_ , 'traced_model.pt' ) ) UpperCAmelCase = torch.jit.load(os.path.join(lowercase_ , 'traced_model.pt' ) , map_location=lowercase_ ) loaded(inputs_dict['input_ids'].to(lowercase_ ) , inputs_dict['attention_mask'].to(lowercase_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a_ ( self ) -> List[Any]: UpperCAmelCase = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase_ )[0] UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase_ ) UpperCAmelCase = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
373
1
from __future__ import annotations from collections import Counter from random import random class _a : """simple docstring""" def __init__( self ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) _lowercase =probability def __lowerCAmelCase ( self ): return list(self.connections ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =0 _lowercase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( __a : str , __a : list[tuple[str, str, float]] , __a : int ) -> dict[str, int]: _lowercase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) _lowercase =Counter(graph.get_nodes() ) _lowercase =start for _ in range(__a ): _lowercase =graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
594
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "PIL.Image.Image" __SCREAMING_SNAKE_CASE = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __SCREAMING_SNAKE_CASE = field(default='Image' , init=lowerCamelCase_ , repr=lowerCamelCase_ ) def __call__( self ): return self.pa_type def __lowerCAmelCase ( self , lowerCAmelCase_ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: _lowercase ={} _lowercase , _lowercase =value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCAmelCase_ ): _lowercase =PIL.Image.open(lowerCAmelCase_ ) else: _lowercase =path.split("::" )[-1] try: _lowercase =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["repo_id"] _lowercase =token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: _lowercase =None with xopen(lowerCAmelCase_ , "rb" , use_auth_token=lowerCAmelCase_ ) as f: _lowercase =BytesIO(f.read() ) _lowercase =PIL.Image.open(bytes_ ) else: _lowercase =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowerCAmelCase ( self ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): if pa.types.is_string(storage.type ): _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) _lowercase =pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowercase =storage.field("bytes" ) else: _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowercase =storage.field("path" ) else: _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _lowercase =pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ ): with xopen(lowerCAmelCase_ , "rb" ) as f: _lowercase =f.read() return bytes_ _lowercase =pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowercase =pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) _lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _lowercase =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> bytes: _lowercase =BytesIO() if image.format in list_image_compression_formats(): _lowercase =image.format else: _lowercase ="PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__a , format=__a ) return buffer.getvalue() def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> dict: if hasattr(__a , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__a )} def __lowerCamelCase ( __a : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) _lowercase =array.dtype _lowercase =dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER _lowercase =dtype.kind _lowercase =dtype.itemsize _lowercase =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _lowercase =np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _lowercase =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _lowercase =dtype_byteorder + dtype_kind + str(__a ) _lowercase =np.dtype(__a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _lowercase =PIL.Image.fromarray(array.astype(__a ) ) return {"path": None, "bytes": image_to_bytes(__a )} def __lowerCamelCase ( __a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: _lowercase , _lowercase =first_non_null_value(__a ) if isinstance(__a , __a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__a , np.ndarray ): _lowercase =no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] elif isinstance(__a , PIL.Image.Image ): _lowercase =no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] else: return objs else: return objs
594
1
def __lowerCamelCase ( ): '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 500 ) if __name__ == "__main__": print(solution())
362
'''simple docstring''' class _a : """simple docstring""" def __init__( self , A__ ) -> List[Any]: # we need a list not a string, so do something to change the type _SCREAMING_SNAKE_CASE = arr.split(""",""" ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) _SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _SCREAMING_SNAKE_CASE = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _SCREAMING_SNAKE_CASE = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = input("please input some numbers:") UpperCamelCase__ : List[Any] = SubArray(whole_array) UpperCamelCase__ : str = array.solve_sub_array() print(("the results is:", re))
591
0
'''simple docstring''' def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" _a : Any = [0] * len(__a ) _a : Optional[Any] = [] _a : Union[str, Any] = [] _a : Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__a ) ): if indegree[i] == 0: queue.append(__a ) while queue: _a : Tuple = queue.pop(0 ) cnt += 1 topo.append(__a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__a ) if cnt != len(__a ): print('Cycle exists' ) else: print(__a ) # Adjacency List of Graph __lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
319
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Any = 1 @register_to_config def __init__( self : Tuple ,_a : Dict=2000 ,_a : Union[str, Any]=0.1 ,_a : Dict=20 ,_a : List[Any]=1E-3 ): '''simple docstring''' _a : Dict = None _a : int = None _a : Union[str, Any] = None def __lowercase ( self : Any ,_a : Dict ,_a : Union[str, torch.device] = None ): '''simple docstring''' _a : List[Any] = torch.linspace(1 ,self.config.sampling_eps ,_a ,device=_a ) def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[int] ,_a : Any ,_a : Union[str, Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a : int = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _a : Any = std.unsqueeze(-1 ) _a : int = -score / std # compute _a : List[Any] = -1.0 / len(self.timesteps ) _a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a : Union[str, Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a : List[str] = beta_t.unsqueeze(-1 ) _a : Any = -0.5 * beta_t * x _a : Any = torch.sqrt(_a ) _a : Optional[Any] = drift - diffusion**2 * score _a : List[Any] = x + drift * dt # add noise _a : int = randn_tensor(x.shape ,layout=x.layout ,generator=_a ,device=x.device ,dtype=x.dtype ) _a : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
319
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) __snake_case = AutoTokenizer.from_pretrained("xlm-roberta-base" ) __snake_case = '''The dog is cute and lives in the garden house''' __snake_case = jnp.array([tokenizer.encode(A__ )] ) __snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __snake_case = model(A__ )['''last_hidden_state'''] self.assertEqual(output.shape , A__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A__ , atol=1e-3 ) )
69
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __UpperCAmelCase( lowercase_ ): return EnvironmentCommand() def __UpperCAmelCase( lowercase_ ): return EnvironmentCommand(args.accelerate_config_file ) class __A ( lowerCamelCase__ ): """simple docstring""" @staticmethod def __snake_case ( a__): """simple docstring""" _lowerCamelCase : List[Any] = parser.add_parser('''env''') download_parser.set_defaults(func=a__) download_parser.add_argument( '''--accelerate-config_file''' , default=a__ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=a__) def __init__( self , a__ , *a__): """simple docstring""" _lowerCamelCase : str = accelerate_config_file def __snake_case ( self): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''not installed''' if is_safetensors_available(): import safetensors _lowerCamelCase : Optional[Any] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''') is not None: import safetensors _lowerCamelCase : Optional[int] = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _lowerCamelCase : Union[str, Any] = '''not installed''' _lowerCamelCase : Any = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCamelCase : Optional[int] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a__): _lowerCamelCase : Optional[int] = load_config_from_file(self._accelerate_config_file).to_dict() _lowerCamelCase : str = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()]) if isinstance(a__ , a__) else F"""\t{accelerate_config}""" ) _lowerCamelCase : List[Any] = '''not installed''' _lowerCamelCase : Tuple = '''NA''' if is_torch_available(): import torch _lowerCamelCase : int = torch.__version__ _lowerCamelCase : List[str] = torch.cuda.is_available() _lowerCamelCase : str = '''not installed''' _lowerCamelCase : Union[str, Any] = '''NA''' if is_tf_available(): import tensorflow as tf _lowerCamelCase : List[str] = tf.__version__ try: # deprecated in v2.1 _lowerCamelCase : Optional[int] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCamelCase : Optional[int] = bool(tf.config.list_physical_devices('''GPU''')) _lowerCamelCase : str = '''not installed''' _lowerCamelCase : List[Any] = '''not installed''' _lowerCamelCase : List[Any] = '''not installed''' _lowerCamelCase : Optional[int] = '''NA''' if is_flax_available(): import flax import jax import jaxlib _lowerCamelCase : Any = flax.__version__ _lowerCamelCase : str = jax.__version__ _lowerCamelCase : Any = jaxlib.__version__ _lowerCamelCase : int = jax.lib.xla_bridge.get_backend().platform _lowerCamelCase : int = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''') print(self.format_dict(a__)) return info @staticmethod def __snake_case ( a__): """simple docstring""" return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
721
import pytest import datasets # Import fixture modules as plugins _lowerCamelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __UpperCAmelCase( lowercase_ , lowercase_ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __UpperCAmelCase( lowercase_ ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ , lowercase_ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _lowerCamelCase : Optional[Any] = tmp_path_factory.getbasetemp() / '''cache''' _lowerCamelCase : Optional[Any] = test_hf_cache_home / '''datasets''' _lowerCamelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' _lowerCamelCase : Dict = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) _lowerCamelCase : str = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) _lowerCamelCase : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __UpperCAmelCase( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __UpperCAmelCase( lowercase_ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
613
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''efficientformer''' def __init__( self , snake_case_ = [3, 2, 6, 4] , snake_case_ = [48, 96, 224, 448] , snake_case_ = [True, True, True, True] , snake_case_ = 448 , snake_case_ = 32 , snake_case_ = 4 , snake_case_ = 7 , snake_case_ = 5 , snake_case_ = 8 , snake_case_ = 4 , snake_case_ = 0.0 , snake_case_ = 16 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 2 , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = 1 , snake_case_ = True , snake_case_ = True , snake_case_ = 1e-5 , snake_case_ = "gelu" , snake_case_ = 0.02 , snake_case_ = 1e-1_2 , snake_case_ = 224 , snake_case_ = 1e-0_5 , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = hidden_sizes __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = depths __lowerCAmelCase = mlp_expansion_ratio __lowerCAmelCase = downsamples __lowerCAmelCase = dim __lowerCAmelCase = key_dim __lowerCAmelCase = attention_ratio __lowerCAmelCase = resolution __lowerCAmelCase = pool_size __lowerCAmelCase = downsample_patch_size __lowerCAmelCase = downsample_stride __lowerCAmelCase = downsample_pad __lowerCAmelCase = drop_path_rate __lowerCAmelCase = num_metaad_blocks __lowerCAmelCase = distillation __lowerCAmelCase = use_layer_scale __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = image_size __lowerCAmelCase = batch_norm_eps
465
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case_ : Tuple , **snake_case_ : int ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : Any ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Optional[Any] , *snake_case_ : Any , **snake_case_ : List[str] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case_ : Any , **snake_case_ : Dict ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case_ : Dict , **snake_case_ : Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : int , *snake_case_ : Any , **snake_case_ : Union[str, Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Any , *snake_case_ : List[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case_ : int , **snake_case_ : Dict ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case_ : Dict , **snake_case_ : Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case_ : Dict , **snake_case_ : int ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case_ : Optional[Any] , **snake_case_ : List[str] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Optional[Any] , *snake_case_ : int , **snake_case_ : Optional[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : str ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : List[Any] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : int ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[str] , *snake_case_ : List[Any] , **snake_case_ : str ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : str , *snake_case_ : Optional[Any] , **snake_case_ : Dict ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Any , *snake_case_ : List[Any] , **snake_case_ : Tuple ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Dict , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Any ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : List[str] ): requires_backends(self , ["""sentencepiece"""] ) class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["sentencepiece"] def __init__( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : Tuple ): requires_backends(self , ["""sentencepiece"""] )
301
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) snake_case__ : List[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCAmelCase ) ) return round(_lowerCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
301
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ) -> List[Any]: __lowercase : int = parent __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Optional[int] = is_training __lowercase : Union[str, Any] = use_input_mask __lowercase : Any = use_token_type_ids __lowercase : Any = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : str = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Dict = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : Tuple = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : str = initializer_range __lowercase : List[str] = num_labels __lowercase : Dict = num_choices __lowercase : Dict = scope def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[Any] = None if self.use_input_mask: __lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Dict = None if self.use_token_type_ids: __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[Any] = None __lowercase : int = None __lowercase : Dict = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> Tuple: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: __lowercase : Dict = NystromformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : Dict = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: __lowercase : Tuple = NystromformerForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: __lowercase : Union[str, Any] = NystromformerForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Any = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : List[str] = self.num_labels __lowercase : Any = NystromformerForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : Optional[int] = self.num_labels __lowercase : Optional[int] = NystromformerForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: __lowercase : Tuple = self.num_choices __lowercase : Dict = NystromformerForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : Union[str, Any] = config_and_inputs __lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> int: __lowercase : Dict = NystromformerModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _lowerCamelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Any: __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Any: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Dict = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> str: __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Dict = NystromformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : Dict = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __lowercase : Union[str, Any] = model(UpperCamelCase_ )[0] __lowercase : List[Any] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowercase : int = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ) -> Tuple: __lowercase : Tuple = '''the [MASK] of Belgium is Brussels''' __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __lowercase : int = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) with torch.no_grad(): __lowercase : str = model(encoding.input_ids ).logits __lowercase : int = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , '''capital''' )
76
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": 512, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = LxmertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_snake_case , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_snake_case ) UpperCAmelCase = do_lower_case def snake_case_ ( self , _snake_case , _snake_case=None ) -> List[str]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
254
0
from typing import Any def _lowerCamelCase( a ): if not input_list: return [] __a = [input_list.count(a ) for value in input_list] __a = max(a ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class snake_case__ ( snake_case_ ): def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __a = input_file.read() __a = regexp.search(lowerCamelCase ) return match def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __a = regexp.finditer(lowerCamelCase ) __a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
67
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __snake_case = logging.get_logger(__name__) __snake_case = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase__ ( _UpperCAmelCase ): A__ : str ="""longformer""" def __init__( self : List[str] , UpperCAmelCase_ : Union[List[int], int] = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 30522 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1e-1_2 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = attention_window SCREAMING_SNAKE_CASE__ = sep_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = onnx_export class lowercase__ ( _UpperCAmelCase ): def __init__( self : Optional[int] , UpperCAmelCase_ : "PretrainedConfig" , UpperCAmelCase_ : str = "default" , UpperCAmelCase_ : "List[PatchingSpec]" = None ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = True @property def A_ ( self : int ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ = {0: 'batch'} return outputs @property def A_ ( self : List[Any] ): return 1e-4 @property def A_ ( self : List[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def A_ ( self : Any , UpperCAmelCase_ : "PreTrainedTokenizerBase" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE__ = 1 return inputs
472
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __snake_case = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE__ = json.loads(request.urlopen(UpperCamelCase_ ).read() )['releases'].keys() return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : version.Version(UpperCamelCase_ ) ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' init_hf_modules() SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+\.(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(UpperCamelCase_ ) ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = [module_file] SCREAMING_SNAKE_CASE__ = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ).parent SCREAMING_SNAKE_CASE__ = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) == 0 all_relative_imports.extend(UpperCamelCase_ ) return all_relative_imports def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = [] for imp in imports: try: importlib.import_module(UpperCamelCase_ ) except ImportError: missing_packages.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(UpperCamelCase_ )}. Run `pip install {" ".join(UpperCamelCase_ )}`' ) return get_relative_imports(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE__ = importlib.import_module(UpperCamelCase_ ) if class_name is None: return find_pipeline_class(UpperCamelCase_ ) return getattr(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE__ = cls return pipeline_class def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = module_file_or_url SCREAMING_SNAKE_CASE__ = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE__ = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE__ = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ ) try: SCREAMING_SNAKE_CASE__ = cached_download( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = 'git' SCREAMING_SNAKE_CASE__ = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ = hf_hub_download( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ = check_imports(UpperCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ = F'{module_needed}.py' shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase_ , F'{module_needed}.py' , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return os.path.join(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , **UpperCamelCase_ , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_cached_module_file( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return get_class_in_module(UpperCamelCase_ , final_module.replace('.py' , '' ) )
472
1
'''simple docstring''' def snake_case ( a_ : int ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) UpperCamelCase_ : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase_ : Optional[Any] = 1 if upper_limit > 0: UpperCamelCase_ : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(a_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: UpperCamelCase =int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
543
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase ="pt" elif is_tf_available(): UpperCamelCase ="tf" else: UpperCamelCase ="jax" class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : int = PerceiverTokenizer __a : List[str] = False def _UpperCAmelCase ( self ): super().setUp() UpperCamelCase_ : Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=20 , __lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase_ : str = [] for i in range(len(__lowerCAmelCase ) ): try: UpperCamelCase_ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase_ : Optional[Any] = list(filter(lambda __lowerCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __lowerCAmelCase ) ) UpperCamelCase_ : int = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: UpperCamelCase_ : List[Any] = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: UpperCamelCase_ : Tuple = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase_ : List[Any] = [t[0] for t in toks] # Ensure consistency UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: UpperCamelCase_ : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: UpperCamelCase_ : Tuple = """ """ + output_txt UpperCamelCase_ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.perceiver_tokenizer UpperCamelCase_ : Optional[int] = """Unicode €.""" UpperCamelCase_ : Dict = tokenizer(__lowerCAmelCase ) UpperCamelCase_ : Tuple = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """[CLS]Unicode €.[SEP]""" ) UpperCamelCase_ : str = tokenizer("""e è é ê ë""" ) UpperCamelCase_ : List[str] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase ) # decoding UpperCamelCase_ : List[str] = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.perceiver_tokenizer UpperCamelCase_ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase_ : int = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on UpperCamelCase_ : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) if FRAMEWORK != "jax": UpperCamelCase_ : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.perceiver_tokenizer UpperCamelCase_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_ : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __lowerCAmelCase ) self.assertIn("""attention_mask""" , __lowerCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __lowerCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.perceiver_tokenizer UpperCamelCase_ : List[str] = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase_ : Dict = tokenizer( text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _UpperCAmelCase ( self ): # safety check on max_len default value so we are sure the test works UpperCamelCase_ : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase_ : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_ : Tuple = tempfile.mkdtemp() UpperCamelCase_ : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase_ : Dict = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase_ : Tuple = tempfile.mkdtemp() UpperCamelCase_ : List[str] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase_ : Union[str, Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : List[Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase_ : int = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_ : Union[str, Any] = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase_ : List[str] = json.load(__lowerCAmelCase ) UpperCamelCase_ : Tuple = [F"<extra_id_{i}>" for i in range(1_25 )] UpperCamelCase_ : Union[str, Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase_ : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase_ : Optional[int] = tokenizer_class.from_pretrained( __lowerCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase_ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__lowerCAmelCase )] UpperCamelCase_ : Union[str, Any] = tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCamelCase_ : Dict = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCamelCase_ : str = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] UpperCamelCase_ : Optional[Any] = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
543
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'M-CLIP' def __init__( self , snake_case_=1024 , snake_case_=768 , **snake_case_ ): _A = transformerDimSize _A = imageDimSize super().__init__(**snake_case_ ) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = MCLIPConfig def __init__( self , snake_case_ , *snake_case_ , **snake_case_ ): super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) _A = XLMRobertaModel(snake_case_ ) _A = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = self.transformer(input_ids=snake_case_ , attention_mask=snake_case_ )[0] _A = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case_ ), embs
27
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
703
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : List[Any] = """fnet""" def __init__( self : Tuple , snake_case : Optional[int]=32_000 , snake_case : Optional[Any]=768 , snake_case : Union[str, Any]=12 , snake_case : List[str]=3_072 , snake_case : str="gelu_new" , snake_case : Any=0.1 , snake_case : List[str]=512 , snake_case : Any=4 , snake_case : str=0.02 , snake_case : Union[str, Any]=1E-1_2 , snake_case : Optional[Any]=False , snake_case : List[Any]=512 , snake_case : int=3 , snake_case : Any=1 , snake_case : Union[str, Any]=2 , **snake_case : Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = intermediate_size A = hidden_act A = hidden_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps A = use_tpu_fourier_optimizations A = tpu_short_seq_length
109
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : List[str] = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = num_stages SCREAMING_SNAKE_CASE_ : List[Any] = hidden_sizes SCREAMING_SNAKE_CASE_ : str = depths SCREAMING_SNAKE_CASE_ : str = is_training SCREAMING_SNAKE_CASE_ : Any = use_labels SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : str = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : int = out_features SCREAMING_SNAKE_CASE_ : List[Any] = out_indices SCREAMING_SNAKE_CASE_ : int = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class __lowercase (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCAmelCase = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ConvNextVaModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE_ : int = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue SCREAMING_SNAKE_CASE_ : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE_ : Dict = prepare_img() SCREAMING_SNAKE_CASE_ : Dict = preprocessor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
101
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) lowerCamelCase__ =[ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def lowerCamelCase_ ( __lowerCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) lowerCamelCase__ =len(__lowerCAmelCase ) lowerCamelCase__ =matrix_length // 2 lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowerCamelCase__ =[ [a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase ) ] lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )] lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase_ ( __lowerCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(__lowerCAmelCase ), len(matrix[0] ) def lowerCamelCase_ ( __lowerCAmelCase ) -> None: '''simple docstring''' print("\n".join(str(__lowerCAmelCase ) for line in matrix ) ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =split_matrix(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =split_matrix(__lowerCAmelCase ) lowerCamelCase__ =actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) lowerCamelCase__ =actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) lowerCamelCase__ =matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase ) # construct the new matrix from our 4 quadrants lowerCamelCase__ =[] for i in range(len(__lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]: lowerCamelCase__ =( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__lowerCAmelCase ) lowerCamelCase__ =matrix_dimensions(__lowerCAmelCase ) lowerCamelCase__ =matrix_dimensions(__lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase__ =max(*__lowerCAmelCase , *__lowerCAmelCase ) lowerCamelCase__ =int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) ) lowerCamelCase__ =matrixa lowerCamelCase__ =matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase__ =actual_strassen(__lowerCAmelCase , __lowerCAmelCase ) # Removing the additional zeros for i in range(0 , __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
530
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } lowercase__ = { "Salesforce/codegen-350M-mono": 2_048, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ['''input_ids''', '''attention_mask'''] UpperCAmelCase = CodeGenTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase=False , **__UpperCamelCase , ) -> Any: super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) if kwargs.pop("add_bos_token" , __UpperCamelCase ): _a = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _a = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**__UpperCamelCase ) _a = add_prefix_space def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def a_ ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def a_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> str: _a = super().decode( token_ids=__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , **__UpperCamelCase , ) if truncate_before_pattern is not None and len(__UpperCamelCase ) > 0: _a = self.truncate(__UpperCamelCase , __UpperCamelCase ) return decoded_text def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: def find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): _a = pattern.search(__UpperCamelCase , __UpperCamelCase ) return m.start() if m else -1 _a = [re.compile(__UpperCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] _a = list(re.finditer("^print" , __UpperCamelCase , re.MULTILINE ) ) if len(__UpperCamelCase ) > 1: _a = completion[: prints[1].start()] _a = list(re.finditer("^def" , __UpperCamelCase , re.MULTILINE ) ) if len(__UpperCamelCase ) > 1: _a = completion[: defs[1].start()] _a = 0 _a = [ pos for pos in [find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for terminal in terminals] if pos != -1 ] if len(__UpperCamelCase ) > 0: return completion[: min(__UpperCamelCase )] else: return completion
276
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = '''convbert''' def __init__( self , __UpperCamelCase=30_522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3_072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=768 , __UpperCamelCase=2 , __UpperCamelCase=9 , __UpperCamelCase=1 , __UpperCamelCase=None , **__UpperCamelCase , ) -> Optional[int]: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = embedding_size _a = head_ratio _a = conv_kernel_size _a = num_groups _a = classifier_dropout class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @property def a_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
276
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def _A ( ): """simple docstring""" __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def _A ( A__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A ( A__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A ( A__ ): """simple docstring""" __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ ): """simple docstring""" if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(A__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__ , A__ ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(A__ , A__ ) ) __lowercase = 0 return output def _A ( ): # Main function for testing. """simple docstring""" __lowercase = make_tree() print(F"In-order Traversal: {inorder(A__ )}" ) print(F"Pre-order Traversal: {preorder(A__ )}" ) print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' ) print(F"Height of Tree: {height(A__ )}" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(A__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(A__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowercase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCAmelCase__ ( __magic_name__ = "dhaka" , __magic_name__ = 5 ) ->int: __lowercase = min(__magic_name__ , 5_0 ) # Prevent abuse! __lowercase = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } __lowercase = requests.get("https://www.google.com/search" , params=__magic_name__ , headers=__magic_name__ ) __lowercase = BeautifulSoup(html.text , "html.parser" ) __lowercase = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) __lowercase = json.dumps(__magic_name__ ) __lowercase = json.loads(__magic_name__ ) __lowercase = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __magic_name__ , ) if not matched_google_image_data: return 0 __lowercase = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__magic_name__ ) , ) __lowercase = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __magic_name__ , ) for index, fixed_full_res_image in enumerate(__magic_name__ ): if index >= max_images: return index __lowercase = bytes(__magic_name__ , "ascii" ).decode( "unicode-escape" ) __lowercase = bytes(__magic_name__ , "ascii" ).decode( "unicode-escape" ) __lowercase = urllib.request.build_opener() __lowercase = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__magic_name__ ) __lowercase = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) urllib.request.urlretrieve( # noqa: S310 __magic_name__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: _lowercase = download_images_from_google_query(sys.argv[1]) print(F"{image_count} images were downloaded to disk.") except IndexError: print('''Please provide a search term.''') raise
118
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple= logging.get_logger(__name__) _a : Optional[int]= { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : str = """audio-spectrogram-transformer""" def __init__(self : Dict , _A : Dict=7_68 , _A : int=12 , _A : List[Any]=12 , _A : Any=30_72 , _A : List[str]="gelu" , _A : int=0.0 , _A : Dict=0.0 , _A : List[Any]=0.02 , _A : List[Any]=1E-12 , _A : Any=16 , _A : Optional[Any]=True , _A : Tuple=10 , _A : Dict=10 , _A : str=10_24 , _A : Union[str, Any]=1_28 , **_A : Dict , ) -> Union[str, Any]: super().__init__(**_A) __snake_case : Any = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : List[Any] = layer_norm_eps __snake_case : Tuple = patch_size __snake_case : Any = qkv_bias __snake_case : List[str] = frequency_stride __snake_case : Union[str, Any] = time_stride __snake_case : Union[str, Any] = max_length __snake_case : Tuple = num_mel_bins
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : Optional[Any]= { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any]= [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str]= [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any]= [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _a : Tuple= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
192
0