code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'files' , [
['full:README.md', 'dataset_infos.json'],
['empty:README.md', 'dataset_infos.json'],
['dataset_infos.json'],
['full:README.md'],
] , )
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]:
UpperCamelCase__ : List[str] = tmp_path_factory.mktemp('dset_infos_dir' )
if "full:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('---\ndataset_info:\n dataset_size: 42\n---' )
if "empty:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f:
f.write('{"default": {"dataset_size": 42}}' )
UpperCamelCase__ : str = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'dataset_info' , [
DatasetInfo(),
DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ),
] , )
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
UpperCamelCase__ : str = str(__SCREAMING_SNAKE_CASE )
dataset_info.write_to_directory(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = DatasetInfo.from_directory(__SCREAMING_SNAKE_CASE )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'dataset_info.json' ) )
def _lowercase ( ) -> Optional[int]:
UpperCamelCase__ : Union[str, Any] = DatasetInfo(
description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
UpperCamelCase__ : List[Any] = dataset_info._to_yaml_dict()
assert sorted(__SCREAMING_SNAKE_CASE ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
UpperCamelCase__ : Union[str, Any] = yaml.safe_dump(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Dict = yaml.safe_load(__SCREAMING_SNAKE_CASE )
assert dataset_info_yaml_dict == reloaded
def _lowercase ( ) -> List[Any]:
UpperCamelCase__ : int = DatasetInfo()
UpperCamelCase__ : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'dataset_infos_dict' , [
DatasetInfosDict(),
DatasetInfosDict({'default': DatasetInfo()} ),
DatasetInfosDict({'my_config_name': DatasetInfo()} ),
DatasetInfosDict(
{
'default': DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , )
} ),
DatasetInfosDict(
{
'v1': DatasetInfo(dataset_size=42 ),
'v2': DatasetInfo(dataset_size=1337 ),
} ),
] , )
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any:
UpperCamelCase__ : List[Any] = str(__SCREAMING_SNAKE_CASE )
dataset_infos_dict.write_to_directory(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = DatasetInfosDict.from_directory(__SCREAMING_SNAKE_CASE )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
UpperCamelCase__ : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
UpperCamelCase__ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , 'README.md' ) )
| 410 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
UpperCAmelCase__ : Optional[int] = False
@skip_mps
class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline
UpperCamelCase_ = False
UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS
UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} )
UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def lowerCAmelCase__ ( cls) -> str:
super().setUpClass()
torch.use_deterministic_algorithms(UpperCamelCase)
@classmethod
def lowerCAmelCase__ ( cls) -> Tuple:
super().tearDownClass()
torch.use_deterministic_algorithms(UpperCamelCase)
def lowerCAmelCase__ ( self) -> Any:
torch.manual_seed(0)
UpperCamelCase__ : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , )
UpperCamelCase__ : Any = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , )
torch.manual_seed(0)
UpperCamelCase__ : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0)
UpperCamelCase__ : str = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , )
UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase)
UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
UpperCamelCase__ : Tuple = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str:
if str(UpperCamelCase).startswith('mps'):
UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase)
else:
UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase)
UpperCamelCase__ : List[Any] = {
'prompt': 'a cat and a frog',
'token_indices': [2, 5],
'generator': generator,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
'max_iter_to_alter': 2,
'thresholds': {0: 0.7},
}
return inputs
def lowerCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase__ : List[Any] = 'cpu'
UpperCamelCase__ : Union[str, Any] = self.get_dummy_components()
UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase)
pipe.to(UpperCamelCase)
pipe.set_progress_bar_config(disable=UpperCamelCase)
UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase)
UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images
UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3))
UpperCamelCase__ : str = np.array(
[0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496])
UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(UpperCamelCase , 1E-3)
def lowerCAmelCase__ ( self) -> Dict:
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4)
def lowerCAmelCase__ ( self) -> str:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def lowerCAmelCase__ ( self) -> List[str]:
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4)
def lowerCAmelCase__ ( self) -> List[Any]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3)
def lowerCAmelCase__ ( self) -> Optional[Any]:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4)
def lowerCAmelCase__ ( self) -> Dict:
super().test_save_load_local(expected_max_difference=5E-4)
def lowerCAmelCase__ ( self) -> Dict:
super().test_save_load_optional_components(expected_max_difference=4E-4)
@require_torch_gpu
@slow
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowerCAmelCase__ ( cls) -> Optional[int]:
super().setUpClass()
torch.use_deterministic_algorithms(UpperCamelCase)
@classmethod
def lowerCAmelCase__ ( cls) -> str:
super().tearDownClass()
torch.use_deterministic_algorithms(UpperCamelCase)
def lowerCAmelCase__ ( self) -> Tuple:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self) -> int:
UpperCamelCase__ : Dict = torch.manual_seed(51)
UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa)
pipe.to('cuda')
UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses'
UpperCamelCase__ : Dict = [5, 7]
UpperCamelCase__ : Optional[int] = pipe(
prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0]
UpperCamelCase__ : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy')
assert np.abs((expected_image - image).max()) < 5E-1
| 410 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import Counter
from random import random
class a :
"""simple docstring"""
def __init__( self ) -> Any:
_UpperCAmelCase = {}
def __A ( self , snake_case_ ) -> None:
_UpperCAmelCase = {}
def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
if nodea not in self.connections:
self.add_node(snake_case_ )
if nodea not in self.connections:
self.add_node(snake_case_ )
_UpperCAmelCase = probability
def __A ( self ) -> list[str]:
return list(self.connections )
def __A ( self , snake_case_ ) -> str:
_UpperCAmelCase = 0
_UpperCAmelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A__ ( A__ , A__ , A__ ):
'''simple docstring'''
_UpperCAmelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(A__ , A__ , A__ )
_UpperCAmelCase = Counter(graph.get_nodes() )
_UpperCAmelCase = start
for _ in range(A__ ):
_UpperCAmelCase = graph.transition(A__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_ = logging.get_logger()
def A__ ( A__ , A__ , A__ , A__ , A__ = True ) -> Any:
'''simple docstring'''
print(F"""Converting {name}...""" )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
_UpperCAmelCase = timm.create_model("levit_128s" , pretrained=A__ )
else:
_UpperCAmelCase = timm.create_model("levit_128" , pretrained=A__ )
if hidden_sizes == 192:
_UpperCAmelCase = timm.create_model("levit_192" , pretrained=A__ )
if hidden_sizes == 256:
_UpperCAmelCase = timm.create_model("levit_256" , pretrained=A__ )
if hidden_sizes == 384:
_UpperCAmelCase = timm.create_model("levit_384" , pretrained=A__ )
from_model.eval()
_UpperCAmelCase = LevitForImageClassificationWithTeacher(A__ ).eval()
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase = from_model.state_dict()
_UpperCAmelCase = list(from_model.state_dict().keys() )
_UpperCAmelCase = list(our_model.state_dict().keys() )
print(len(A__ ) , len(A__ ) )
for i in range(len(A__ ) ):
_UpperCAmelCase = weights[og_keys[i]]
our_model.load_state_dict(A__ )
_UpperCAmelCase = torch.randn((2, 3, 224, 224) )
_UpperCAmelCase = from_model(A__ )
_UpperCAmelCase = our_model(A__ ).logits
assert torch.allclose(A__ , A__ ), "The model logits don't match the original one."
_UpperCAmelCase = name
print(A__ )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
_UpperCAmelCase = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(F"""Pushed {checkpoint_name}""" )
def A__ ( A__ , A__ = None , A__ = True ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = "imagenet-1k-id2label.json"
_UpperCAmelCase = 1000
_UpperCAmelCase = (1, num_labels)
_UpperCAmelCase = "huggingface/label-files"
_UpperCAmelCase = num_labels
_UpperCAmelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) )
_UpperCAmelCase = {int(A__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
_UpperCAmelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ )
_UpperCAmelCase = {
"levit-128S": 128,
"levit-128": 128,
"levit-192": 192,
"levit-256": 256,
"levit-384": 384,
}
_UpperCAmelCase = {
"levit-128S": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"levit-128": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"levit-192": ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"levit-256": ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"levit-384": ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ )
return config, expected_shape
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''levit-dump-folder/''',
type=Path,
required=False,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
parser.add_argument(
'''--no-push_to_hub''',
dest='''push_to_hub''',
action='''store_false''',
help='''Do not push model and image processor to the hub''',
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
SCREAMING_SNAKE_CASE_ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 579 | 0 |
A_ : Optional[int] = [0, 2, 4, 6, 8]
A_ : List[Any] = [1, 3, 5, 7, 9]
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 1_0
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__UpperCAmelCase = 0
for digit in range(1_0 ):
__UpperCAmelCase = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 1_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return result
__UpperCAmelCase = 0
for digita in range(1_0 ):
__UpperCAmelCase = digita
if (remainder + digita) % 2 == 0:
__UpperCAmelCase = ODD_DIGITS
else:
__UpperCAmelCase = EVEN_DIGITS
for digita in other_parity_digits:
__UpperCAmelCase = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 1_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
return result
def __a ( SCREAMING_SNAKE_CASE = 9 ) -> int:
'''simple docstring'''
__UpperCAmelCase = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 303 |
from __future__ import annotations
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE ) ):
series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '''1''' )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ : Any = int(input('Enter the last number (nth term) of the P-Series'))
A_ : List[str] = int(input('Enter the power for P-Series'))
print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p')
print(p_series(nth_term, power))
| 303 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
snake_case_ : int =False
class a__ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> str:
return 12
@property
def _lowerCamelCase ( self ) -> str:
return 12
@property
def _lowerCamelCase ( self ) -> Optional[int]:
return 32
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
__A = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def _lowerCamelCase ( self ) -> int:
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def _lowerCamelCase ( self ) -> int:
torch.manual_seed(0 )
__A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(lowercase__ )
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
__A = 12
__A = 12
__A = {
"attention_bias": True,
"cross_attention_dim": 32,
"attention_head_dim": height * width,
"num_attention_heads": 1,
"num_vector_embeds": self.num_embed,
"num_embeds_ada_norm": self.num_embeds_ada_norm,
"norm_num_groups": 32,
"sample_size": width,
"activation_fn": "geglu-approximate",
}
__A = TransformeraDModel(**lowercase__ )
return model
def _lowerCamelCase ( self ) -> List[str]:
__A = "cpu"
__A = self.dummy_vqvae
__A = self.dummy_text_encoder
__A = self.dummy_tokenizer
__A = self.dummy_transformer
__A = VQDiffusionScheduler(self.num_embed )
__A = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase__ )
__A = VQDiffusionPipeline(
vqvae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , transformer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , )
__A = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__A = "teddy bear playing in the pool"
__A = torch.Generator(device=lowercase__ ).manual_seed(0 )
__A = pipe([prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="np" )
__A = output.images
__A = torch.Generator(device=lowercase__ ).manual_seed(0 )
__A = pipe(
[prompt] , generator=lowercase__ , output_type="np" , return_dict=lowercase__ , num_inference_steps=2 )[0]
__A = image[0, -3:, -3:, -1]
__A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__A = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCamelCase ( self ) -> str:
__A = "cpu"
__A = self.dummy_vqvae
__A = self.dummy_text_encoder
__A = self.dummy_tokenizer
__A = self.dummy_transformer
__A = VQDiffusionScheduler(self.num_embed )
__A = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
__A = VQDiffusionPipeline(
vqvae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , transformer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , )
__A = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__A = "teddy bear playing in the pool"
__A = torch.Generator(device=lowercase__ ).manual_seed(0 )
__A = pipe([prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="np" )
__A = output.images
__A = torch.Generator(device=lowercase__ ).manual_seed(0 )
__A = pipe(
[prompt] , generator=lowercase__ , output_type="np" , return_dict=lowercase__ , num_inference_steps=2 )[0]
__A = image[0, -3:, -3:, -1]
__A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
__A = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> Dict:
__A = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" )
__A = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" )
__A = pipeline.to(lowercase__ )
pipeline.set_progress_bar_config(disable=lowercase__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
__A = torch.Generator(device=lowercase__ ).manual_seed(0 )
__A = pipeline(
"teddy bear playing in the pool" , num_images_per_prompt=1 , generator=lowercase__ , output_type="np" , )
__A = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 205 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
snake_case_ : Optional[Any] =Lock()
def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(lowerCAmelCase__ )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
__A = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
__A = min(lowerCAmelCase__ , lowerCAmelCase__ )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(lowerCAmelCase__ )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
__A = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
__A = max(lowerCAmelCase__ , lowerCAmelCase__ )
# after all swaps are performed, send the values back to main
result_pipe[1].send(lowerCAmelCase__ )
def UpperCAmelCase ( lowerCAmelCase__ ):
'''simple docstring'''
__A = []
__A = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
__A = Pipe()
__A = Pipe()
process_array_.append(
Process(
target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
__A = temp_rs
__A = temp_rr
for i in range(1 , len(lowerCAmelCase__ ) - 1 ):
__A = Pipe()
__A = Pipe()
process_array_.append(
Process(
target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
__A = temp_rs
__A = temp_rr
process_array_.append(
Process(
target=lowerCAmelCase__ , args=(
len(lowerCAmelCase__ ) - 1,
arr[len(lowerCAmelCase__ ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(lowerCAmelCase__ ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(lowerCAmelCase__ ) ):
__A = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCAmelCase ( ):
'''simple docstring'''
__A = list(range(10 , 0 , -1 ) )
print("Initial List" )
print(*lowerCAmelCase__ )
__A = odd_even_transposition(lowerCAmelCase__ )
print("Sorted List\n" )
print(*lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 205 | 1 |
def a__ ( __UpperCamelCase , __UpperCamelCase ):
while second != 0:
SCREAMING_SNAKE_CASE_ = first & second
first ^= second
SCREAMING_SNAKE_CASE_ = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Any = int(input("Enter the first number: ").strip())
A : Optional[int] = int(input("Enter the second number: ").strip())
print(f"{add(first, second) = }")
| 140 | def a__ ( __UpperCamelCase ):
if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__UpperCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 140 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__a : Optional[Any] = logging.get_logger(__name__)
__a : Union[str, Any] = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class UpperCAmelCase( snake_case_ , snake_case_ ):
"""simple docstring"""
a : Optional[int] = """swin"""
a : Any = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , lowerCamelCase=224 , lowerCamelCase=4 , lowerCamelCase=3 , lowerCamelCase=96 , lowerCamelCase=[2, 2, 6, 2] , lowerCamelCase=[3, 6, 12, 24] , lowerCamelCase=7 , lowerCamelCase=4.0 , lowerCamelCase=True , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=False , lowerCamelCase=0.02 , lowerCamelCase=1E-5 , lowerCamelCase=32 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCamelCase )
lowercase__ : Dict = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Optional[Any] = num_channels
lowercase__ : Tuple = embed_dim
lowercase__ : Optional[int] = depths
lowercase__ : Tuple = len(lowerCamelCase )
lowercase__ : str = num_heads
lowercase__ : List[Any] = window_size
lowercase__ : List[str] = mlp_ratio
lowercase__ : Optional[Any] = qkv_bias
lowercase__ : int = hidden_dropout_prob
lowercase__ : Dict = attention_probs_dropout_prob
lowercase__ : Optional[Any] = drop_path_rate
lowercase__ : Optional[int] = hidden_act
lowercase__ : List[Any] = use_absolute_embeddings
lowercase__ : str = layer_norm_eps
lowercase__ : str = initializer_range
lowercase__ : Optional[int] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase__ : Any = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
lowercase__ : Optional[int] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )]
lowercase__ , lowercase__ : Optional[int] = get_aligned_output_features_output_indices(
out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
class UpperCAmelCase( snake_case_ ):
"""simple docstring"""
a : Tuple = version.parse("""1.11""" )
@property
def __a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __a ( self ) -> float:
"""simple docstring"""
return 1E-4 | 298 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class UpperCAmelCase( unittest.TestCase ):
"""simple docstring"""
@slow
def __a ( self ) -> int:
"""simple docstring"""
lowercase__ : str = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
lowercase__ : Optional[int] = tokenizer("Hello there" , return_tensors="np" ).input_ids
lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids
lowercase__ : int = shift_tokens_right(lowerCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowercase__ : List[Any] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits
lowercase__ : Any = optax.softmax_cross_entropy(lowerCamelCase , onehot(lowerCamelCase , logits.shape[-1] ) ).mean()
lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item())
lowercase__ : Any = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 ) | 298 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json",
"google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json",
"google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json",
"google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = "mobilenet_v2"
def __init__( self , snake_case=3 , snake_case=2_2_4 , snake_case=1.0 , snake_case=8 , snake_case=8 , snake_case=6 , snake_case=3_2 , snake_case=True , snake_case=True , snake_case="relu6" , snake_case=True , snake_case=0.8 , snake_case=0.02 , snake_case=0.001 , snake_case=2_5_5 , **snake_case , ):
'''simple docstring'''
super().__init__(**snake_case )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : str = depth_multiplier
UpperCAmelCase : int = depth_divisible_by
UpperCAmelCase : Optional[Any] = min_depth
UpperCAmelCase : List[Any] = expand_ratio
UpperCAmelCase : List[Any] = output_stride
UpperCAmelCase : Optional[int] = first_layer_is_expansion
UpperCAmelCase : Optional[Any] = finegrained_output
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : str = tf_padding
UpperCAmelCase : Optional[int] = classifier_dropout_prob
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : List[str] = layer_norm_eps
UpperCAmelCase : Dict = semantic_loss_ignore_index
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = version.parse("1.11" )
@property
def A_ ( self ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def A_ ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def A_ ( self ):
'''simple docstring'''
return 1e-4
| 679 |
'''simple docstring'''
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCamelCase__ ( lowercase__ ):
"""simple docstring"""
def A_ ( self , snake_case ):
'''simple docstring'''
with open(snake_case , encoding="utf-8" ) as input_file:
UpperCAmelCase : Dict = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase : Tuple = input_file.read()
UpperCAmelCase : List[Any] = regexp.search(snake_case )
return match
def A_ ( self , snake_case ):
'''simple docstring'''
with open(snake_case , encoding="utf-8" ) as input_file:
UpperCAmelCase : List[str] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase : str = regexp.finditer(snake_case )
UpperCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = Path("./datasets" )
UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case ) ):
raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = Path("./datasets" )
UpperCAmelCase : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case ) ):
raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
| 679 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a= {
'''configuration_owlvit''': [
'''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''OwlViTConfig''',
'''OwlViTOnnxConfig''',
'''OwlViTTextConfig''',
'''OwlViTVisionConfig''',
],
'''processing_owlvit''': ['''OwlViTProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a= ['''OwlViTFeatureExtractor''']
a= ['''OwlViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a= [
'''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OwlViTModel''',
'''OwlViTPreTrainedModel''',
'''OwlViTTextModel''',
'''OwlViTVisionModel''',
'''OwlViTForObjectDetection''',
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 287 | '''simple docstring'''
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
a= logging.get_logger(__name__)
class __lowercase ( _lowerCamelCase ):
"""simple docstring"""
def __init__( self , **_lowerCamelCase ):
requires_backends(self , ['bs4'] )
super().__init__(**_lowerCamelCase )
def lowerCAmelCase ( self , _lowerCamelCase ):
__UpperCamelCase : str = []
__UpperCamelCase : Dict = []
__UpperCamelCase : Union[str, Any] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
__UpperCamelCase : str = parent.find_all(child.name , recursive=_lowerCamelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) )
__UpperCamelCase : Union[str, Any] = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def lowerCAmelCase ( self , _lowerCamelCase ):
__UpperCamelCase : List[str] = BeautifulSoup(_lowerCamelCase , 'html.parser' )
__UpperCamelCase : int = []
__UpperCamelCase : List[Any] = []
__UpperCamelCase : int = []
for element in html_code.descendants:
if type(_lowerCamelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
__UpperCamelCase : Tuple = html.unescape(_lowerCamelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(_lowerCamelCase )
__UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.xpath_soup(_lowerCamelCase )
stringaxtag_seq.append(_lowerCamelCase )
stringaxsubs_seq.append(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError('Number of doc strings and xtags does not correspond' )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError('Number of doc strings and xsubs does not correspond' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ):
__UpperCamelCase : Dict = ''
for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ):
xpath += f"""/{tagname}"""
if subs != 0:
xpath += f"""[{subs}]"""
return xpath
def __call__( self , _lowerCamelCase ):
__UpperCamelCase : List[Any] = False
# Check that strings has a valid type
if isinstance(_lowerCamelCase , _lowerCamelCase ):
__UpperCamelCase : List[str] = True
elif isinstance(_lowerCamelCase , (list, tuple) ):
if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ):
__UpperCamelCase : Optional[int] = True
if not valid_strings:
raise ValueError(
'HTML strings must of type `str`, `List[str]` (batch of examples), '
f"""but is of type {type(_lowerCamelCase )}.""" )
__UpperCamelCase : Dict = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) )
if not is_batched:
__UpperCamelCase : Tuple = [html_strings]
# Get nodes + xpaths
__UpperCamelCase : Tuple = []
__UpperCamelCase : Tuple = []
for html_string in html_strings:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.get_three_from_single(_lowerCamelCase )
nodes.append(_lowerCamelCase )
__UpperCamelCase : Union[str, Any] = []
for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
__UpperCamelCase : Optional[Any] = self.construct_xpath(_lowerCamelCase , _lowerCamelCase )
xpath_strings.append(_lowerCamelCase )
xpaths.append(_lowerCamelCase )
# return as Dict
__UpperCamelCase : Optional[int] = {'nodes': nodes, 'xpaths': xpaths}
__UpperCamelCase : Union[str, Any] = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
return encoded_inputs
| 287 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase ( _snake_case ,_snake_case = None ,_snake_case = None ):
if start is None:
UpperCAmelCase__ : List[str] = 0
if end is None:
UpperCAmelCase__ : str = len(_snake_case ) - 1
if start >= end:
return
UpperCAmelCase__ : Optional[int] = (start + end) // 2
slowsort(_snake_case ,_snake_case ,_snake_case )
slowsort(_snake_case ,mid + 1 ,_snake_case )
if sequence[end] < sequence[mid]:
UpperCAmelCase__ , UpperCAmelCase__ : Dict = sequence[mid], sequence[end]
slowsort(_snake_case ,_snake_case ,end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 110 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCAmelCase__ ( unittest.TestCase ):
def __UpperCamelCase ( self : Any ) -> Tuple:
# A mock response for an HTTP head request to emulate server down
A = mock.Mock()
A = 500
A = {}
A = HTTPError
A = {}
# Download this model to make sure it's in the cache.
A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head:
A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
# A mock response for an HTTP head request to emulate server down
A = mock.Mock()
A = 500
A = {}
A = HTTPError
A = {}
# Download this model to make sure it's in the cache.
A = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head:
A = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
# This test is for deprecated behavior and can be removed in v5
try:
A = tempfile.mktemp()
with open(__UpperCamelCase , 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , __UpperCamelCase )
A = AlbertTokenizer.from_pretrained(__UpperCamelCase )
finally:
os.remove(__UpperCamelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json' , 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , __UpperCamelCase )
A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def __UpperCamelCase ( self : str ) -> int:
# This test is for deprecated behavior and can be removed in v5
A = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowerCAmelCase__ ( unittest.TestCase ):
A_ : str = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def __UpperCamelCase ( cls : Tuple ) -> Dict:
A = TOKEN
HfFolder.save_token(__UpperCamelCase )
@classmethod
def __UpperCamelCase ( cls : Any ) -> Dict:
try:
delete_repo(token=cls._token , repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_dir:
A = os.path.join(__UpperCamelCase , 'vocab.txt' )
with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
A = BertTokenizer(__UpperCamelCase )
tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token )
A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase , repo_id='test-tokenizer' , push_to_hub=__UpperCamelCase , use_auth_token=self._token )
A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __UpperCamelCase ( self : List[str] ) -> Tuple:
with tempfile.TemporaryDirectory() as tmp_dir:
A = os.path.join(__UpperCamelCase , 'vocab.txt' )
with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
A = BertTokenizer(__UpperCamelCase )
tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token )
A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
__UpperCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token )
A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
A = os.path.join(__UpperCamelCase , 'vocab.txt' )
with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
A = CustomTokenizer(__UpperCamelCase )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
A = os.path.join(__UpperCamelCase , 'vocab.txt' )
with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
A = BertTokenizerFast.from_pretrained(__UpperCamelCase )
bert_tokenizer.save_pretrained(__UpperCamelCase )
A = CustomTokenizerFast.from_pretrained(__UpperCamelCase )
tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token )
A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' )
A = AutoTokenizer.from_pretrained(
f'''{USER}/test-dynamic-tokenizer''' , use_fast=__UpperCamelCase , trust_remote_code=__UpperCamelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' )
class lowerCAmelCase__ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] ) -> Any:
A = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def __UpperCamelCase ( self : Dict ) -> Tuple:
A = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] )
def __UpperCamelCase ( self : Any ) -> Optional[int]:
A = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] )
def __UpperCamelCase ( self : Union[str, Any] ) -> str:
A = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
A = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] )
def __UpperCamelCase ( self : List[str] ) -> Tuple:
A = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
A = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
A = Trie()
A = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] )
self.assertEqual(__UpperCamelCase , ['AB', 'C'] ) | 106 | 0 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> list[float]:
'''simple docstring'''
__lowercase , __lowercase = coefficient_matrix.shape
__lowercase , __lowercase = constant_matrix.shape
if rowsa != colsa:
__lowercase = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(_UpperCAmelCase )
if colsa != 1:
__lowercase = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(_UpperCAmelCase )
if rowsa != rowsa:
__lowercase = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(_UpperCAmelCase )
if len(_UpperCAmelCase ) != rowsa:
__lowercase = (
"Number of initial values must be equal to number of rows in coefficient "
f'''matrix but received {len(_UpperCAmelCase )} and {rowsa}'''
)
raise ValueError(_UpperCAmelCase )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__lowercase = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__lowercase , __lowercase = table.shape
strictly_diagonally_dominant(_UpperCAmelCase )
# Iterates the whole matrix for given number of times
for _ in range(_UpperCAmelCase ):
__lowercase = []
for row in range(_UpperCAmelCase ):
__lowercase = 0
for col in range(_UpperCAmelCase ):
if col == row:
__lowercase = table[row][col]
elif col == cols - 1:
__lowercase = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__lowercase = (temp + val) / denom
new_val.append(_UpperCAmelCase )
__lowercase = new_val
return [float(_UpperCAmelCase ) for i in new_val]
def __lowercase ( _UpperCAmelCase ) -> bool:
'''simple docstring'''
__lowercase , __lowercase = table.shape
__lowercase = True
for i in range(0 , _UpperCAmelCase ):
__lowercase = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 | from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class snake_case ( __snake_case ):
"""simple docstring"""
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
class snake_case ( __snake_case ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=512 , lowerCAmelCase_="cls" , lowerCAmelCase_=False , lowerCAmelCase_=True , **lowerCAmelCase_ , ):
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
__lowercase = project_dim
__lowercase = pooler_fn
__lowercase = learn_encoder
__lowercase = use_attention_mask
class snake_case ( __snake_case ):
"""simple docstring"""
__lowerCAmelCase = [r"""pooler""", r"""logit_scale"""]
__lowerCAmelCase = [r"""position_ids""", r"""predictions.decoder.bias"""]
__lowerCAmelCase = """roberta"""
__lowerCAmelCase = RobertaSeriesConfig
def __init__( self , lowerCAmelCase_ ):
super().__init__(lowerCAmelCase_ )
__lowercase = XLMRobertaModel(lowerCAmelCase_ )
__lowercase = nn.Linear(config.hidden_size , config.project_dim )
__lowercase = getattr(lowerCAmelCase_ , "has_pre_transformation" , lowerCAmelCase_ )
if self.has_pre_transformation:
__lowercase = nn.Linear(config.hidden_size , config.project_dim )
__lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def snake_case__ ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ):
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.base_model(
input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase_ , )
if self.has_pre_transformation:
__lowercase = outputs["hidden_states"][-2]
__lowercase = self.pre_LN(lowerCAmelCase_ )
__lowercase = self.transformation_pre(lowerCAmelCase_ )
return TransformationModelOutput(
projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
__lowercase = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=lowerCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 576 | 0 |
"""simple docstring"""
import argparse
import json
import subprocess
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = []
__lowerCAmelCase = (
f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""
''' https://api.github.com/repos/huggingface/transformers/actions/runners'''
)
__lowerCAmelCase = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE )
__lowerCAmelCase = output.stdout.decode("utf-8" )
__lowerCAmelCase = json.loads(_UpperCamelCase )
__lowerCAmelCase = status['''runners''']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(_UpperCamelCase )
# save the result so we can report them on Slack
with open("offline_runners.txt" , "w" ) as fp:
fp.write(json.dumps(_UpperCamelCase ) )
if len(_UpperCamelCase ) > 0:
__lowerCAmelCase = '''\n'''.join([x["name"] for x in offline_runners] )
raise ValueError(f"The following runners are offline:\n{failed}" )
if __name__ == "__main__":
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return values.split("," )
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--target_runners",
default=None,
type=list_str,
required=True,
help="Comma-separated list of runners to check status.",
)
parser.add_argument(
"--token", default=None, type=str, required=True, help="A token that has actions:read permission."
)
A : str = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 636 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
def __magic_name__( self , __UpperCAmelCase ):
lowerCAmelCase__ : Union[str, Any] = 3
lowerCAmelCase__ : Tuple = 250
lowerCAmelCase__ : List[Any] = ids_tensor((batch_size, length) , __UpperCAmelCase )
lowerCAmelCase__ : Optional[Any] = torch.ones((batch_size, length) , device=__UpperCAmelCase , dtype=torch.float ) / length
return input_ids, scores
def __magic_name__( self ):
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_tensors(5 )
lowerCAmelCase__ : List[str] = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._get_tensors(9 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
def __magic_name__( self ):
lowerCAmelCase__ : Tuple = MaxLengthCriteria(max_length=10 )
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self._get_tensors(5 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._get_tensors(9 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
def __magic_name__( self ):
lowerCAmelCase__ : Optional[int] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(5 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._get_tensors(9 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self._get_tensors(10 )
self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ : int = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def __magic_name__( self ):
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_tensors(5 )
lowerCAmelCase__ : Any = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) )
def __magic_name__( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(__UpperCAmelCase ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
lowerCAmelCase__ : List[str] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(__UpperCAmelCase ) , 1 )
| 678 | 0 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase =logging.get_logger(__name__)
UpperCAmelCase ={
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
"Salesforce/blip-vqa-capfit-large": (
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-base": (
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-large": (
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
),
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
"Salesforce/blip-itm-large-flikr": (
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
),
}
class lowerCamelCase__ ( UpperCamelCase_ ):
'''simple docstring'''
_lowerCamelCase = '''blip_text_model'''
def __init__( self ,lowerCamelCase_=3_0_5_2_4 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=8 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=1E-12 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=2 ,lowerCamelCase_=0 ,lowerCamelCase_=1_0_2 ,lowerCamelCase_=True ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Tuple:
super().__init__(
pad_token_id=__a ,bos_token_id=__a ,eos_token_id=__a ,sep_token_id=__a ,**__a ,)
A = vocab_size
A = hidden_size
A = encoder_hidden_size
A = intermediate_size
A = projection_dim
A = hidden_dropout_prob
A = num_hidden_layers
A = num_attention_heads
A = max_position_embeddings
A = layer_norm_eps
A = hidden_act
A = initializer_range
A = attention_probs_dropout_prob
A = is_decoder
A = use_cache
@classmethod
def UpperCamelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__a )
A = cls.get_config_dict(__a ,**__a )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("""model_type""" ) == "blip":
A = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__a ,**__a )
class lowerCamelCase__ ( UpperCamelCase_ ):
'''simple docstring'''
_lowerCamelCase = '''blip_vision_model'''
def __init__( self ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_8_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_="gelu" ,lowerCamelCase_=1E-5 ,lowerCamelCase_=0.0 ,lowerCamelCase_=1E-10 ,**lowerCamelCase_ ,) -> int:
super().__init__(**__a )
A = hidden_size
A = intermediate_size
A = projection_dim
A = num_hidden_layers
A = num_attention_heads
A = patch_size
A = image_size
A = initializer_range
A = attention_dropout
A = layer_norm_eps
A = hidden_act
@classmethod
def UpperCamelCase__ ( cls ,lowerCamelCase_ ,**lowerCamelCase_ ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__a )
A = cls.get_config_dict(__a ,**__a )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("""model_type""" ) == "blip":
A = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__a ,**__a )
class lowerCamelCase__ ( UpperCamelCase_ ):
'''simple docstring'''
_lowerCamelCase = '''blip'''
_lowerCamelCase = True
def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=2.65_92 ,lowerCamelCase_=2_5_6 ,**lowerCamelCase_ ,) -> List[str]:
super().__init__(**__a )
if text_config is None:
A = {}
logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" )
if vision_config is None:
A = {}
logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" )
A = BlipTextConfig(**__a )
A = BlipVisionConfig(**__a )
A = self.vision_config.hidden_size
A = projection_dim
A = logit_scale_init_value
A = 1.0
A = 0.02
A = image_text_hidden_size
@classmethod
def UpperCamelCase__ ( cls ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Any:
return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__a )
def UpperCamelCase__ ( self ) -> Any:
A = copy.deepcopy(self.__dict__ )
A = self.text_config.to_dict()
A = self.vision_config.to_dict()
A = self.__class__.model_type
return output
| 717 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> Dict:
A = path_or_paths
A = split if split or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else """train"""
A = features
A = cache_dir
A = keep_in_memory
A = streaming
A = num_proc
A = kwargs
@abstractmethod
def UpperCamelCase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
pass
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> int:
A = features
A = cache_dir
A = keep_in_memory
A = streaming
A = num_proc
A = kwargs
@abstractmethod
def UpperCamelCase__ ( self ) -> Union[Dataset, IterableDataset]:
pass
| 255 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__lowerCAmelCase : Tuple =logging.get_logger(__name__)
__lowerCAmelCase : List[str] ={
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class _A ( lowerCAmelCase ):
snake_case__ : Union[str, Any] = 'imagegpt'
snake_case__ : Dict = ['past_key_values']
snake_case__ : Any = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __lowerCAmelCase=512 + 1 , __lowerCAmelCase=32 * 32 , __lowerCAmelCase=512 , __lowerCAmelCase=24 , __lowerCAmelCase=8 , __lowerCAmelCase=None , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = vocab_size
lowercase = n_positions
lowercase = n_embd
lowercase = n_layer
lowercase = n_head
lowercase = n_inner
lowercase = activation_function
lowercase = resid_pdrop
lowercase = embd_pdrop
lowercase = attn_pdrop
lowercase = layer_norm_epsilon
lowercase = initializer_range
lowercase = scale_attn_weights
lowercase = use_cache
lowercase = scale_attn_by_inverse_layer_idx
lowercase = reorder_and_upcast_attn
lowercase = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase )
class _A ( lowerCAmelCase ):
@property
def A__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
] )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 3 , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , ):
"""simple docstring"""
lowercase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase = dict(preprocessor(images=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) )
return inputs
| 359 | """simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :str ) -> set[str]:
'''simple docstring'''
lowercase , lowercase = set(lowerCAmelCase__ ), [start]
while stack:
lowercase = stack.pop()
explored.add(lowerCAmelCase__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(lowerCAmelCase__ )
return explored
__lowerCAmelCase : str ={
"""A""": ["""B""", """C""", """D"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F"""],
"""D""": ["""B""", """D"""],
"""E""": ["""B""", """F"""],
"""F""": ["""C""", """E""", """G"""],
"""G""": ["""F"""],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, """A"""))
| 359 | 1 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> str:
__snake_case = 0
if start < end:
__snake_case = randint(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = a[end]
__snake_case = a[pivot]
__snake_case = temp
__snake_case , __snake_case = _in_place_partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
count += _in_place_quick_sort(_UpperCAmelCase , _UpperCAmelCase , p - 1 )
count += _in_place_quick_sort(_UpperCAmelCase , p + 1 , _UpperCAmelCase )
return count
def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Any:
__snake_case = 0
__snake_case = randint(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = a[end]
__snake_case = a[pivot]
__snake_case = temp
__snake_case = start - 1
for index in range(_UpperCAmelCase , _UpperCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
__snake_case = new_pivot_index + 1
__snake_case = a[new_pivot_index]
__snake_case = a[index]
__snake_case = temp
__snake_case = a[new_pivot_index + 1]
__snake_case = a[end]
__snake_case = temp
return new_pivot_index + 1, count
a : Dict = TemporaryFile()
a : List[Any] = 100 # 1000 elements are to be sorted
a , a : Tuple = 0, 1 # mean and standard deviation
a : Any = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('''The array is''')
print(X)
outfile.seek(0) # using the same array
a : Optional[Any] = np.load(outfile)
a : Union[str, Any] = len(M) - 1
a : List[str] = _in_place_quick_sort(M, 0, r)
print(
'''No of Comparisons for 100 elements selected from a standard normal distribution'''
'''is :'''
)
print(z)
| 680 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : str = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 680 | 1 |
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = len(_lowercase )
for _ in range(_lowercase ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
UpperCAmelCase_, UpperCAmelCase_ : int = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
__a = list(range(10, 0, -1))
print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""") | 30 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowercase : str = KandinskyVaaControlnetPipeline
lowercase : Any = ['image_embeds', 'negative_image_embeds', 'hint']
lowercase : List[str] = ['image_embeds', 'negative_image_embeds', 'hint']
lowercase : Dict = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase : Dict = False
@property
def a_ ( self ):
return 32
@property
def a_ ( self ):
return 32
@property
def a_ ( self ):
return self.time_input_dim
@property
def a_ ( self ):
return self.time_input_dim * 4
@property
def a_ ( self ):
return 100
@property
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : Tuple = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
UpperCamelCase : List[str] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ )
return model
@property
def a_ ( self ):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def a_ ( self ):
torch.manual_seed(0 )
UpperCamelCase : str = VQModel(**self.dummy_movq_kwargs )
return model
def a_ ( self ):
UpperCamelCase : Optional[Any] = self.dummy_unet
UpperCamelCase : int = self.dummy_movq
UpperCamelCase : List[str] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : Optional[int] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ):
UpperCamelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
SCREAMING_SNAKE_CASE_ )
# create hint
UpperCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ):
UpperCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def a_ ( self ):
UpperCamelCase : Dict = """cpu"""
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Union[str, Any] = output.images
UpperCamelCase : Union[str, Any] = pipe(
**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
UpperCamelCase : int = image[0, -3:, -3:, -1]
UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase : List[Any] = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a_ ( self ):
UpperCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
UpperCamelCase : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
UpperCamelCase : Any = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 255.0
UpperCamelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
UpperCamelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
UpperCamelCase : str = pipeline.to(SCREAMING_SNAKE_CASE_ )
pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """A robot, 4k photo"""
UpperCamelCase : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
UpperCamelCase , UpperCamelCase : List[Any] = pipe_prior(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
UpperCamelCase : List[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
UpperCamelCase : Dict = pipeline(
image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , output_type="""np""" , )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 499 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
"Salesforce/blip-vqa-capfit-large": (
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-base": (
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-large": (
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
),
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
"Salesforce/blip-itm-large-flikr": (
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
),
}
class __SCREAMING_SNAKE_CASE ( lowercase):
__SCREAMING_SNAKE_CASE : List[str] = """blip_text_model"""
def __init__( self : Dict , __UpperCamelCase : List[Any]=30_524 , __UpperCamelCase : int=768 , __UpperCamelCase : Dict=768 , __UpperCamelCase : int=3_072 , __UpperCamelCase : List[Any]=768 , __UpperCamelCase : int=12 , __UpperCamelCase : Tuple=8 , __UpperCamelCase : Optional[Any]=512 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Any=1e-1_2 , __UpperCamelCase : str=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : int=0.02 , __UpperCamelCase : str=30_522 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : List[Any]=102 , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , **__UpperCamelCase : Tuple , ):
super().__init__(
pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , sep_token_id=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = encoder_hidden_size
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = projection_dim
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = hidden_act
_UpperCAmelCase = initializer_range
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = is_decoder
_UpperCAmelCase = use_cache
@classmethod
def UpperCAmelCase__ ( cls : Any , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Any ):
cls._set_token_in_kwargs(__UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
_UpperCAmelCase = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__UpperCamelCase , **__UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( lowercase):
__SCREAMING_SNAKE_CASE : List[Any] = """blip_vision_model"""
def __init__( self : Optional[Any] , __UpperCamelCase : List[str]=768 , __UpperCamelCase : Dict=3_072 , __UpperCamelCase : List[str]=512 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Dict=12 , __UpperCamelCase : Optional[Any]=384 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Dict=1e-1_0 , **__UpperCamelCase : Dict , ):
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = projection_dim
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = patch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = hidden_act
@classmethod
def UpperCAmelCase__ ( cls : Optional[int] , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Optional[Any] ):
cls._set_token_in_kwargs(__UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
_UpperCAmelCase = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__UpperCamelCase , **__UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( lowercase):
__SCREAMING_SNAKE_CASE : Any = """blip"""
__SCREAMING_SNAKE_CASE : Dict = True
def __init__( self : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : str=512 , __UpperCamelCase : Dict=2.6592 , __UpperCamelCase : Optional[Any]=256 , **__UpperCamelCase : Optional[Any] , ):
super().__init__(**__UpperCamelCase )
if text_config is None:
_UpperCAmelCase = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
_UpperCAmelCase = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
_UpperCAmelCase = BlipTextConfig(**__UpperCamelCase )
_UpperCAmelCase = BlipVisionConfig(**__UpperCamelCase )
_UpperCAmelCase = self.vision_config.hidden_size
_UpperCAmelCase = projection_dim
_UpperCAmelCase = logit_scale_init_value
_UpperCAmelCase = 1.0
_UpperCAmelCase = 0.02
_UpperCAmelCase = image_text_hidden_size
@classmethod
def UpperCAmelCase__ ( cls : int , __UpperCamelCase : BlipTextConfig , __UpperCamelCase : BlipVisionConfig , **__UpperCamelCase : Any ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase )
def UpperCAmelCase__ ( self : str ):
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.text_config.to_dict()
_UpperCAmelCase = self.vision_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output
| 705 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=[30, 30] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=3 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Any=32 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Tuple=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=10 , __UpperCamelCase : Any=0.02 , __UpperCamelCase : str=3 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : str=10 , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
_UpperCAmelCase = n_targets
_UpperCAmelCase = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
_UpperCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size)
_UpperCAmelCase = num_patches + 1 + self.num_detection_tokens
def UpperCAmelCase__ ( self : int ):
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
_UpperCAmelCase = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
_UpperCAmelCase = []
for i in range(self.batch_size ):
_UpperCAmelCase = {}
_UpperCAmelCase = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=__UpperCamelCase )
_UpperCAmelCase = torch.rand(self.n_targets , 4 , device=__UpperCamelCase )
labels.append(__UpperCamelCase )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self : Tuple ):
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def UpperCAmelCase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : str ):
_UpperCAmelCase = YolosModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int ):
_UpperCAmelCase = YolosForObjectDetection(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(pixel_values=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
_UpperCAmelCase = model(pixel_values=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def UpperCAmelCase__ ( self : List[str] ):
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase):
__SCREAMING_SNAKE_CASE : int = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = (
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : str = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Dict = False
def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str=False ):
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
_UpperCAmelCase = []
for i in range(self.model_tester.batch_size ):
_UpperCAmelCase = {}
_UpperCAmelCase = torch.ones(
size=(self.model_tester.n_targets,) , device=__UpperCamelCase , dtype=torch.long )
_UpperCAmelCase = torch.ones(
self.model_tester.n_targets , 4 , device=__UpperCamelCase , dtype=torch.float )
labels.append(__UpperCamelCase )
_UpperCAmelCase = labels
return inputs_dict
def UpperCAmelCase__ ( self : Optional[Any] ):
_UpperCAmelCase = YolosModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def UpperCAmelCase__ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[Any] ):
# YOLOS does not use inputs_embeds
pass
def UpperCAmelCase__ ( self : List[Any] ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def UpperCAmelCase__ ( self : Optional[int] ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def UpperCAmelCase__ ( self : Dict ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def UpperCAmelCase__ ( self : Dict ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
# in YOLOS, the seq_len is different
_UpperCAmelCase = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
_UpperCAmelCase = len(__UpperCamelCase )
# Check attention is always last and order is fine
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = 1
self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def UpperCAmelCase__ ( self : Tuple ):
def check_hidden_states_output(__UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] ):
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
# YOLOS has a different seq_length
_UpperCAmelCase = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def UpperCAmelCase__ ( self : Dict ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*__UpperCamelCase )
@slow
def UpperCAmelCase__ ( self : Optional[int] ):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = YolosModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def __lowerCamelCase ( ) -> Any:
_UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
@cached_property
def UpperCAmelCase__ ( self : Union[str, Any] ):
return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None
@slow
def UpperCAmelCase__ ( self : List[str] ):
_UpperCAmelCase = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(__UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(inputs.pixel_values )
# verify outputs
_UpperCAmelCase = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__UpperCamelCase , )
_UpperCAmelCase = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
# verify postprocessing
_UpperCAmelCase = image_processor.post_process_object_detection(
__UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
_UpperCAmelCase = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__UpperCamelCase )
_UpperCAmelCase = [75, 75, 17, 63, 17]
_UpperCAmelCase = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__UpperCamelCase )
self.assertEqual(len(results["scores"] ) , 5 )
self.assertTrue(torch.allclose(results["scores"] , __UpperCamelCase , atol=1e-4 ) )
self.assertSequenceEqual(results["labels"].tolist() , __UpperCamelCase )
self.assertTrue(torch.allclose(results["boxes"][0, :] , __UpperCamelCase ) )
| 129 | 0 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 79 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_A = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
_A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 159 | 0 |
"""simple docstring"""
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case_ ( _lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_: Optional[int] = LongformerTokenizer
SCREAMING_SNAKE_CASE_: Tuple = True
SCREAMING_SNAKE_CASE_: Tuple = LongformerTokenizerFast
SCREAMING_SNAKE_CASE_: Any = True
def _UpperCAmelCase ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A__ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
A__ = dict(zip(__a , range(len(__a ) ) ) )
A__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
A__ = {'unk_token': '<unk>'}
A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__a ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__a ) )
def _UpperCAmelCase ( self , **__a ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a )
def _UpperCAmelCase ( self , **__a ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a )
def _UpperCAmelCase ( self , __a ):
"""simple docstring"""
A__ = 'lower newer'
A__ = 'lower newer'
return input_text, output_text
def _UpperCAmelCase ( self ):
"""simple docstring"""
A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
A__ = 'lower newer'
A__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
A__ = tokenizer.tokenize(__a ) # , add_prefix_space=True)
self.assertListEqual(__a , __a )
A__ = tokens + [tokenizer.unk_token]
A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
def _UpperCAmelCase ( self ):
"""simple docstring"""
A__ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__a ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , )
@slow
def _UpperCAmelCase ( self ):
"""simple docstring"""
A__ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' )
A__ = tokenizer.encode('sequence builders' , add_special_tokens=__a )
A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a )
A__ = tokenizer.encode(
'sequence builders' , add_special_tokens=__a , add_prefix_space=__a )
A__ = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=__a , add_prefix_space=__a )
A__ = tokenizer.build_inputs_with_special_tokens(__a )
A__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _UpperCAmelCase ( self ):
"""simple docstring"""
A__ = self.get_tokenizer()
A__ = 'Encode this sequence.'
A__ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a )
A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__a , __a )
A__ = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a )
A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__a , __a )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
A__ = tokenizer.encode(__a , add_special_tokens=__a )
A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__a , __a )
# Testing spaces after special tokens
A__ = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space
A__ = tokenizer.convert_tokens_to_ids(__a )
A__ = 'Encode <mask> sequence'
A__ = 'Encode <mask>sequence'
A__ = tokenizer.encode(__a )
A__ = encoded.index(__a )
A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__a , __a )
A__ = tokenizer.encode(__a )
A__ = encoded.index(__a )
A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__a , __a )
def _UpperCAmelCase ( self ):
"""simple docstring"""
pass
def _UpperCAmelCase ( self ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A__ = self.rust_tokenizer_class.from_pretrained(__a , **__a )
A__ = self.tokenizer_class.from_pretrained(__a , **__a )
A__ = 'A, <mask> AllenNLP sentence.'
A__ = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
A__ = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
A__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
A__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
__a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
__a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def _UpperCAmelCase ( self ):
"""simple docstring"""
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
A__ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __a )
self.assertEqual(post_processor_state['add_prefix_space'] , __a )
self.assertEqual(post_processor_state['trim_offsets'] , __a )
def _UpperCAmelCase ( self ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A__ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
A__ = f'''{text_of_1_token} {text_of_1_token}'''
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , )
A__ = f''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
A__ = self.rust_tokenizer_class.from_pretrained(
__a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a )
A__ = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
| 554 |
"""simple docstring"""
from math import ceil
def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
A__ = list(range(0 ,lowerCAmelCase__ ) )
A__ = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
A__ = []
for i in device_map_blocks:
if device_map_blocks.count(lowerCAmelCase__ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(lowerCAmelCase__ )
# Missing blocks
A__ = [i for i in blocks if i not in device_map_blocks]
A__ = [i for i in device_map_blocks if i not in blocks]
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'
' These attention blocks were specified more than once: ' + str(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'There are attention blocks for this model that are not specified in the device_map. Add these attention '
'blocks to a device on the device_map: ' + str(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != 0:
raise ValueError(
'The device_map contains more attention blocks than this model has. Remove these from the device_map:'
+ str(lowerCAmelCase__ ) )
def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
A__ = list(range(lowerCAmelCase__ ) )
A__ = int(ceil(n_layers / len(lowerCAmelCase__ ) ) )
A__ = [layers[i : i + n_blocks] for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ )]
return dict(zip(lowerCAmelCase__ ,lowerCAmelCase__ ) )
| 554 | 1 |
from ..utils import DummyObject, requires_backends
class __a( metaclass=_a ):
"""simple docstring"""
lowerCAmelCase = ['''torch''', '''torchsde''']
def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
requires_backends(self ,['''torch''', '''torchsde'''] )
@classmethod
def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict:
requires_backends(cls ,['''torch''', '''torchsde'''] )
@classmethod
def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple:
requires_backends(cls ,['''torch''', '''torchsde'''] ) | 30 |
"""simple docstring"""
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class _lowerCAmelCase :
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 1_3 , lowerCAmelCase_ = 6_4 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 3_7 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1_0 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1_2_8 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict:
_SCREAMING_SNAKE_CASE : Dict = parent
_SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
_SCREAMING_SNAKE_CASE : List[Any] = image_size
_SCREAMING_SNAKE_CASE : int = patch_size
_SCREAMING_SNAKE_CASE : List[str] = num_channels
_SCREAMING_SNAKE_CASE : List[Any] = is_training
_SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
_SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size
_SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers
_SCREAMING_SNAKE_CASE : Dict = num_attention_heads
_SCREAMING_SNAKE_CASE : Any = intermediate_size
_SCREAMING_SNAKE_CASE : str = hidden_act
_SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range
_SCREAMING_SNAKE_CASE : int = encoder_stride
_SCREAMING_SNAKE_CASE : Tuple = num_attention_outputs
_SCREAMING_SNAKE_CASE : Any = embed_dim
_SCREAMING_SNAKE_CASE : str = embed_dim + 1
_SCREAMING_SNAKE_CASE : Union[str, Any] = resolution
_SCREAMING_SNAKE_CASE : int = depths
_SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes
_SCREAMING_SNAKE_CASE : Optional[Any] = dim
_SCREAMING_SNAKE_CASE : Any = mlp_expansion_ratio
def A ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE : Tuple = self.get_config()
return config, pixel_values, labels
def A ( self ) -> List[str]:
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str:
_SCREAMING_SNAKE_CASE : Optional[Any] = TFEfficientFormerModel(config=lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.type_sequence_label_size
_SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_SCREAMING_SNAKE_CASE : Tuple = 1
_SCREAMING_SNAKE_CASE : Any = TFEfficientFormerForImageClassification(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs()
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = config_and_inputs
_SCREAMING_SNAKE_CASE : Dict = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
SCREAMING_SNAKE_CASE_: List[str] = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE_: List[str] = (
{
'feature-extraction': TFEfficientFormerModel,
'image-classification': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE_: List[Any] = False
SCREAMING_SNAKE_CASE_: Optional[Any] = False
SCREAMING_SNAKE_CASE_: List[str] = False
SCREAMING_SNAKE_CASE_: Optional[Any] = False
SCREAMING_SNAKE_CASE_: str = False
def A ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = TFEfficientFormerModelTester(self )
_SCREAMING_SNAKE_CASE : List[str] = ConfigTester(
self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 )
def A ( self ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason='EfficientFormer does not use inputs_embeds' )
def A ( self ) -> Dict:
pass
@unittest.skip(reason='EfficientFormer does not support input and output embeddings' )
def A ( self ) -> Optional[Any]:
pass
def A ( self ) -> Any:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_SCREAMING_SNAKE_CASE : List[Any] = [*signature.parameters.keys()]
_SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCAmelCase_ )
def A ( self ) -> Union[str, Any]:
def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
_SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_SCREAMING_SNAKE_CASE : Optional[Any] = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
if hasattr(self.model_tester , 'encoder_seq_length' ):
_SCREAMING_SNAKE_CASE : List[str] = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1:
_SCREAMING_SNAKE_CASE : Tuple = seq_length * self.model_tester.chunk_length
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
_SCREAMING_SNAKE_CASE : List[str] = outputs.decoder_hidden_states
self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Tuple = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : str = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_SCREAMING_SNAKE_CASE : Any = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any:
_SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def A ( self ) -> str:
_SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
@unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' )
def A ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ )
def A ( self ) -> str:
_SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ )
@slow
def A ( self ) -> List[str]:
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_SCREAMING_SNAKE_CASE : str = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def A ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Optional[int] = True
_SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : int = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ )
if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ):
_SCREAMING_SNAKE_CASE : List[str] = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : str = True
_SCREAMING_SNAKE_CASE : Tuple = False
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_SCREAMING_SNAKE_CASE : List[str] = True
_SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def A ( self ) -> Any:
# We use a simplified version of this test for EfficientFormer because it requires training=False
# and Keras refuses to let us force that during functional construction
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
_SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase_ )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
_SCREAMING_SNAKE_CASE : Optional[Any] = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
_SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase_ )
self.assertTrue(outputs_dict is not None )
def lowercase__ ( ):
_SCREAMING_SNAKE_CASE : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
@cached_property
def A ( self ) -> str:
return (
EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' )
if is_vision_available()
else None
)
@slow
def A ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[int] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' )
_SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor
_SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img()
_SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase_ , return_tensors='tf' )
# forward pass
_SCREAMING_SNAKE_CASE : Dict = model(**lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([-0.0_555, 0.4_825, -0.0_852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
@slow
def A ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'snap-research/efficientformer-l1-300' )
_SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor
_SCREAMING_SNAKE_CASE : List[str] = prepare_img()
_SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors='tf' )
# forward pass
_SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
_SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Dict = tf.constant([-0.1_312, 0.4_353, -1.0_499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
| 621 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowercase__ : Dict = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Dict=18 , UpperCAmelCase__ : Tuple=30 , UpperCAmelCase__ : List[Any]=400 , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[str]=None , ) ->str:
UpperCAmelCase_ = size if size is not None else {'''height''': 20, '''width''': 20}
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = min_resolution
UpperCAmelCase_ = max_resolution
UpperCAmelCase_ = size
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = do_convert_rgb
UpperCAmelCase_ = [512, 1024, 2048, 4096]
UpperCAmelCase_ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def lowerCAmelCase__ ( self : Any ) ->Any:
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]:
UpperCAmelCase_ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
UpperCAmelCase_ = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]:
UpperCAmelCase_ = PixaStructImageProcessingTester(self )
@property
def lowerCAmelCase__ ( self : Dict ) ->Dict:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any:
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_convert_rgb''' ) )
def lowerCAmelCase__ ( self : Tuple ) ->List[Any]:
UpperCAmelCase_ = self.image_processor_tester.prepare_dummy_image()
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase_ = 2048
UpperCAmelCase_ = image_processor(UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def lowerCAmelCase__ ( self : List[Any] ) ->Any:
# Initialize image_processor
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
UpperCAmelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase_ = image_processor(
UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self : List[Any] ) ->Any:
# Initialize image_processor
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
UpperCAmelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
UpperCAmelCase_ = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(UpperCAmelCase__ ):
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
UpperCAmelCase_ = '''Hello'''
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase_ = image_processor(
UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self : int ) ->Optional[int]:
# Initialize image_processor
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray )
UpperCAmelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase_ = image_processor(
UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def lowerCAmelCase__ ( self : Optional[Any] ) ->str:
# Initialize image_processor
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor )
# Test not batched input
UpperCAmelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase_ = image_processor(
UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None
def lowerCAmelCase__ ( self : List[Any] ) ->Dict:
UpperCAmelCase_ = PixaStructImageProcessingTester(self , num_channels=4 )
UpperCAmelCase_ = 3
@property
def lowerCAmelCase__ ( self : int ) ->Dict:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase__ ( self : List[str] ) ->Any:
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_convert_rgb''' ) )
def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]:
# Initialize image_processor
UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image )
# Test not batched input
UpperCAmelCase_ = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase_ = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase_ = image_processor(
UpperCAmelCase__ , return_tensors='''pt''' , max_patches=UpperCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 43 | '''simple docstring'''
def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ):
'''simple docstring'''
UpperCAmelCase_ = ''''''
for word_or_phrase in separated:
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
raise Exception('''join() accepts only strings to be joined''' )
joined += word_or_phrase + separator
return joined.strip(_UpperCamelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 43 | 1 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__A = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class _A ( unittest.TestCase ):
"""simple docstring"""
def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Path , __SCREAMING_SNAKE_CASE : Union[str, None] = None , __SCREAMING_SNAKE_CASE : Union[List[str], None] = None , __SCREAMING_SNAKE_CASE : Union[str, List[str], None] = None , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[str]:
__UpperCAmelCase =[file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )]
if identifier is not None:
__UpperCAmelCase =[file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for n_ in n_identifier:
__UpperCAmelCase =[file for file in files if n_ not in file]
else:
__UpperCAmelCase =[file for file in files if n_identifier not in file]
__UpperCAmelCase =ignore_files or []
ignore_files.append("""__init__.py""" )
__UpperCAmelCase =[file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , __SCREAMING_SNAKE_CASE )
if only_modules:
__UpperCAmelCase =file.split(""".""" )[0]
try:
__UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__UpperCAmelCase =doctest.DocTestSuite(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
__UpperCAmelCase =doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def _a ( self : Optional[Any] ) -> List[str]:
__UpperCAmelCase =Path("""src/transformers""" )
__UpperCAmelCase ="""modeling"""
__UpperCAmelCase =[
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE )
def _a ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase =Path("""src/transformers""" )
__UpperCAmelCase ="""tokenization"""
self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE )
def _a ( self : Optional[Any] ) -> Optional[Any]:
__UpperCAmelCase =Path("""src/transformers""" )
__UpperCAmelCase ="""configuration"""
self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] ) -> Tuple:
__UpperCAmelCase =Path("""src/transformers""" )
__UpperCAmelCase =["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE )
def _a ( self : Any ) -> Tuple:
__UpperCAmelCase =Path("""docs/source""" )
__UpperCAmelCase =["""favicon.ico"""]
self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
| 68 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class __lowercase (__lowerCamelCase ):
_lowerCamelCase = '''dpr'''
def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=30_522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1e-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : Union[str, Any] , ):
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
UpperCamelCase__ : List[Any] = vocab_size
UpperCamelCase__ : Dict = hidden_size
UpperCamelCase__ : Optional[Any] = num_hidden_layers
UpperCamelCase__ : Optional[Any] = num_attention_heads
UpperCamelCase__ : Optional[int] = hidden_act
UpperCamelCase__ : Union[str, Any] = intermediate_size
UpperCamelCase__ : Optional[int] = hidden_dropout_prob
UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCamelCase__ : Tuple = max_position_embeddings
UpperCamelCase__ : List[Any] = type_vocab_size
UpperCamelCase__ : Dict = initializer_range
UpperCamelCase__ : Any = layer_norm_eps
UpperCamelCase__ : Tuple = projection_dim
UpperCamelCase__ : List[str] = position_embedding_type
| 596 | 0 |
from __future__ import annotations
def _UpperCAmelCase ( a : str , a : list[str] | None = None ):
snake_case__ = word_bank or []
# create a table
snake_case__ = len(a ) + 1
snake_case__ = []
for _ in range(a ):
table.append([] )
# seed value
snake_case__ = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(a ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(a )] == word:
snake_case__ = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(a )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(a )]:
combination.reverse()
return table[len(a )]
if __name__ == "__main__":
print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""]))
print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""]))
print(
all_construct(
"""hexagonosaurus""",
["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""],
)
)
| 99 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _UpperCAmelCase ( a : int=32 , a : int=10 , a : Tuple=100 , a : str=1026 , a : Union[str, Any]=True , a : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , a : Tuple="igf_context_pairs.jbl" , ):
set_seed(3 )
# generate train_data and objective_set
snake_case__ , snake_case__ = generate_datasets(
a , a , number=a , min_len=1026 , trim=a )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# load pretrained model
snake_case__ = load_gpta("""gpt2""" ).to(a )
print("""computing perplexity on objective set""" )
snake_case__ = compute_perplexity(a , a , a ).item()
print("""perplexity on objective set:""" , a )
# collect igf pairs and save to file demo.jbl
collect_objective_set(a , a , a , a , a , a , a , a )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _UpperCAmelCase ( a : int , a : Dict=15 , a : Optional[int]=128 , a : str=100 , a : Optional[int]="igf_model.pt" , ):
set_seed(42 )
# Load pre-trained model
snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
# Initialize secondary learner to use embedding weights of model
snake_case__ = SecondaryLearner(a )
# Train secondary learner
snake_case__ = train_secondary_learner(
a , a , max_epochs=a , batch_size=a , eval_freq=100 , igf_model_path=a , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _UpperCAmelCase ( a : Tuple , a : List[Any] , a : str , a : List[Any]=32 , a : Any=1000 , a : str=16 , a : Tuple=1.0 , a : str=recopy_gpta , a : Any=None , a : Optional[int]=10 , a : Tuple="gpt2_finetuned.pt" , ):
snake_case__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
snake_case__ = RandomSampler(a )
snake_case__ = DataLoader(a , sampler=a )
snake_case__ = max_steps // (len(a )) + 1
snake_case__ = 0
snake_case__ = torch.zeros((1, context_len) , dtype=torch.long , device=a )
snake_case__ , snake_case__ , snake_case__ = recopy_model(a , a , a )
model.train()
if secondary_learner is not None:
secondary_learner.to(a )
secondary_learner.eval()
snake_case__ = []
snake_case__ = 0
snake_case__ = []
snake_case__ = []
# Compute the performance of the transformer model at the beginning
snake_case__ = compute_perplexity(a , a , a )
test_perps.append(a )
print("""Test perplexity, step""" , a , """:""" , a )
for epoch in range(int(a ) ):
for step, example in enumerate(a ):
torch.cuda.empty_cache()
snake_case__ = random.randint(0 , example.size(2 ) - context_len - 1 )
snake_case__ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
snake_case__ = model(a , labels=a )
snake_case__ = True
if secondary_learner is not None:
snake_case__ = secondary_learner.forward(
torch.tensor(a , dtype=torch.long , device=a ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(a ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
snake_case__ = -1
if predicted_q < threshold:
snake_case__ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
snake_case__ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
snake_case__ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
snake_case__ = compute_perplexity(a , a , a )
test_perps.append(a )
print("""Test perplexity, step""" , a , """:""" , a )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , a )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _UpperCAmelCase ( ):
snake_case__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" )
# Required parameters
parser.add_argument(
"""--data_dir""" , default=a , type=a , required=a , help="""The input data dir. Should contain data files for WikiText.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=a , type=a , required=a , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--data_file""" , type=a , default=a , help=(
"""A jbl file containing tokenized data which can be split as objective dataset, """
"""train_dataset and test_dataset."""
) , )
parser.add_argument(
"""--igf_data_file""" , type=a , default=a , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , )
parser.add_argument(
"""--output_dir""" , default=a , type=a , required=a , help="""The output directory where the final fine-tuned model is stored.""" , )
parser.add_argument(
"""--tokenizer_name""" , default=a , type=a , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument("""--seed""" , type=a , default=a , help="""A seed for reproducible training.""" )
parser.add_argument(
"""--context_len""" , default=32 , type=a , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--size_objective_set""" , default=100 , type=a , help="""number of articles that are long enough to be used as our objective set""" , )
parser.add_argument(
"""--eval_freq""" , default=100 , type=a , help="""secondary model evaluation is triggered at eval_freq""" )
parser.add_argument("""--max_steps""" , default=1000 , type=a , help="""To calculate training epochs""" )
parser.add_argument(
"""--secondary_learner_batch_size""" , default=128 , type=a , help="""batch size of training data for secondary learner""" , )
parser.add_argument(
"""--batch_size""" , default=16 , type=a , help="""batch size of training data of language model(gpt2) """ )
parser.add_argument(
"""--eval_interval""" , default=10 , type=a , help=(
"""decay the selectivity of our secondary learner filter from"""
"""1 standard deviation above average to 1 below average after 10 batches"""
) , )
parser.add_argument(
"""--number""" , default=100 , type=a , help="""The number of examples split to be used as objective_set/test_data""" )
parser.add_argument(
"""--min_len""" , default=1026 , type=a , help="""The minimum length of the article to be used as objective set""" )
parser.add_argument(
"""--secondary_learner_max_epochs""" , default=15 , type=a , help="""number of epochs to train secondary learner""" )
parser.add_argument("""--trim""" , default=a , type=a , help="""truncate the example if it exceeds context length""" )
parser.add_argument(
"""--threshold""" , default=1.0 , type=a , help=(
"""The threshold value used by secondary learner to filter the train_data and allow only"""
""" informative data as input to the model"""
) , )
parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=a , help="""finetuned_model_name""" )
parser.add_argument(
"""--recopy_model""" , default=a , type=a , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=a , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , )
# Load train data for secondary learner
snake_case__ = joblib.load("""data/IGF_values.jbl""" )
# Train secondary learner
snake_case__ = training_secondary_learner(
a , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , )
# load pretrained gpt2 model
snake_case__ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
snake_case__ , snake_case__ = generate_datasets(
context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=a )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
a , a , a , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=a , secondary_learner=a , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , )
if __name__ == "__main__":
main()
| 99 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
snake_case_ : str = logging.get_logger(__name__)
class snake_case__ ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = ['''pixel_values''']
def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 2_55 , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , **lowercase : Tuple , ):
'''simple docstring'''
super().__init__(**lowercase )
UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_24}
UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56}
UpperCAmelCase : List[Any] = get_size_dict(lowercase , param_name="crop_size" )
UpperCAmelCase : str = do_resize
UpperCAmelCase : Union[str, Any] = size
UpperCAmelCase : Any = resample
UpperCAmelCase : str = do_rescale
UpperCAmelCase : List[str] = rescale_factor
UpperCAmelCase : List[str] = do_center_crop
UpperCAmelCase : Any = crop_size
UpperCAmelCase : str = do_flip_channel_order
def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PIL.Image.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ):
'''simple docstring'''
UpperCAmelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" )
UpperCAmelCase : Dict = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def __lowerCAmelCase ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ):
'''simple docstring'''
UpperCAmelCase : int = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase )
def __lowerCAmelCase ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ):
'''simple docstring'''
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Optional[Union[str, ChannelDimension]] = None ):
'''simple docstring'''
return flip_channel_order(lowercase , data_format=lowercase )
def __lowerCAmelCase ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ):
'''simple docstring'''
UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : List[str] = resample if resample is not None else self.resample
UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase : Dict = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
UpperCAmelCase : Optional[int] = size if size is not None else self.size
UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase )
UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase : int = get_size_dict(lowercase , param_name="crop_size" )
UpperCAmelCase : List[str] = make_list_of_images(lowercase )
if not valid_images(lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
# All transformations expect numpy arrays.
UpperCAmelCase : List[str] = [to_numpy_array(lowercase ) for image in images]
if do_resize:
UpperCAmelCase : Dict = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images]
if do_center_crop:
UpperCAmelCase : Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images]
if do_rescale:
UpperCAmelCase : Optional[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
UpperCAmelCase : Tuple = [self.flip_channel_order(image=lowercase ) for image in images]
UpperCAmelCase : Tuple = [to_channel_dimension_format(lowercase , lowercase ) for image in images]
UpperCAmelCase : Tuple = {"pixel_values": images}
return BatchFeature(data=lowercase , tensor_type=lowercase )
def __lowerCAmelCase ( self : Dict , lowercase : Union[str, Any] , lowercase : List[Tuple] = None ):
'''simple docstring'''
UpperCAmelCase : int = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase ) != len(lowercase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(lowercase ):
UpperCAmelCase : Optional[Any] = target_sizes.numpy()
UpperCAmelCase : Tuple = []
for idx in range(len(lowercase ) ):
UpperCAmelCase : Tuple = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase )
UpperCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase )
else:
UpperCAmelCase : Dict = logits.argmax(dim=1 )
UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 595 |
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
snake_case_ : Optional[Any] = {"""vocab_file""": """vocab.txt"""}
snake_case_ : Optional[Any] = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
snake_case_ : Optional[Any] = {
"""openbmb/cpm-ant-10b""": 1_0_2_4,
}
def lowercase_ ( _lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase : List[Any] = collections.OrderedDict()
with open(_lowercase , "r" , encoding="utf-8" ) as reader:
UpperCAmelCase : Tuple = reader.readlines()
for index, token in enumerate(_lowercase ):
UpperCAmelCase : Union[str, Any] = token.rstrip("\n" )
UpperCAmelCase : Tuple = index
return vocab
class snake_case__ ( lowerCAmelCase_ ):
def __init__( self : List[Any] , lowercase : str , lowercase : Any="<unk>" , lowercase : Optional[Any]=2_00 ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = vocab
UpperCAmelCase : Tuple = unk_token
UpperCAmelCase : Optional[Any] = max_input_chars_per_word
def __lowerCAmelCase ( self : Tuple , lowercase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase : str = list(lowercase )
if len(lowercase ) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCAmelCase : List[str] = 0
UpperCAmelCase : Any = []
while start < len(lowercase ):
UpperCAmelCase : List[Any] = len(lowercase )
UpperCAmelCase : Any = None
while start < end:
UpperCAmelCase : Optional[Any] = "".join(chars[start:end] )
if substr in self.vocab:
UpperCAmelCase : List[Any] = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(lowercase )
UpperCAmelCase : Dict = end
return sub_tokens
class snake_case__ ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask''']
SCREAMING_SNAKE_CASE__ = False
def __init__( self : Tuple , lowercase : Union[str, Any] , lowercase : Tuple="<d>" , lowercase : Tuple="</d>" , lowercase : Optional[int]="<s>" , lowercase : List[Any]="</s>" , lowercase : Tuple="<pad>" , lowercase : List[Any]="<unk>" , lowercase : Any="</n>" , lowercase : Dict="</_>" , lowercase : int="left" , **lowercase : int , ):
'''simple docstring'''
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=lowercase , eod_token=lowercase , bos_token=lowercase , eos_token=lowercase , pad_token=lowercase , unk_token=lowercase , line_token=lowercase , space_token=lowercase , padding_side=lowercase , **lowercase , )
UpperCAmelCase : int = bod_token
UpperCAmelCase : int = eod_token
UpperCAmelCase : Dict = load_vocab(lowercase )
UpperCAmelCase : Optional[Any] = self.encoder[space_token]
UpperCAmelCase : int = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCAmelCase : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase : x[1] ) )
UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
UpperCAmelCase : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return self.encoder["\n"]
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return len(self.encoder )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __lowerCAmelCase ( self : Dict , lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = []
for x in jieba.cut(lowercase , cut_all=lowercase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase ) )
return output_tokens
def __lowerCAmelCase ( self : Union[str, Any] , lowercase : Tuple , **lowercase : List[Any] ):
'''simple docstring'''
UpperCAmelCase : int = [i for i in token_ids if i >= 0]
UpperCAmelCase : int = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(lowercase , **lowercase )
def __lowerCAmelCase ( self : Dict , lowercase : int ):
'''simple docstring'''
return token in self.encoder
def __lowerCAmelCase ( self : str , lowercase : List[str] ):
'''simple docstring'''
return "".join(lowercase )
def __lowerCAmelCase ( self : str , lowercase : Any ):
'''simple docstring'''
return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) )
def __lowerCAmelCase ( self : Dict , lowercase : Dict ):
'''simple docstring'''
return self.decoder.get(lowercase , self.unk_token )
def __lowerCAmelCase ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ):
'''simple docstring'''
if os.path.isdir(lowercase ):
UpperCAmelCase : Dict = os.path.join(
lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
UpperCAmelCase : str = (filename_prefix + "-" if filename_prefix else "") + save_directory
UpperCAmelCase : Optional[Any] = 0
if " " in self.encoder:
UpperCAmelCase : int = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
UpperCAmelCase : List[str] = self.encoder["\n"]
del self.encoder["\n"]
UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase : x[1] ) )
with open(lowercase , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
" Please check that the vocabulary is not corrupted!" )
UpperCAmelCase : int = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : List[int] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase )
if token_ids_a is not None:
return [1] + ([0] * len(lowercase )) + [1] + ([0] * len(lowercase ))
return [1] + ([0] * len(lowercase ))
| 595 | 1 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
SCREAMING_SNAKE_CASE_ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
SCREAMING_SNAKE_CASE_ = [0, 2_5, 5_0]
SCREAMING_SNAKE_CASE_ = [2_5, 5_0, 7_5]
SCREAMING_SNAKE_CASE_ = fuzz.membership.trimf(X, abca)
SCREAMING_SNAKE_CASE_ = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
SCREAMING_SNAKE_CASE_ = np.ones(7_5)
SCREAMING_SNAKE_CASE_ = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
SCREAMING_SNAKE_CASE_ = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
SCREAMING_SNAKE_CASE_ = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
SCREAMING_SNAKE_CASE_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("""Young""")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("""Middle aged""")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("""union""")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("""intersection""")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("""complement_a""")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("""difference a/b""")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("""alg_sum""")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("""alg_product""")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("""bdd_sum""")
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title("""bdd_difference""")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 116 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
"""google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""",
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class UpperCamelCase__ ( lowerCAmelCase_ ):
'''simple docstring'''
__snake_case : str = "pegasus"
__snake_case : List[Any] = ["past_key_values"]
__snake_case : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict ,lowerCamelCase__ : List[str]=50265 ,lowerCamelCase__ : int=1024 ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : str=4096 ,lowerCamelCase__ : Dict=16 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]="gelu" ,lowerCamelCase__ : Tuple=1024 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Union[str, Any]=0 ,lowerCamelCase__ : Optional[int]=1 ,lowerCamelCase__ : Any=1 ,**lowerCamelCase__ : Dict ,) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = d_model
SCREAMING_SNAKE_CASE = encoder_ffn_dim
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = encoder_attention_heads
SCREAMING_SNAKE_CASE = decoder_ffn_dim
SCREAMING_SNAKE_CASE = decoder_layers
SCREAMING_SNAKE_CASE = decoder_attention_heads
SCREAMING_SNAKE_CASE = dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = activation_dropout
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = init_std
SCREAMING_SNAKE_CASE = encoder_layerdrop
SCREAMING_SNAKE_CASE = decoder_layerdrop
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,forced_eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,)
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.d_model
| 116 | 1 |
from __future__ import annotations
from math import pi, sqrt
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple:
if inductance <= 0:
raise ValueError('Inductance cannot be 0 or negative' )
elif capacitance <= 0:
raise ValueError('Capacitance cannot be 0 or negative' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 235 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def __UpperCamelCase () -> Optional[Any]:
lowercase__ = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
lowercase__ = Dataset.from_dict(_SCREAMING_SNAKE_CASE )
return dataset
class SCREAMING_SNAKE_CASE (UpperCAmelCase ):
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]:
"""simple docstring"""
lowercase__ = get_dataset()
lowercase__ = make_duplicate_clusters(a , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Dict:
"""simple docstring"""
lowercase__ = get_dataset()
lowercase__ , lowercase__ = deduplicate_dataset(a )
self.assertEqual(len(a ) , 2 )
print(a )
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 )
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , a )
| 235 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
SCREAMING_SNAKE_CASE_ = "\\n\n"
SCREAMING_SNAKE_CASE_ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n"
SCREAMING_SNAKE_CASE_ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __a ( self : List[Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int = 1_6 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[int]=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__a = """cuda"""
else:
__a = """cuda""" if torch.cuda.is_available() else """cpu"""
__a = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ )
__a = model.to(lowerCAmelCase_ )
__a = AutoTokenizer.from_pretrained(lowerCAmelCase_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__a = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(lowerCAmelCase_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__a = model.config.max_length - 1
else:
__a = model.config.max_length
__a = tokenizer(
lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors="""pt""" , return_attention_mask=lowerCAmelCase_ , ).to(lowerCAmelCase_ )
__a = encodings["""input_ids"""]
__a = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__a = []
__a = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ):
__a = min(start_index + batch_size , len(lowerCAmelCase_ ) )
__a = encoded_texts[start_index:end_index]
__a = attn_masks[start_index:end_index]
if add_start_token:
__a = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCAmelCase_ )
__a = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
__a = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCAmelCase_ ), attn_mask] , dim=1 )
__a = encoded_batch
with torch.no_grad():
__a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).logits
__a = out_logits[..., :-1, :].contiguous()
__a = labels[..., 1:].contiguous()
__a = attn_mask[..., 1:].contiguous()
__a = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , lowerCAmelCase_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCAmelCase_ )}
| 712 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
SCREAMING_SNAKE_CASE_ = {'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
a_ :List[Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a_ :List[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
a_ :List[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
a_ :Tuple ={
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __a ( self : int ):
'''simple docstring'''
__a = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
__a = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
__a = text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] )
__a = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
] , )
__a = text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
# Legacy behavior
__a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
__a = text_classifier("""This is great !""" , return_all_scores=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] )
__a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
] , )
__a = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
{"""label""": """LABEL_0""", """score""": 0.5_0_4},
{"""label""": """LABEL_0""", """score""": 0.5_0_4},
] , )
@require_torch
def __a ( self : Optional[int] ):
'''simple docstring'''
import torch
__a = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
__a = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
@require_tf
def __a ( self : List[str] ):
'''simple docstring'''
__a = pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
__a = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
@slow
@require_torch
def __a ( self : int ):
'''simple docstring'''
__a = pipeline("""text-classification""" )
__a = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__a = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__a = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] )
@slow
@require_tf
def __a ( self : Union[str, Any] ):
'''simple docstring'''
__a = pipeline("""text-classification""" , framework="""tf""" )
__a = text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
__a = text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
__a = text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] )
def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
__a = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
__a = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
__a = """HuggingFace is in"""
__a = text_classifier(SCREAMING_SNAKE_CASE__ )
self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
__a = ["""HuggingFace is in """, """Paris is in France"""]
__a = text_classifier(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}, {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
__a = text_classifier(SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ )
__a = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N, [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] * N] , )
__a = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
__a = text_classifier(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
__a = [["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
text_classifier(SCREAMING_SNAKE_CASE__ )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
__a = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"""label""": ANY(SCREAMING_SNAKE_CASE__ ), """score""": ANY(SCREAMING_SNAKE_CASE__ )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 201 | 0 |
from typing import Any
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> list:
_validation(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , )
# Creates data structures and fill initial step
UpperCamelCase_: dict = {}
UpperCamelCase_: dict = {}
for state in states_space:
UpperCamelCase_: Any = observations_space[0]
UpperCamelCase_: Tuple = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
UpperCamelCase_: List[str] = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(UpperCAmelCase__ ) ):
UpperCamelCase_: List[Any] = observations_space[o]
UpperCamelCase_: Union[str, Any] = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
UpperCamelCase_: List[Any] = ''
UpperCamelCase_: Optional[Any] = -1
for k_state in states_space:
UpperCamelCase_: str = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
UpperCamelCase_: Optional[Any] = probability
UpperCamelCase_: Optional[Any] = k_state
# Update probabilities and pointers dicts
UpperCamelCase_: List[str] = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
UpperCamelCase_: Dict = arg_max
# The final observation
UpperCamelCase_: Dict = observations_space[len(UpperCAmelCase__ ) - 1]
# argmax for given final observation
UpperCamelCase_: int = ''
UpperCamelCase_: Optional[Any] = -1
for k_state in states_space:
UpperCamelCase_: Tuple = probabilities[(k_state, final_observation)]
if probability > max_probability:
UpperCamelCase_: int = probability
UpperCamelCase_: List[str] = k_state
UpperCamelCase_: Optional[Any] = arg_max
# Process pointers backwards
UpperCamelCase_: Tuple = last_state
UpperCamelCase_: Tuple = []
for o in range(len(UpperCAmelCase__ ) - 1 , -1 , -1 ):
result.append(UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = pointers[previous, observations_space[o]]
result.reverse()
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None:
_validate_not_empty(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , )
_validate_lists(UpperCAmelCase__ , UpperCAmelCase__ )
_validate_dicts(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('There\'s an empty parameter' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None:
_validate_list(UpperCAmelCase__ , 'observations_space' )
_validate_list(UpperCAmelCase__ , 'states_space' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None:
if not isinstance(_object , UpperCAmelCase__ ):
UpperCamelCase_: Optional[Any] = F'''{var_name} must be a list'''
raise ValueError(UpperCAmelCase__ )
else:
for x in _object:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: List[str] = F'''{var_name} must be a list of strings'''
raise ValueError(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> None:
_validate_dict(UpperCAmelCase__ , 'initial_probabilities' , UpperCAmelCase__ )
_validate_nested_dict(UpperCAmelCase__ , 'transition_probabilities' )
_validate_nested_dict(UpperCAmelCase__ , 'emission_probabilities' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> None:
_validate_dict(_object , UpperCAmelCase__ , UpperCAmelCase__ )
for x in _object.values():
_validate_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> None:
if not isinstance(_object , UpperCAmelCase__ ):
UpperCamelCase_: Union[str, Any] = F'''{var_name} must be a dict'''
raise ValueError(UpperCAmelCase__ )
if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object ):
UpperCamelCase_: int = F'''{var_name} all keys must be strings'''
raise ValueError(UpperCAmelCase__ )
if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values() ):
UpperCamelCase_: str = 'nested dictionary ' if nested else ''
UpperCamelCase_: Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(UpperCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod() | 57 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class snake_case__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
snake_case : Any = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' )
snake_case : List[Any] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
snake_case : Any = model(UpperCamelCase__ )['''last_hidden_state''']
snake_case : int = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , UpperCamelCase__ )
# compare the actual values for a slice.
snake_case : Dict = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 638 | 0 |
'''simple docstring'''
from __future__ import annotations
def UpperCAmelCase ( lowerCamelCase_ :int = 4 ):
'''simple docstring'''
snake_case_ : Union[str, Any] = abs(__snake_case ) or 4
return [[1 + x + y * row_size for x in range(__snake_case )] for y in range(__snake_case )]
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
return reverse_row(transpose(__snake_case ) )
# OR.. transpose(reverse_column(matrix))
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
return reverse_row(reverse_column(__snake_case ) )
# OR.. reverse_column(reverse_row(matrix))
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
return reverse_column(transpose(__snake_case ) )
# OR.. transpose(reverse_row(matrix))
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
snake_case_ : int = [list(__snake_case ) for x in zip(*__snake_case )]
return matrix
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
snake_case_ : Optional[int] = matrix[::-1]
return matrix
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
snake_case_ : Dict = [x[::-1] for x in matrix]
return matrix
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ):
'''simple docstring'''
for i in matrix:
print(*__snake_case )
if __name__ == "__main__":
__A : int = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__A : Optional[int] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__A : List[Any] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix)) | 713 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
return " ".join(
"""""".join(word[::-1] ) if len(lowerCamelCase_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw')) | 267 | 0 |
from pathlib import Path
import numpy as np
from PIL import Image
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray:
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = np.zeros_like(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
_UpperCAmelCase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
_UpperCAmelCase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
_UpperCAmelCase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCAmelCase_ = Path(__file__).resolve().parent / "image_data" / "lena.jpg"
UpperCAmelCase_ = np.array(Image.open(lena_path))
# kernel to be applied
UpperCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCAmelCase_ = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png") | 32 |
def lowerCamelCase__ ( _a):
if not isinstance(_a , _a):
SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer"
raise TypeError(_a)
if number < 0:
return False
SCREAMING_SNAKE_CASE : Union[str, Any] = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 25 | 0 |
"""simple docstring"""
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __UpperCamelCase ( snake_case__ ):
return np.dot(a_ , a_ )
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__(self , *,
lowerCAmelCase_ = np.inf , lowerCAmelCase_ = "linear" , lowerCAmelCase_ = 0.0 , ):
A_ : Optional[int] = regularization
A_ : Optional[Any] = gamma
if kernel == "linear":
A_ : Tuple = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("""rbf kernel requires gamma""" )
if not isinstance(self.gamma , (float, int) ):
raise ValueError("""gamma must be float or int""" )
if not self.gamma > 0:
raise ValueError("""gamma must be > 0""" )
A_ : Tuple = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
A_ : str = f"""Unknown kernel: {kernel}"""
raise ValueError(__snake_case )
def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ):
return np.dot(__snake_case , __snake_case )
def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ):
A_ : str = observations
A_ : Optional[Any] = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
(A_ ) : str = np.shape(__snake_case )
def to_minimize(lowerCAmelCase_ ) -> float:
A_ : Dict = 0
(A_ ) : Dict = np.shape(__snake_case )
for i in range(__snake_case ):
for j in range(__snake_case ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(__snake_case )
A_ : Tuple = LinearConstraint(__snake_case , 0 , 0 )
A_ : Dict = Bounds(0 , self.regularization )
A_ : Union[str, Any] = minimize(
__snake_case , np.ones(__snake_case ) , bounds=__snake_case , constraints=[ly_contraint] ).x
A_ : List[str] = l_star
# calculating mean offset of separation plane to points
A_ : Union[str, Any] = 0
for i in range(__snake_case ):
for j in range(__snake_case ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
A_ : Any = s / n
def lowerCamelCase(self , lowerCAmelCase_ ):
A_ : List[Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , __snake_case )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 705 |
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
_lowerCAmelCase = logging.getLogger(__name__)
def __UpperCamelCase ( snake_case__ ):
A_ : List[str] = git.Repo(search_parent_directories=snake_case__ )
A_ : List[str] = {
"""repo_id""": str(snake_case__ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
}
with open(os.path.join(snake_case__ , """git_log.json""" ) , """w""" ) as f:
json.dump(snake_case__ , snake_case__ , indent=4 )
def __UpperCamelCase ( snake_case__ ):
if params.n_gpu <= 0:
A_ : Dict = 0
A_ : str = -1
A_ : int = True
A_ : Union[str, Any] = False
return
assert torch.cuda.is_available()
logger.info("""Initializing GPUs""" )
if params.n_gpu > 1:
assert params.local_rank != -1
A_ : str = int(os.environ["""WORLD_SIZE"""] )
A_ : int = int(os.environ["""N_GPU_NODE"""] )
A_ : int = int(os.environ["""RANK"""] )
# number of nodes / node ID
A_ : Optional[int] = params.world_size // params.n_gpu_per_node
A_ : Optional[int] = params.global_rank // params.n_gpu_per_node
A_ : Tuple = True
assert params.n_nodes == int(os.environ["""N_NODES"""] )
assert params.node_id == int(os.environ["""NODE_RANK"""] )
# local job (single GPU)
else:
assert params.local_rank == -1
A_ : Dict = 1
A_ : Tuple = 0
A_ : Dict = 0
A_ : Optional[int] = 0
A_ : List[str] = 1
A_ : List[Any] = 1
A_ : List[Any] = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
A_ : Optional[int] = params.node_id == 0 and params.local_rank == 0
A_ : Optional[Any] = params.n_nodes > 1
# summary
A_ : str = F"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes )
logger.info(PREFIX + """Node ID : %i""" % params.node_id )
logger.info(PREFIX + """Local rank : %i""" % params.local_rank )
logger.info(PREFIX + """World size : %i""" % params.world_size )
logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node )
logger.info(PREFIX + """Master : %s""" % str(params.is_master ) )
logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) )
logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) )
logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("""Initializing PyTorch distributed""" )
torch.distributed.init_process_group(
init_method="""env://""" , backend="""nccl""" , )
def __UpperCamelCase ( snake_case__ ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 480 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98 |
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a ( UpperCAmelCase__ ):
UpperCamelCase : Any = 'Speech2TextFeatureExtractor'
UpperCamelCase : Optional[Any] = 'Speech2TextTokenizer'
def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor
SCREAMING_SNAKE_CASE_: List[Any] =False
def __call__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> str:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase , **lowerCAmelCase )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""raw_speech""" )
else:
SCREAMING_SNAKE_CASE_: int =kwargs.pop("""audio""" , lowerCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] =kwargs.pop("""sampling_rate""" , lowerCAmelCase )
SCREAMING_SNAKE_CASE_: Tuple =kwargs.pop("""text""" , lowerCAmelCase )
if len(lowerCAmelCase ) > 0:
SCREAMING_SNAKE_CASE_: List[str] =args[0]
SCREAMING_SNAKE_CASE_: List[str] =args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
SCREAMING_SNAKE_CASE_: Optional[int] =self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase )
if text is not None:
SCREAMING_SNAKE_CASE_: Union[str, Any] =self.tokenizer(lowerCAmelCase , **lowerCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
SCREAMING_SNAKE_CASE_: Any =encodings["""input_ids"""]
return inputs
def lowerCamelCase__ ( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple ) -> Any:
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase )
def lowerCamelCase__ ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int ) -> Any:
'''simple docstring'''
return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase )
@contextmanager
def lowerCamelCase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
SCREAMING_SNAKE_CASE_: Optional[Any] =True
SCREAMING_SNAKE_CASE_: Dict =self.tokenizer
yield
SCREAMING_SNAKE_CASE_: int =self.feature_extractor
SCREAMING_SNAKE_CASE_: str =False
| 409 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
a : List[str] = {
'''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''],
'''processing_speech_to_text''': ['''Speech2TextProcessor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ['''Speech2TextTokenizer''']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = ['''Speech2TextFeatureExtractor''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Union[str, Any] = [
'''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFSpeech2TextForConditionalGeneration''',
'''TFSpeech2TextModel''',
'''TFSpeech2TextPreTrainedModel''',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
'''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Speech2TextForConditionalGeneration''',
'''Speech2TextModel''',
'''Speech2TextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 713 |
'''simple docstring'''
import os
from math import logaa
def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int:
__snake_case = 0
__snake_case = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ):
__snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) )
if x * logaa(_UpperCAmelCase ) > largest:
__snake_case = x * logaa(_UpperCAmelCase )
__snake_case = i + 1
return result
if __name__ == "__main__":
print(solution())
| 680 | 0 |
'''simple docstring'''
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class snake_case__ ( unittest.TestCase):
def A ( self : int ) -> Optional[int]:
debug_launcher(test_script.main )
def A ( self : str ) -> Union[str, Any]:
debug_launcher(test_ops.main )
| 541 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
_UpperCamelCase : Optional[int] = 'src/transformers'
# Matches is_xxx_available()
_UpperCamelCase : int = re.compile(R'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
_UpperCamelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_UpperCamelCase : List[str] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
_UpperCamelCase : Any = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
_UpperCamelCase : Dict = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_UpperCamelCase : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
_UpperCamelCase : Union[str, Any] = re.compile(R'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
_UpperCamelCase : str = re.compile(R'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
_UpperCamelCase : Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
_UpperCamelCase : Optional[int] = re.compile(R'^\s*try:')
# Catches a line with else:
_UpperCamelCase : List[Any] = re.compile(R'^\s*else:')
def __UpperCAmelCase ( A : Any ) -> Tuple:
if _re_test_backend.search(A ) is None:
return None
UpperCAmelCase_ : str = [b[0] for b in _re_backend.findall(A )]
backends.sort()
return "_and_".join(A )
def __UpperCAmelCase ( A : List[Any] ) -> Optional[int]:
with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase_ : str = f.readlines()
UpperCAmelCase_ : List[str] = 0
while line_index < len(A ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(A ):
return None
# First grab the objects without a specific backend in _import_structure
UpperCAmelCase_ : Tuple = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
UpperCAmelCase_ : List[Any] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(A ):
UpperCAmelCase_ : str = _re_one_line_import_struct.search(A ).groups()[0]
UpperCAmelCase_ : Any = re.findall(r'''\[([^\]]+)\]''' , A )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
UpperCAmelCase_ : Dict = _re_import_struct_key_value.search(A )
if single_line_import_search is not None:
UpperCAmelCase_ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A ) > 0]
objects.extend(A )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
UpperCAmelCase_ : int = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
UpperCAmelCase_ : Any = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
UpperCAmelCase_ : Optional[Any] = lines[line_index]
if _re_import_struct_add_one.search(A ) is not None:
objects.append(_re_import_struct_add_one.search(A ).groups()[0] )
elif _re_import_struct_add_many.search(A ) is not None:
UpperCAmelCase_ : Dict = _re_import_struct_add_many.search(A ).groups()[0].split(''', ''' )
UpperCAmelCase_ : Dict = [obj[1:-1] for obj in imports if len(A ) > 0]
objects.extend(A )
elif _re_between_brackets.search(A ) is not None:
UpperCAmelCase_ : int = _re_between_brackets.search(A ).groups()[0].split(''', ''' )
UpperCAmelCase_ : List[Any] = [obj[1:-1] for obj in imports if len(A ) > 0]
objects.extend(A )
elif _re_quote_object.search(A ) is not None:
objects.append(_re_quote_object.search(A ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 1_2 + '''"''' ):
objects.append(line[1_3:-3] )
line_index += 1
UpperCAmelCase_ : int = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
UpperCAmelCase_ : Union[str, Any] = []
while (
line_index < len(A )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
UpperCAmelCase_ : int = lines[line_index]
UpperCAmelCase_ : int = _re_import.search(A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
UpperCAmelCase_ : int = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(A ):
# If the line is an if is_backend_available, we grab all objects associated.
UpperCAmelCase_ : Optional[int] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ : Optional[int] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
UpperCAmelCase_ : Tuple = lines[line_index]
UpperCAmelCase_ : Tuple = _re_import.search(A )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
UpperCAmelCase_ : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __UpperCAmelCase ( A : Dict , A : Union[str, Any] ) -> Optional[Any]:
def find_duplicates(A : Optional[int] ):
return [k for k, v in collections.Counter(A ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
UpperCAmelCase_ : str = []
for key in import_dict_objects.keys():
UpperCAmelCase_ : Union[str, Any] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
UpperCAmelCase_ : Optional[int] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
UpperCAmelCase_ : Optional[int] = '''base imports''' if key == '''none''' else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def __UpperCAmelCase ( ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = []
for root, _, files in os.walk(A ):
if "__init__.py" in files:
UpperCAmelCase_ : List[Any] = os.path.join(A , '''__init__.py''' )
UpperCAmelCase_ : str = parse_init(A )
if objects is not None:
UpperCAmelCase_ : List[str] = analyze_results(*A )
if len(A ) > 0:
UpperCAmelCase_ : Optional[Any] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append('''\n'''.join(A ) )
if len(A ) > 0:
raise ValueError('''\n\n'''.join(A ) )
def __UpperCAmelCase ( ) -> str:
UpperCAmelCase_ : Any = []
for path, directories, files in os.walk(A ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(A )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(A ) / folder).glob('''*.py''' ) ) ) == 0:
continue
UpperCAmelCase_ : Union[str, Any] = str((Path(A ) / folder).relative_to(A ) )
UpperCAmelCase_ : List[Any] = short_path.replace(os.path.sep , '''.''' )
submodules.append(A )
for fname in files:
if fname == "__init__.py":
continue
UpperCAmelCase_ : Optional[Any] = str((Path(A ) / fname).relative_to(A ) )
UpperCAmelCase_ : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(A )
return submodules
_UpperCamelCase : List[Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def __UpperCAmelCase ( ) -> int:
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
UpperCAmelCase_ : Dict = direct_transformers_import(A )
UpperCAmelCase_ : List[str] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(A , '''__init__.py''' ) , '''r''' ) as f:
UpperCAmelCase_ : Dict = f.read()
import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , A ) ) )
UpperCAmelCase_ : Union[str, Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(A ) > 0:
UpperCAmelCase_ : Optional[Any] = '''\n'''.join(F"- {module}" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registed in the main init of Transformers:\n'''
F"{list_of_modules}\n"
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 541 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model'}
__UpperCamelCase = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
__UpperCamelCase = {
'camembert-base': 5_1_2,
}
__UpperCamelCase = '▁'
class lowerCamelCase__ ( UpperCAmelCase ):
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
_UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask']
def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=["<s>NOTUSED", "</s>NOTUSED"] , snake_case = None , **snake_case , ):
'''simple docstring'''
UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(snake_case ) )
UpperCamelCase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
UpperCamelCase__ = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
UpperCamelCase__ = len(self.fairseq_tokens_to_ids )
UpperCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
UpperCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def snake_case__ ( self , snake_case , snake_case = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
UpperCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case__ ( self , snake_case , snake_case = None , snake_case = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is None:
return [1] + ([0] * len(snake_case )) + [1]
return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1]
def snake_case__ ( self , snake_case , snake_case = None ):
'''simple docstring'''
UpperCamelCase__ = [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def snake_case__ ( self ):
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def snake_case__ ( self ):
'''simple docstring'''
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case__ ( self , snake_case ):
'''simple docstring'''
return self.sp_model.encode(snake_case , out_type=snake_case )
def snake_case__ ( self , snake_case ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(snake_case ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(snake_case )
def snake_case__ ( self , snake_case ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case__ ( self , snake_case ):
'''simple docstring'''
UpperCamelCase__ = []
UpperCamelCase__ = ""
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case )
return out_string.strip()
def __getstate__( self ):
'''simple docstring'''
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case ):
'''simple docstring'''
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self , snake_case , snake_case = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase__ = os.path.join(
snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , "wb" ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 185 |
from typing import Any
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case ):
'''simple docstring'''
UpperCamelCase__ = data
UpperCamelCase__ = None
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
UpperCamelCase__ = None
def snake_case__ ( self ):
'''simple docstring'''
UpperCamelCase__ = self.head
while temp is not None:
print(temp.data , end=" " )
UpperCamelCase__ = temp.next
print()
def snake_case__ ( self , snake_case ):
'''simple docstring'''
UpperCamelCase__ = Node(snake_case )
UpperCamelCase__ = self.head
UpperCamelCase__ = new_node
def snake_case__ ( self , snake_case , snake_case ):
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
UpperCamelCase__ = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCamelCase__ = node_a.next
UpperCamelCase__ = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCamelCase__ = node_a.next
if node_a is None or node_a is None:
return
UpperCamelCase__, UpperCamelCase__ = node_a.data, node_a.data
if __name__ == "__main__":
__UpperCamelCase = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('After swapping')
ll.print_list()
| 185 | 1 |
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
__UpperCAmelCase = {
'''allenai/led-base-16384''': 1_6384,
}
class __UpperCAmelCase ( a_ ):
__lowerCamelCase : Tuple = VOCAB_FILES_NAMES
__lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Tuple = LEDTokenizer
__lowerCamelCase : int = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , a_ : Any=None , a_ : Optional[int]=None , a_ : List[Any]=None , a_ : Optional[Any]="replace" , a_ : Union[str, Any]="<s>" , a_ : Optional[Any]="</s>" , a_ : Tuple="</s>" , a_ : Optional[int]="<s>" , a_ : Union[str, Any]="<unk>" , a_ : Optional[Any]="<pad>" , a_ : List[str]="<mask>" , a_ : Union[str, Any]=False , a_ : Optional[int]=True , **a_ : Tuple , ) -> str:
'''simple docstring'''
super().__init__(
a_ , a_ , tokenizer_file=a_ , errors=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , trim_offsets=a_ , **a_ , )
a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space:
a__ : Optional[Any] = getattr(a_ , pre_tok_state.pop("type" ) )
a__ : Dict = add_prefix_space
a__ : Optional[Any] = pre_tok_class(**a_ )
a__ : List[str] = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
a__ : str = 'post_processor'
a__ : List[str] = getattr(self.backend_tokenizer , a_ , a_ )
if tokenizer_component_instance:
a__ : int = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
a__ : int = tuple(state["sep"] )
if "cls" in state:
a__ : Optional[int] = tuple(state["cls"] )
a__ : List[Any] = False
if state.get("add_prefix_space" , a_ ) != add_prefix_space:
a__ : Union[str, Any] = add_prefix_space
a__ : Union[str, Any] = True
if state.get("trim_offsets" , a_ ) != trim_offsets:
a__ : Tuple = trim_offsets
a__ : Dict = True
if changes_to_apply:
a__ : int = getattr(a_ , state.pop("type" ) )
a__ : Optional[Any] = component_class(**a_ )
setattr(self.backend_tokenizer , a_ , a_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def UpperCAmelCase ( self : List[Any] , a_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
a__ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else value
a__ : Union[str, Any] = value
def UpperCAmelCase ( self : Optional[Any] , *a_ : Dict , **a_ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
a__ : int = kwargs.get("is_split_into_words" , a_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*a_ , **a_ )
def UpperCAmelCase ( self : Tuple , *a_ : Union[str, Any] , **a_ : Any ) -> Optional[int]:
'''simple docstring'''
a__ : Optional[Any] = kwargs.get("is_split_into_words" , a_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs." )
return super()._encode_plus(*a_ , **a_ )
def UpperCAmelCase ( self : str , a_ : str , a_ : Optional[str] = None ) -> Optional[int]:
'''simple docstring'''
a__ : Union[str, Any] = self._tokenizer.model.save(a_ , name=a_ )
return tuple(a_ )
def UpperCAmelCase ( self : Optional[int] , a_ : Optional[int] , a_ : int=None ) -> int:
'''simple docstring'''
a__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCAmelCase ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ) -> int:
'''simple docstring'''
a__ : Dict = [self.sep_token_id]
a__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase ( self : List[str] , a_ : Union[Dict[str, EncodedInput], BatchEncoding] , a_ : Optional[int] = None , a_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a_ : Optional[int] = None , a_ : Optional[bool] = None , ) -> int:
'''simple docstring'''
a__ : List[Any] = super()._pad(
encoded_inputs=a_ , max_length=a_ , padding_strategy=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , )
# Load from model defaults
if return_attention_mask is None:
a__ : List[Any] = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
a__ : Any = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
a__ : int = len(encoded_inputs["global_attention_mask"] ) != len(a_ )
if needs_to_be_padded:
a__ : str = len(a_ ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
a__ : Optional[Any] = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
a__ : str = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs | 642 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class __lowerCamelCase :
"""simple docstring"""
a = 42
a = None
a = None
A : Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''')
def lowerCAmelCase__ ( lowerCamelCase : TreeNode | None ):
if root is None:
return 0
# Validation
def count_nodes(lowerCamelCase : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowerCamelCase : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowerCamelCase ) != count_coins(lowerCamelCase ):
raise ValueError('The nodes number should be same as the number of coins' )
# Main calculation
def get_distrib(lowerCamelCase : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 ,1 )
_A , _A : Optional[Any] = get_distrib(node.left )
_A , _A : Any = get_distrib(node.right )
_A : str = 1 - left_distrib_excess
_A : Union[str, Any] = 1 - right_distrib_excess
_A : Any = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowerCamelCase )
+ abs(lowerCamelCase )
)
_A : str = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowerCamelCase ,lowerCamelCase )
return get_distrib(lowerCamelCase )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 128 | 0 |
'''simple docstring'''
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase ( UpperCAmelCase__ : int ) -> str:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowercase_ : Optional[Any] = precision
lowercase_ : List[Any] = ceil(precision / 14 )
lowercase_ : Optional[int] = 426880 * Decimal(10005 ).sqrt()
lowercase_ : List[str] = 1
lowercase_ : List[Any] = 13591409
lowercase_ : Union[str, Any] = Decimal(UpperCAmelCase__ )
for k in range(1 , UpperCAmelCase__ ):
lowercase_ : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowercase : int = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 717 | '''simple docstring'''
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> List[Any]:
lowercase_ : str = 1.5
lowercase_ : List[Any] = int(factor * num_class_images )
lowercase_ : int = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 )
os.makedirs(F'''{class_data_dir}/images''' , exist_ok=UpperCAmelCase__ )
if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images:
return
while True:
lowercase_ : List[str] = client.query(text=UpperCAmelCase__ )
if len(UpperCAmelCase__ ) >= factor * num_class_images or num_images > 1e4:
break
else:
lowercase_ : List[str] = int(factor * num_images )
lowercase_ : List[str] = ClipClient(
url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 , )
lowercase_ : List[str] = 0
lowercase_ : Dict = 0
lowercase_ : Tuple = tqdm(desc="""downloading real regularization images""" , total=UpperCAmelCase__ )
with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open(
F'''{class_data_dir}/images.txt''' , """w""" ) as fa:
while total < num_class_images:
lowercase_ : str = class_images[count]
count += 1
try:
lowercase_ : Union[str, Any] = requests.get(images["""url"""] )
if img.status_code == 200:
lowercase_ : List[str] = Image.open(BytesIO(img.content ) )
with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f:
f.write(img.content )
fa.write(images["""caption"""] + """\n""" )
fa.write(images["""url"""] + """\n""" )
fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def lowerCamelCase ( ) -> Optional[Any]:
lowercase_ : Any = argparse.ArgumentParser("""""" , add_help=UpperCAmelCase__ )
parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ )
parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=UpperCAmelCase__ , type=UpperCAmelCase__ )
parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=UpperCAmelCase__ )
return parser.parse_args()
if __name__ == "__main__":
_lowercase : Dict = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 30 | 0 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__lowerCAmelCase =models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="relu"))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="relu"))
classifier.add(layers.Dense(units=1, activation="sigmoid"))
# Compiling the CNN
classifier.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__lowerCAmelCase =tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__lowerCAmelCase =tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__lowerCAmelCase =train_datagen.flow_from_directory(
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
__lowerCAmelCase =test_datagen.flow_from_directory(
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("cnn.h5")
# Part 3 - Making new predictions
__lowerCAmelCase =tf.keras.preprocessing.image.load_img(
"dataset/single_prediction/image.png", target_size=(64, 64)
)
__lowerCAmelCase =tf.keras.preprocessing.image.img_to_array(test_image)
__lowerCAmelCase =np.expand_dims(test_image, axis=0)
__lowerCAmelCase =classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__lowerCAmelCase ="Normal"
if result[0][0] == 1:
__lowerCAmelCase ="Abnormality detected"
| 333 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
__lowerCAmelCase =pytest.mark.integration
@pytest.mark.parametrize("path" , ["paws", "csv"] )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
inspect_dataset(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase = path + ".py"
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.parametrize("path" , ["accuracy"] )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
inspect_metric(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase = path + ".py"
assert script_name in os.listdir(_lowerCAmelCase )
assert "__pycache__" not in os.listdir(_lowerCAmelCase )
@pytest.mark.parametrize(
"path, config_name, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
with pytest.raises(_lowerCAmelCase ):
get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase )
@pytest.mark.parametrize(
"path, expected" , [
("squad", "plain_text"),
("acronym_identification", "default"),
("lhoestq/squad", "plain_text"),
("lhoestq/test", "default"),
("lhoestq/demo1", "lhoestq--demo1"),
("dalle-mini/wit", "dalle-mini--wit"),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = get_dataset_config_names(_lowerCAmelCase )
assert expected in config_names
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config" , [
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert list(infos.keys() ) == expected_configs
UpperCAmelCase = expected_configs[0]
assert expected_config in infos
UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"path, expected_config, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = get_dataset_infos(_lowerCAmelCase )
assert expected_config in infos
UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
with pytest.raises(_lowerCAmelCase ):
get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
| 333 | 1 |
'''simple docstring'''
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def __UpperCamelCase( _A : str ):
'''simple docstring'''
return 1 / (1 + np.exp(-z ))
def __UpperCamelCase( _A : int , _A : str ):
'''simple docstring'''
return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean()
def __UpperCamelCase( _A : Optional[Any] , _A : Tuple , _A : Any ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = np.dot(_A , _A )
return np.sum(y * scores - np.log(1 + np.exp(_A ) ) )
def __UpperCamelCase( _A : Dict , _A : Optional[int] , _A : List[Any] , _A : str=7_00_00 ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = np.zeros(x.shape[1] )
for iterations in range(_A ):
UpperCAmelCase__ : Tuple = np.dot(_A , _A )
UpperCAmelCase__ : Optional[Any] = sigmoid_function(_A )
UpperCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size
UpperCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights
UpperCAmelCase__ : Tuple = np.dot(_A , _A )
UpperCAmelCase__ : Tuple = sigmoid_function(_A )
UpperCAmelCase__ : Optional[int] = cost_function(_A , _A )
if iterations % 1_00 == 0:
print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase__ : str = datasets.load_iris()
UpperCamelCase__ : Tuple = iris.data[:, :2]
UpperCamelCase__ : str = (iris.target != 0) * 1
UpperCamelCase__ : Any = 0.1
UpperCamelCase__ : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000)
print('theta: ', theta) # printing the theta i.e our weights vector
def __UpperCamelCase( _A : Any ):
'''simple docstring'''
return sigmoid_function(
np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((UpperCamelCase__) , (UpperCamelCase__)) : Any = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase__) , (UpperCamelCase__)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase__) , (UpperCamelCase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase__ : str = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase__ : Union[str, Any] = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show()
| 496 | '''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__ : Tuple = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCamelCase__ : int = {
'b0': {
'hidden_dim': 1_280,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 224,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1_280,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 240,
'dropout_rate': 0.2,
'dw_padding': [16],
},
'b2': {
'hidden_dim': 1_408,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 260,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 16],
},
'b3': {
'hidden_dim': 1_536,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 300,
'dropout_rate': 0.3,
'dw_padding': [5, 18],
},
'b4': {
'hidden_dim': 1_792,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 380,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2_048,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 456,
'dropout_rate': 0.4,
'dw_padding': [13, 27],
},
'b6': {
'hidden_dim': 2_304,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 528,
'dropout_rate': 0.5,
'dw_padding': [31],
},
'b7': {
'hidden_dim': 2_560,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 600,
'dropout_rate': 0.5,
'dw_padding': [18],
},
}
def __UpperCamelCase( _A : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = EfficientNetConfig()
UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''hidden_dim''']
UpperCAmelCase__ : Optional[Any] = CONFIG_MAP[model_name]['''width_coef''']
UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''depth_coef''']
UpperCAmelCase__ : Optional[int] = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''dropout_rate''']
UpperCAmelCase__ : Any = CONFIG_MAP[model_name]['''dw_padding''']
UpperCAmelCase__ : Tuple = '''huggingface/label-files'''
UpperCAmelCase__ : Dict = '''imagenet-1k-id2label.json'''
UpperCAmelCase__ : List[Any] = 10_00
UpperCAmelCase__ : Union[str, Any] = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase__ : Union[str, Any] = {int(_A ): v for k, v in idalabel.items()}
UpperCAmelCase__ : Dict = idalabel
UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()}
return config
def __UpperCamelCase( ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase__ : List[str] = Image.open(requests.get(_A , stream=_A ).raw )
return im
def __UpperCamelCase( _A : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase__ : Tuple = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_A , )
return preprocessor
def __UpperCamelCase( _A : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
UpperCAmelCase__ : List[str] = sorted(set(_A ) )
UpperCAmelCase__ : Optional[Any] = len(_A )
UpperCAmelCase__ : int = {b: str(_A ) for b, i in zip(_A , range(_A ) )}
UpperCAmelCase__ : int = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
UpperCAmelCase__ : Tuple = block_name_mapping[b]
rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
UpperCAmelCase__ : List[str] = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase__ : str = '''efficientnet.''' + item[1]
UpperCAmelCase__ : List[str] = '''classifier.weight'''
UpperCAmelCase__ : Union[str, Any] = '''classifier.bias'''
return key_mapping
def __UpperCamelCase( _A : Optional[Any] , _A : List[Any] , _A : Optional[Any] ):
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase__ : Tuple = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase__ : List[str] = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase__ : Dict = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase__ : Optional[int] = torch.from_numpy(np.transpose(_A ) )
else:
UpperCAmelCase__ : str = torch.from_numpy(_A )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_A )
@torch.no_grad()
def __UpperCamelCase( _A : Tuple , _A : str , _A : Union[str, Any] , _A : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = model_classes[model_name](
include_top=_A , weights='''imagenet''' , input_tensor=_A , input_shape=_A , pooling=_A , classes=10_00 , classifier_activation='''softmax''' , )
UpperCAmelCase__ : Dict = original_model.trainable_variables
UpperCAmelCase__ : Optional[Any] = original_model.non_trainable_variables
UpperCAmelCase__ : List[str] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase__ : Union[str, Any] = param.numpy()
UpperCAmelCase__ : Optional[Any] = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase__ : Union[str, Any] = get_efficientnet_config(_A )
UpperCAmelCase__ : Any = EfficientNetForImageClassification(_A ).eval()
UpperCAmelCase__ : Tuple = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
UpperCAmelCase__ : Tuple = rename_keys(_A )
replace_params(_A , _A , _A )
# Initialize preprocessor and preprocess input image
UpperCAmelCase__ : List[Any] = convert_image_processor(_A )
UpperCAmelCase__ : List[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase__ : Optional[Any] = hf_model(**_A )
UpperCAmelCase__ : Union[str, Any] = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase__ : str = False
UpperCAmelCase__ : int = CONFIG_MAP[model_name]['''image_size''']
UpperCAmelCase__ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase__ : List[Any] = image.img_to_array(_A )
UpperCAmelCase__ : List[Any] = np.expand_dims(_A , axis=0 )
UpperCAmelCase__ : List[Any] = original_model.predict(_A )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_A ):
os.mkdir(_A )
# Save converted model and image processor
hf_model.save_pretrained(_A )
preprocessor.save_pretrained(_A )
if push_to_hub:
# Push model and image processor to hub
print(F'''Pushing converted {model_name} to the hub...''' )
UpperCAmelCase__ : Any = F'''efficientnet-{model_name}'''
preprocessor.push_to_hub(_A )
hf_model.push_to_hub(_A )
if __name__ == "__main__":
UpperCamelCase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCamelCase__ : Union[str, Any] = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 496 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowerCamelCase : Optional[Any] = {
"""configuration_pix2struct""": [
"""PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Pix2StructConfig""",
"""Pix2StructTextConfig""",
"""Pix2StructVisionConfig""",
],
"""processing_pix2struct""": ["""Pix2StructProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = ["""Pix2StructImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : int = [
"""PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Pix2StructPreTrainedModel""",
"""Pix2StructForConditionalGeneration""",
"""Pix2StructVisionModel""",
"""Pix2StructTextModel""",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
_lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 87 |
from __future__ import annotations
import requests
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict:
"""simple docstring"""
A__ = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty"""
return requests.get(lowercase_ ).json()
def SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> list[dict]:
"""simple docstring"""
A__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
A__ = requests.get(lowercase_ ).json()[:max_stories]
return [get_hackernews_story(lowercase_ ) for story_id in story_ids]
def SCREAMING_SNAKE_CASE ( lowercase_ = 10 ) -> str:
"""simple docstring"""
A__ = hackernews_top_stories(lowercase_ )
return "\n".join('''* [{title}]({url})'''.format(**lowercase_ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 87 | 1 |
from string import ascii_uppercase
lowercase__ :List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase}
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
if isinstance(snake_case_ , snake_case_ ):
raise TypeError('''int() can\'t convert non-string with explicit base''' )
if num < 0:
raise ValueError('''parameter must be positive int''' )
if isinstance(snake_case_ , snake_case_ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if isinstance(snake_case_ , snake_case_ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if base in (0, 1):
raise ValueError('''base must be >= 2''' )
if base > 36:
raise ValueError('''base must be <= 36''' )
lowercase : Union[str, Any] = ""
lowercase : List[Any] = 0
lowercase : str = 0
while div != 1:
lowercase : Optional[Any] = divmod(snake_case_ , snake_case_ )
if base >= 11 and 9 < mod < 36:
lowercase : Union[str, Any] = ALPHABET_VALUES[str(snake_case_ )]
else:
lowercase : Optional[Any] = str(snake_case_ )
new_value += actual_value
lowercase : Any = num // base
lowercase : Any = div
if div == 0:
return str(new_value[::-1] )
elif div == 1:
new_value += str(snake_case_ )
return str(new_value[::-1] )
return new_value[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for base in range(2, 37):
for num in range(1000):
assert int(decimal_to_any(num, base), base) == num, (
num,
base,
decimal_to_any(num, base),
int(decimal_to_any(num, base), base),
)
| 703 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 633 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class A_ :
def __init__( self : int , snake_case_ : int , snake_case_ : int , snake_case_ : float = 0 ):
_UpperCAmelCase = row, column
_UpperCAmelCase = [[default_value for c in range(snake_case_ )] for r in range(snake_case_ )]
def __str__( self : int ):
_UpperCAmelCase = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
_UpperCAmelCase = 0
for row_vector in self.array:
for obj in row_vector:
_UpperCAmelCase = max(snake_case_ , len(str(snake_case_ ) ) )
_UpperCAmelCase = f'%{max_element_length}s'
# Make string and return
def single_line(snake_case_ : list[float] ) -> str:
nonlocal string_format_identifier
_UpperCAmelCase = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(snake_case_ ) for row_vector in self.array )
return s
def __repr__( self : Union[str, Any] ):
return str(self )
def lowercase ( self : int , snake_case_ : tuple[int, int] ):
if not (isinstance(snake_case_ , (list, tuple) ) and len(snake_case_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Dict , snake_case_ : tuple[int, int] ):
assert self.validate_indicies(snake_case_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Any , snake_case_ : tuple[int, int] , snake_case_ : float ):
assert self.validate_indicies(snake_case_ )
_UpperCAmelCase = value
def __add__( self : Tuple , snake_case_ : Matrix ):
assert isinstance(snake_case_ , snake_case_ )
assert self.row == another.row and self.column == another.column
# Add
_UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
_UpperCAmelCase = self[r, c] + another[r, c]
return result
def __neg__( self : Union[str, Any] ):
_UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
_UpperCAmelCase = -self[r, c]
return result
def __sub__( self : Any , snake_case_ : Matrix ):
return self + (-another)
def __mul__( self : List[Any] , snake_case_ : int | float | Matrix ):
if isinstance(snake_case_ , (int, float) ): # Scalar multiplication
_UpperCAmelCase = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
_UpperCAmelCase = self[r, c] * another
return result
elif isinstance(snake_case_ , snake_case_ ): # Matrix multiplication
assert self.column == another.row
_UpperCAmelCase = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
_UpperCAmelCase = f'Unsupported type given for another ({type(snake_case_ )})'
raise TypeError(snake_case_ )
def lowercase ( self : List[str] ):
_UpperCAmelCase = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
_UpperCAmelCase = self[r, c]
return result
def lowercase ( self : int , snake_case_ : Matrix , snake_case_ : Matrix ):
assert isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
_UpperCAmelCase = v.transpose()
_UpperCAmelCase = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def UpperCAmelCase_ ( ) -> None:
'''simple docstring'''
_UpperCAmelCase = Matrix(3 , 3 , 0 )
for i in range(3 ):
_UpperCAmelCase = 1
print(f'a^(-1) is {ainv}' )
# u, v
_UpperCAmelCase = Matrix(3 , 1 , 0 )
_UpperCAmelCase = 1, 2, -3
_UpperCAmelCase = Matrix(3 , 1 , 0 )
_UpperCAmelCase = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' )
def UpperCAmelCase_ ( ) -> None:
'''simple docstring'''
import doctest
doctest.testmod()
testa()
| 236 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
A = '''Create a default config file for Accelerate with only a few flags set.'''
def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any="no" , lowerCAmelCase__ : str = default_json_config_file , lowerCAmelCase__ : bool = False) -> Optional[int]:
'''simple docstring'''
_lowercase : List[Any] = Path(lowerCAmelCase__)
path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__)
if path.exists():
print(
F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''')
return False
_lowercase : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''')
_lowercase : str = {
'compute_environment': 'LOCAL_MACHINE',
'mixed_precision': mixed_precision,
}
if torch.cuda.is_available():
_lowercase : str = torch.cuda.device_count()
_lowercase : Optional[Any] = num_gpus
_lowercase : Tuple = False
if num_gpus > 1:
_lowercase : Tuple = 'MULTI_GPU'
else:
_lowercase : Any = 'NO'
elif is_xpu_available() and use_xpu:
_lowercase : List[str] = torch.xpu.device_count()
_lowercase : Union[str, Any] = num_xpus
_lowercase : List[Any] = False
if num_xpus > 1:
_lowercase : Tuple = 'MULTI_XPU'
else:
_lowercase : List[str] = 'NO'
elif is_npu_available():
_lowercase : Optional[int] = torch.npu.device_count()
_lowercase : Any = num_npus
_lowercase : List[Any] = False
if num_npus > 1:
_lowercase : int = 'MULTI_NPU'
else:
_lowercase : Dict = 'NO'
else:
_lowercase : List[Any] = 0
_lowercase : Optional[int] = True
_lowercase : List[str] = 1
_lowercase : List[Any] = 'NO'
_lowercase : Union[str, Any] = ClusterConfig(**lowerCAmelCase__)
config.to_json_file(lowerCAmelCase__)
return path
def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Tuple = parser.add_parser('default' , parents=lowerCAmelCase__ , help=lowerCAmelCase__ , formatter_class=lowerCAmelCase__)
parser.add_argument(
'--config_file' , default=lowerCAmelCase__ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , dest='save_location' , )
parser.add_argument(
'--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCAmelCase__ , help='Whether or not to use mixed precision training. '
'Choose between FP16 and BF16 (bfloat16) training. '
'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , )
parser.set_defaults(func=lowerCAmelCase__)
return parser
def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[Any]) -> Dict:
'''simple docstring'''
_lowercase : Tuple = write_basic_config(args.mixed_precision , args.save_location)
if config_file:
print(F'''accelerate configuration saved at {config_file}''') | 125 | 0 |
import os
def lowerCamelCase__ ():
_SCREAMING_SNAKE_CASE : Any = os.path.dirname(os.path.realpath(__lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Tuple = os.path.join(__lowerCamelCase, "triangle.txt" )
with open(__lowerCamelCase ) as f:
_SCREAMING_SNAKE_CASE : Union[str, Any] = f.readlines()
_SCREAMING_SNAKE_CASE : Optional[int] = []
for line in triangle:
_SCREAMING_SNAKE_CASE : str = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(__lowerCamelCase ) )
a.append(__lowerCamelCase )
for i in range(1, len(__lowerCamelCase ) ):
for j in range(len(a[i] ) ):
_SCREAMING_SNAKE_CASE : Optional[int] = a[i - 1][j] if j != len(a[i - 1] ) else 0
_SCREAMING_SNAKE_CASE : Optional[Any] = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(__lowerCamelCase, __lowerCamelCase )
return max(a[-1] )
if __name__ == "__main__":
print(solution()) | 381 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ =logging.get_logger(__name__)
set_seed(770)
UpperCamelCase__ ={
'c_attn': 'att_proj',
'c_proj': 'out_proj',
'c_fc': 'in_proj',
'transformer.': '',
'h.': 'layers.',
'ln_1': 'layernorm_1',
'ln_2': 'layernorm_2',
'ln_f': 'layernorm_final',
'wpe': 'position_embeds_layer',
'wte': 'input_embeds_layer',
}
UpperCamelCase__ ={
'text_small': {
'repo_id': 'suno/bark',
'file_name': 'text.pt',
},
'coarse_small': {
'repo_id': 'suno/bark',
'file_name': 'coarse.pt',
},
'fine_small': {
'repo_id': 'suno/bark',
'file_name': 'fine.pt',
},
'text': {
'repo_id': 'suno/bark',
'file_name': 'text_2.pt',
},
'coarse': {
'repo_id': 'suno/bark',
'file_name': 'coarse_2.pt',
},
'fine': {
'repo_id': 'suno/bark',
'file_name': 'fine_2.pt',
},
}
UpperCamelCase__ =os.path.dirname(os.path.abspath(__file__))
UpperCamelCase__ =os.path.join(os.path.expanduser('~'), '.cache')
UpperCamelCase__ =os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0')
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = model_type
if use_small:
key += "_small"
return os.path.join(__lowerCamelCase, REMOTE_MODEL_PATHS[key]["file_name"] )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ):
os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase )
hf_hub_download(repo_id=__lowerCamelCase, filename=__lowerCamelCase, local_dir=__lowerCamelCase )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ):
if model_type == "text":
_SCREAMING_SNAKE_CASE : List[Any] = BarkSemanticModel
_SCREAMING_SNAKE_CASE : Any = BarkSemanticConfig
_SCREAMING_SNAKE_CASE : Union[str, Any] = BarkSemanticGenerationConfig
elif model_type == "coarse":
_SCREAMING_SNAKE_CASE : List[str] = BarkCoarseModel
_SCREAMING_SNAKE_CASE : Any = BarkCoarseConfig
_SCREAMING_SNAKE_CASE : str = BarkCoarseGenerationConfig
elif model_type == "fine":
_SCREAMING_SNAKE_CASE : Optional[int] = BarkFineModel
_SCREAMING_SNAKE_CASE : List[str] = BarkFineConfig
_SCREAMING_SNAKE_CASE : Optional[int] = BarkFineGenerationConfig
else:
raise NotImplementedError()
_SCREAMING_SNAKE_CASE : List[str] = f"""{model_type}_small""" if use_small else model_type
_SCREAMING_SNAKE_CASE : Optional[Any] = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(__lowerCamelCase ):
logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" )
_download(model_info["repo_id"], model_info["file_name"] )
_SCREAMING_SNAKE_CASE : str = torch.load(__lowerCamelCase, map_location=__lowerCamelCase )
# this is a hack
_SCREAMING_SNAKE_CASE : Any = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
_SCREAMING_SNAKE_CASE : Optional[int] = model_args["vocab_size"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = model_args["vocab_size"]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
_SCREAMING_SNAKE_CASE : List[Any] = model_args.pop("n_head" )
_SCREAMING_SNAKE_CASE : Dict = model_args.pop("n_embd" )
_SCREAMING_SNAKE_CASE : Tuple = model_args.pop("n_layer" )
_SCREAMING_SNAKE_CASE : Tuple = ConfigClass(**checkpoint["model_args"] )
_SCREAMING_SNAKE_CASE : int = ModelClass(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = GenerationConfigClass()
_SCREAMING_SNAKE_CASE : Optional[int] = model_generation_config
_SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint["model"]
# fixup checkpoint
_SCREAMING_SNAKE_CASE : Optional[Any] = "_orig_mod."
for k, v in list(state_dict.items() ):
if k.startswith(__lowerCamelCase ):
# replace part of the key with corresponding layer name in HF implementation
_SCREAMING_SNAKE_CASE : Optional[int] = k[len(__lowerCamelCase ) :]
for old_layer_name in new_layer_name_dict:
_SCREAMING_SNAKE_CASE : Tuple = new_k.replace(__lowerCamelCase, new_layer_name_dict[old_layer_name] )
_SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() )
_SCREAMING_SNAKE_CASE : int = {k for k in extra_keys if not k.endswith(".attn.bias" )}
_SCREAMING_SNAKE_CASE : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() )
_SCREAMING_SNAKE_CASE : List[str] = {k for k in missing_keys if not k.endswith(".attn.bias" )}
if len(__lowerCamelCase ) != 0:
raise ValueError(f"""extra keys found: {extra_keys}""" )
if len(__lowerCamelCase ) != 0:
raise ValueError(f"""missing keys: {missing_keys}""" )
model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = model.num_parameters(exclude_embeddings=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = checkpoint["best_val_loss"].item()
logger.info(f"""model loaded: {round(n_params/1e6, 1 )}M params, {round(__lowerCamelCase, 3 )} loss""" )
model.eval()
model.to(__lowerCamelCase )
del checkpoint, state_dict
return model
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
_SCREAMING_SNAKE_CASE : Union[str, Any] = "cpu" # do conversion on cpu
_SCREAMING_SNAKE_CASE : Union[str, Any] = _get_ckpt_path(__lowerCamelCase, use_small=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = _load_model(__lowerCamelCase, __lowerCamelCase, model_type=__lowerCamelCase, use_small=__lowerCamelCase )
# load bark initial model
_SCREAMING_SNAKE_CASE : Union[str, Any] = _bark_load_model(__lowerCamelCase, "cpu", model_type=__lowerCamelCase, use_small=__lowerCamelCase )
if model_type == "text":
_SCREAMING_SNAKE_CASE : str = bark_model["model"]
if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params():
raise ValueError("initial and new models don't have the same number of parameters" )
# check if same output as the bark model
_SCREAMING_SNAKE_CASE : Optional[Any] = 5
_SCREAMING_SNAKE_CASE : Optional[int] = 10
if model_type in ["text", "coarse"]:
_SCREAMING_SNAKE_CASE : Any = torch.randint(256, (batch_size, sequence_length), dtype=torch.int )
_SCREAMING_SNAKE_CASE : Optional[int] = bark_model(__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
# take last logits
_SCREAMING_SNAKE_CASE : List[str] = output_new_model_total.logits[:, [-1], :]
else:
_SCREAMING_SNAKE_CASE : Tuple = 3
_SCREAMING_SNAKE_CASE : Union[str, Any] = 8
_SCREAMING_SNAKE_CASE : Optional[Any] = torch.randint(256, (batch_size, sequence_length, n_codes_total), dtype=torch.int )
_SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = bark_model(__lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("initial and new outputs don't have the same shape" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("initial and new outputs are not equal" )
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
model.save_pretrained(__lowerCamelCase )
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ):
_SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) )
_SCREAMING_SNAKE_CASE : Dict = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) )
_SCREAMING_SNAKE_CASE : Dict = EncodecConfig.from_pretrained("facebook/encodec_24khz" )
_SCREAMING_SNAKE_CASE : int = BarkSemanticModel.from_pretrained(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = BarkCoarseModel.from_pretrained(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineModel.from_pretrained(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = EncodecModel.from_pretrained("facebook/encodec_24khz" )
_SCREAMING_SNAKE_CASE : Any = BarkConfig.from_sub_model_configs(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config )
_SCREAMING_SNAKE_CASE : str = BarkModel(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = semantic
_SCREAMING_SNAKE_CASE : Tuple = coarseAcoustic
_SCREAMING_SNAKE_CASE : List[str] = fineAcoustic
_SCREAMING_SNAKE_CASE : Tuple = codec
_SCREAMING_SNAKE_CASE : Tuple = bark_generation_config
Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase )
bark.save_pretrained(__lowerCamelCase, repo_id=__lowerCamelCase, push_to_hub=__lowerCamelCase )
if __name__ == "__main__":
UpperCamelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument('model_type', type=str, help='text, coarse or fine.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.')
UpperCamelCase__ =parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small) | 381 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
UpperCamelCase__ = 2_5_0_0_0_4
UpperCamelCase__ = 2_5_0_0_2_0
@require_sentencepiece
@require_tokenizers
class a__ ( UpperCamelCase_ , unittest.TestCase ):
snake_case__ = MBartaaTokenizer
snake_case__ = MBartaaTokenizerFast
snake_case__ = True
snake_case__ = True
def __UpperCamelCase ( self : int) -> Any:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase:Tuple = MBartaaTokenizer(a__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=a__)
tokenizer.save_pretrained(self.tmpdirname)
def __UpperCamelCase ( self : Tuple) -> int:
"""simple docstring"""
_lowerCAmelCase:List[Any] = '''<s>'''
_lowerCAmelCase:Optional[int] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__) ,a__)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__) ,a__)
def __UpperCamelCase ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_lowerCAmelCase:Any = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] ,'''<s>''')
self.assertEqual(vocab_keys[1] ,'''<pad>''')
self.assertEqual(vocab_keys[-1] ,'''<mask>''')
self.assertEqual(len(a__) ,1054)
def __UpperCamelCase ( self : List[str]) -> Tuple:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size ,1054)
def __UpperCamelCase ( self : Dict) -> Dict:
"""simple docstring"""
_lowerCAmelCase:List[str] = MBartaaTokenizer(a__ ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''' ,keep_accents=a__)
_lowerCAmelCase:str = tokenizer.tokenize('''This is a test''')
self.assertListEqual(a__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,)
_lowerCAmelCase:str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
a__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] ,)
_lowerCAmelCase:Optional[int] = tokenizer.convert_tokens_to_ids(a__)
self.assertListEqual(
a__ ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] ,)
_lowerCAmelCase:Tuple = tokenizer.convert_ids_to_tokens(a__)
self.assertListEqual(
a__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] ,)
@slow
def __UpperCamelCase ( self : Dict) -> Optional[int]:
"""simple docstring"""
_lowerCAmelCase:List[str] = {'''input_ids''': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a__ ,model_name='''facebook/mbart-large-50''' ,revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' ,)
def __UpperCamelCase ( self : List[Any]) -> Optional[int]:
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase:Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'):
_lowerCAmelCase:Optional[Any] = self.rust_tokenizer_class.from_pretrained(a__ ,**a__)
_lowerCAmelCase:Optional[Any] = self.tokenizer_class.from_pretrained(a__ ,**a__)
_lowerCAmelCase:Dict = tempfile.mkdtemp()
_lowerCAmelCase:Optional[int] = tokenizer_r.save_pretrained(a__)
_lowerCAmelCase:Optional[Any] = tokenizer_p.save_pretrained(a__)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files))
_lowerCAmelCase:str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f)
self.assertSequenceEqual(a__ ,a__)
# Checks everything loads correctly in the same way
_lowerCAmelCase:Optional[int] = tokenizer_r.from_pretrained(a__)
_lowerCAmelCase:Optional[int] = tokenizer_p.from_pretrained(a__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ ,a__))
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(a__)
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase:Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase:Tuple = tokenizer_r.save_pretrained(a__ ,legacy_format=a__)
_lowerCAmelCase:Dict = tokenizer_p.save_pretrained(a__)
# Checks it save with the same files
self.assertSequenceEqual(a__ ,a__)
# Checks everything loads correctly in the same way
_lowerCAmelCase:Tuple = tokenizer_r.from_pretrained(a__)
_lowerCAmelCase:Union[str, Any] = tokenizer_p.from_pretrained(a__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ ,a__))
shutil.rmtree(a__)
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase:Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase:Optional[Any] = tokenizer_r.save_pretrained(a__ ,legacy_format=a__)
_lowerCAmelCase:Optional[Any] = tokenizer_p.save_pretrained(a__)
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
_lowerCAmelCase:List[str] = tokenizer_r.from_pretrained(a__)
_lowerCAmelCase:Dict = tokenizer_p.from_pretrained(a__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ ,a__))
shutil.rmtree(a__)
@require_torch
@require_sentencepiece
@require_tokenizers
class a__ ( unittest.TestCase ):
snake_case__ = '''facebook/mbart-large-50-one-to-many-mmt'''
snake_case__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
snake_case__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
snake_case__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def __UpperCamelCase ( cls : Optional[Any]) -> Optional[int]:
"""simple docstring"""
_lowerCAmelCase:MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name ,src_lang='''en_XX''' ,tgt_lang='''ro_RO''')
_lowerCAmelCase:int = 1
return cls
def __UpperCamelCase ( self : List[Any]) -> Union[str, Any]:
"""simple docstring"""
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] ,25_0001)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] ,25_0004)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] ,25_0020)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] ,25_0038)
def __UpperCamelCase ( self : List[Any]) -> str:
"""simple docstring"""
_lowerCAmelCase:Any = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens ,a__)
def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]:
"""simple docstring"""
self.assertIn(a__ ,self.tokenizer.all_special_ids)
_lowerCAmelCase:Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase:Tuple = self.tokenizer.decode(a__ ,skip_special_tokens=a__)
_lowerCAmelCase:Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=a__)
self.assertEqual(a__ ,a__)
self.assertNotIn(self.tokenizer.eos_token ,a__)
def __UpperCamelCase ( self : Optional[Any]) -> Any:
"""simple docstring"""
_lowerCAmelCase:Any = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] ,a__)
_lowerCAmelCase:Union[str, Any] = 10
_lowerCAmelCase:Union[str, Any] = self.tokenizer(a__ ,max_length=a__ ,truncation=a__).input_ids[0]
self.assertEqual(ids[0] ,a__)
self.assertEqual(ids[-1] ,2)
self.assertEqual(len(a__) ,a__)
def __UpperCamelCase ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR''']) ,[25_0053, 25_0001])
def __UpperCamelCase ( self : Dict) -> str:
"""simple docstring"""
_lowerCAmelCase:Dict = tempfile.mkdtemp()
_lowerCAmelCase:str = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(a__)
_lowerCAmelCase:List[str] = MBartaaTokenizer.from_pretrained(a__)
self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,a__)
@require_torch
def __UpperCamelCase ( self : List[str]) -> Optional[int]:
"""simple docstring"""
_lowerCAmelCase:List[Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=a__ ,return_tensors='''pt''')
_lowerCAmelCase:Any = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id)
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase ( self : Any) -> int:
"""simple docstring"""
_lowerCAmelCase:List[str] = self.tokenizer(
self.src_text ,text_target=self.tgt_text ,padding=a__ ,truncation=a__ ,max_length=len(self.expected_src_tokens) ,return_tensors='''pt''' ,)
_lowerCAmelCase:Any = shift_tokens_right(batch['''labels'''] ,self.tokenizer.pad_token_id)
self.assertIsInstance(a__ ,a__)
self.assertEqual((2, 14) ,batch.input_ids.shape)
self.assertEqual((2, 14) ,batch.attention_mask.shape)
_lowerCAmelCase:Optional[int] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens ,a__)
self.assertEqual(2 ,batch.decoder_input_ids[0, 0]) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE])
self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id])
def __UpperCamelCase ( self : List[Any]) -> Any:
"""simple docstring"""
_lowerCAmelCase:List[str] = self.tokenizer(self.src_text ,padding=a__ ,truncation=a__ ,max_length=3 ,return_tensors='''pt''')
_lowerCAmelCase:Optional[Any] = self.tokenizer(
text_target=self.tgt_text ,padding=a__ ,truncation=a__ ,max_length=10 ,return_tensors='''pt''')
_lowerCAmelCase:Any = targets['''input_ids''']
_lowerCAmelCase:Dict = shift_tokens_right(a__ ,self.tokenizer.pad_token_id)
self.assertEqual(batch.input_ids.shape[1] ,3)
self.assertEqual(batch.decoder_input_ids.shape[1] ,10)
@require_torch
def __UpperCamelCase ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_lowerCAmelCase:int = self.tokenizer._build_translation_inputs(
'''A test''' ,return_tensors='''pt''' ,src_lang='''en_XX''' ,tgt_lang='''ar_AR''')
self.assertEqual(
nested_simplify(a__) ,{
# en_XX, A, test, EOS
'''input_ids''': [[25_0004, 62, 3034, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_0001,
} ,)
| 227 |
"""simple docstring"""
import argparse
import datetime
def UpperCAmelCase ( snake_case : str ):
_lowerCAmelCase:Dict = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
_lowerCAmelCase:Union[str, Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(snake_case ) < 11:
raise ValueError('''Must be 10 characters long''' )
# Get month
_lowerCAmelCase:int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('''Month must be between 1 - 12''' )
_lowerCAmelCase:str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get day
_lowerCAmelCase:int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('''Date must be between 1 - 31''' )
# Get second separator
_lowerCAmelCase:str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get year
_lowerCAmelCase:int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''' )
# Get datetime obj for validation
_lowerCAmelCase:int = datetime.date(int(snake_case ) , int(snake_case ) , int(snake_case ) )
# Start math
if m <= 2:
_lowerCAmelCase:Optional[Any] = y - 1
_lowerCAmelCase:str = m + 12
# maths var
_lowerCAmelCase:int = int(str(snake_case )[:2] )
_lowerCAmelCase:int = int(str(snake_case )[2:] )
_lowerCAmelCase:int = int(2.6 * m - 5.39 )
_lowerCAmelCase:int = int(c / 4 )
_lowerCAmelCase:int = int(k / 4 )
_lowerCAmelCase:int = int(d + k )
_lowerCAmelCase:int = int(t + u + v + x )
_lowerCAmelCase:int = int(z - (2 * c) )
_lowerCAmelCase:int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' )
# Response
_lowerCAmelCase:str = F'Your date {date_input}, is a {days[str(snake_case )]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__ = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase__ = parser.parse_args()
zeller(args.date_input)
| 227 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["""MBartTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ["""MBartTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"""MBART_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MBartForCausalLM""",
"""MBartForConditionalGeneration""",
"""MBartForQuestionAnswering""",
"""MBartForSequenceClassification""",
"""MBartModel""",
"""MBartPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"""TFMBartForConditionalGeneration""",
"""TFMBartModel""",
"""TFMBartPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
"""FlaxMBartForConditionalGeneration""",
"""FlaxMBartForQuestionAnswering""",
"""FlaxMBartForSequenceClassification""",
"""FlaxMBartModel""",
"""FlaxMBartPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 275 | """simple docstring"""
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __UpperCAmelCase ( lowercase ,lowercase ):
"""simple docstring"""
_UpperCAmelCase = []
for part_id in partition_order:
_UpperCAmelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(lowercase ):
expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(1_00 ).repartition(1 )
_UpperCAmelCase = Spark(lowercase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(10 ).repartition(2 )
_UpperCAmelCase = [1, 0]
_UpperCAmelCase = _generate_iterable_examples(lowercase ,lowercase ) # Reverse the partitions.
_UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,lowercase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
_UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(10 ).repartition(1 )
_UpperCAmelCase = SparkExamplesIterable(lowercase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(lowercase ):
assert row_id == f'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
_UpperCAmelCase = lambda lowercase : x.reverse()
_UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[2, 1, 0] )
_UpperCAmelCase = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
_UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 ,num_workers=2 )
assert shard_it_a.n_shards == 2
_UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[0, 2] )
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
_UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 ,num_workers=2 )
assert shard_it_a.n_shards == 2
_UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[1, 3] )
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
_UpperCAmelCase = spark.range(1_00 ).repartition(1 )
_UpperCAmelCase = Spark(lowercase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_00
| 275 | 1 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase=[32, 64, 128] , _UpperCamelCase=[1, 2, 1] , _UpperCamelCase=[2, 2, 4] , _UpperCamelCase=2 , _UpperCamelCase=2.0 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=10 , _UpperCamelCase=8 , _UpperCamelCase=["stage1", "stage2"] , _UpperCamelCase=[1, 2] , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = depths
_UpperCAmelCase = num_heads
_UpperCAmelCase = window_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = use_absolute_embeddings
_UpperCAmelCase = patch_norm
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = is_training
_UpperCAmelCase = scope
_UpperCAmelCase = use_labels
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
def UpperCamelCase( self ):
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = FocalNetModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
_UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_UpperCAmelCase = None
_UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = FocalNetForMaskedImageModeling(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_UpperCAmelCase = 1
_UpperCAmelCase = FocalNetForMaskedImageModeling(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = self.type_sequence_label_size
_UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCAmelCase = 1
_UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , unittest.TestCase ):
__A : List[str] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
__A : Union[str, Any] = (
{"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification}
if is_torch_available()
else {}
)
__A : int = False
__A : int = False
__A : Dict = False
__A : str = False
__A : Tuple = False
def UpperCamelCase( self ):
_UpperCAmelCase = FocalNetModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase )
def UpperCamelCase( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase( self ):
return
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase )
@unittest.skip(reason='''FocalNet does not use inputs_embeds''' )
def UpperCamelCase( self ):
pass
@unittest.skip(reason='''FocalNet does not use feedforward chunking''' )
def UpperCamelCase( self ):
pass
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_UpperCAmelCase = model_class(_UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_UpperCAmelCase = model_class(_UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase )
# FocalNet has a different seq_length
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_UpperCAmelCase = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape
_UpperCAmelCase = (
reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_UpperCAmelCase = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = 3
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_UpperCAmelCase = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) )
@slow
def UpperCamelCase( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = FocalNetModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(_UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=_UpperCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def UpperCamelCase( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**_UpperCamelCase )
# verify the logits
_UpperCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCamelCase )
_UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ).to(_UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Optional[int] = (FocalNetBackbone,) if is_torch_available() else ()
__A : str = FocalNetConfig
__A : Any = False
def UpperCamelCase( self ):
_UpperCAmelCase = FocalNetModelTester(self ) | 32 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class __lowerCAmelCase ( unittest.TestCase , lowercase ):
"""simple docstring"""
def _UpperCAmelCase ( self : List[str] ):
A_ = load_tool("text-classification" )
self.tool.setup()
A_ = load_tool("text-classification" , remote=lowerCAmelCase )
def _UpperCAmelCase ( self : Union[str, Any] ):
A_ = self.tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase , "positive" )
def _UpperCAmelCase ( self : str ):
A_ = self.remote_tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase , "positive" )
def _UpperCAmelCase ( self : str ):
A_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase , "positive" )
def _UpperCAmelCase ( self : List[Any] ):
A_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase , "positive" )
| 452 | 0 |
"""simple docstring"""
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
_A = """\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
"""
_A = """\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.
"""
_A = r"""
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting \"1/2\" to \"\\frac{1}{2}\")
Examples:
>>> metric = datasets.load_metric(\"competition_math\")
>>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])
>>> print(results)
{'accuracy': 1.0}
"""
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCamelCase ( datasets.Metric ):
def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , )
def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = 0.0
for i, j in zip(UpperCamelCase , UpperCamelCase ):
n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase , UpperCamelCase ) else 0.0
lowerCAmelCase__ : Optional[int] = n_correct / len(UpperCamelCase )
return {
"accuracy": accuracy,
}
| 710 |
"""simple docstring"""
from math import isqrt
def lowercase_ ( __UpperCAmelCase ) -> bool:
return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) )
def lowercase_ ( __UpperCAmelCase = 10**6 ) -> int:
lowerCAmelCase__ : Tuple = 0
lowerCAmelCase__ : Tuple = 1
lowerCAmelCase__ : str = 7
while prime_candidate < max_prime:
primes_count += is_prime(__UpperCAmelCase )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 507 | 0 |
'''simple docstring'''
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class a_ :
pass
| 263 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowercase__ ={
'cola': 2,
'mnli': 3,
'mrpc': 2,
'sst-2': 2,
'sts-b': 1,
'qqp': 2,
'qnli': 2,
'rte': 2,
'wnli': 2,
}
logging.set_verbosity_info()
def UpperCamelCase_ ( A__ , A__ , A__ , A__=None ):
# Initialise PyTorch model
a_ = XLNetConfig.from_json_file(A__ )
a_ = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
a_ = finetuning_task
a_ = GLUE_TASKS_NUM_LABELS[finetuning_task]
a_ = XLNetForSequenceClassification(A__ )
elif "squad" in finetuning_task:
a_ = finetuning_task
a_ = XLNetForQuestionAnswering(A__ )
else:
a_ = XLNetLMHeadModel(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(A__ , A__ , A__ )
# Save pytorch-model
a_ = os.path.join(A__ , A__ )
a_ = os.path.join(A__ , A__ )
print(F'''Save PyTorch model to {os.path.abspath(A__ )}''' )
torch.save(model.state_dict() , A__ )
print(F'''Save configuration file to {os.path.abspath(A__ )}''' )
with open(A__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--xlnet_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained XLNet model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--finetuning_task',
default=None,
type=str,
help='Name of a task on which the XLNet TensorFlow model was fine-tuned',
)
lowercase__ =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 263 | 1 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a ( snake_case__: Optional[int] ):
'''simple docstring'''
lowercase_ = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def a ( snake_case__: Dict ):
'''simple docstring'''
lowercase_ , lowercase_ = emb.weight.shape
lowercase_ = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowercase_ = emb.weight.data
return lin_layer
def a ( snake_case__: Dict , snake_case__: Dict=None ):
'''simple docstring'''
lowercase_ = {}
for old_key in state_dict.keys():
lowercase_ = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowercase_ = key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowercase_ = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowercase_ = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowercase_ = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowercase_ = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowercase_ = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowercase_ = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowercase_ = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowercase_ = state_dict[old_key]
return new_dict
def a ( snake_case__: List[str] , snake_case__: Dict , snake_case__: str , snake_case__: str , snake_case__: str = WEIGHTS_NAME ):
'''simple docstring'''
lowercase_ = []
lowercase_ = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
for expert in range(snake_case__ ):
lowercase_ = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(snake_case__ ):
lowercase_ = torch.load(snake_case__ )['''model''']
remove_ignore_keys_(snake_case__ )
lowercase_ = rename_fairseq_keys(snake_case__ , snake_case__ )
lowercase_ = os.path.join(
snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) )
torch.save(snake_case__ , snake_case__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(snake_case__ )[0]].dtype )
# Add the last block
lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) )
lowercase_ = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(snake_case__ )
lowercase_ = rename_fairseq_keys(snake_case__ , snake_case__ )
lowercase_ = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(snake_case__ ) == 1:
lowercase_ = os.path.join(snake_case__ , snake_case__ )
torch.save(snake_case__ , snake_case__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(snake_case__ , snake_case__ )
# Otherwise, let's build the index
lowercase_ = {}
for idx, shard in enumerate(snake_case__ ):
lowercase_ = weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin''' )
lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
for key in shard:
lowercase_ = shard_file
# Add the metadata
lowercase_ = {'''total_size''': total_size}
lowercase_ = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f:
lowercase_ = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__a = parser.parse_args()
__a , __a = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__a = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__a = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 409 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class lowercase__:
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : int=2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , ) -> Union[str, Any]:
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = patch_size
lowercase_ = max_length
lowercase_ = num_mel_bins
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = scope
lowercase_ = frequency_stride
lowercase_ = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowercase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
lowercase_ = (self.max_length - self.patch_size) // self.time_stride + 1
lowercase_ = frequency_out_dimension * time_out_dimension
lowercase_ = num_patches + 2
def _lowercase ( self : Optional[Any] ) -> List[Any]:
lowercase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ = self.get_config()
return config, input_values, labels
def _lowercase ( self : List[Any] ) -> Any:
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str:
lowercase_ = ASTModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowercase_ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[int] ) -> Dict:
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {'''input_values''': input_values}
return config, inputs_dict
@require_torch
class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Optional[int] = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
a :List[Any] = (
{'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel}
if is_torch_available()
else {}
)
a :Optional[Any] = False
a :str = False
a :Optional[int] = False
a :int = False
def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]:
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def _lowercase ( self : Any ) -> Union[str, Any]:
lowercase_ = ASTModelTester(self )
lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 )
def _lowercase ( self : List[str] ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''AST does not use inputs_embeds''' )
def _lowercase ( self : Tuple ) -> str:
pass
def _lowercase ( self : List[str] ) -> Union[str, Any]:
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def _lowercase ( self : int ) -> List[str]:
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(SCREAMING_SNAKE_CASE_ )
lowercase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ['''input_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
@slow
def _lowercase ( self : Union[str, Any] ) -> Dict:
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def a ( ):
'''simple docstring'''
lowercase_ = hf_hub_download(
repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' )
lowercase_ , lowercase_ = torchaudio.load(snake_case__ )
return audio, sampling_rate
@require_torch
@require_torchaudio
class lowercase__( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Tuple ) -> Any:
return (
ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' )
if is_torchaudio_available()
else None
)
@slow
def _lowercase ( self : List[str] ) -> Any:
lowercase_ = self.default_feature_extractor
lowercase_ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(SCREAMING_SNAKE_CASE_ )
lowercase_ = self.default_feature_extractor
lowercase_ , lowercase_ = prepare_audio()
lowercase_ = audio.squeeze().numpy()
lowercase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
lowercase_ = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
lowercase_ = torch.Size((1, 5_2_7) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
lowercase_ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 409 | 1 |
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case ( self ,snake_case__ ,snake_case__ ):
SCREAMING_SNAKE_CASE_ : int = jnp.ones((batch_size, length) ) / length
return scores
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : str = None
SCREAMING_SNAKE_CASE_ : int = 20
SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(batch_size=2 ,length=snake_case__ )
# tweak scores to not be uniform anymore
SCREAMING_SNAKE_CASE_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
SCREAMING_SNAKE_CASE_ : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(snake_case__ ,axis=-1 )
SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 )
SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 )
SCREAMING_SNAKE_CASE_ : Any = jax.nn.softmax(temp_dist_warper_sharper(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 )
SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Any = None
SCREAMING_SNAKE_CASE_ : Optional[Any] = 10
SCREAMING_SNAKE_CASE_ : int = 2
# create ramp distribution
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy()
SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size
SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] )
# check special case
SCREAMING_SNAKE_CASE_ : int = 5
SCREAMING_SNAKE_CASE_ : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 )
SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, length) ).copy()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp_safety_check(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : str = 10
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
SCREAMING_SNAKE_CASE_ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 )
SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
SCREAMING_SNAKE_CASE_ : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) )
# check edge cases with negative and extreme logits
SCREAMING_SNAKE_CASE_ : List[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
SCREAMING_SNAKE_CASE_ : Any = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : int = 20
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4
SCREAMING_SNAKE_CASE_ : str = 0
SCREAMING_SNAKE_CASE_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ )
# check that min length is applied at length 5
SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 )
SCREAMING_SNAKE_CASE_ : Optional[int] = 5
SCREAMING_SNAKE_CASE_ : List[str] = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] )
# check that min length is not applied anymore at length 15
SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : int = 15
SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertFalse(jnp.isinf(snake_case__ ).any() )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : str = 20
SCREAMING_SNAKE_CASE_ : List[Any] = 4
SCREAMING_SNAKE_CASE_ : Dict = 0
SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ )
# check that all scores are -inf except the bos_token_id score
SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, 1) ,vocab_size=20 )
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
SCREAMING_SNAKE_CASE_ : Dict = 3
SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertFalse(jnp.isinf(snake_case__ ).any() )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Dict = 20
SCREAMING_SNAKE_CASE_ : Any = 4
SCREAMING_SNAKE_CASE_ : int = 0
SCREAMING_SNAKE_CASE_ : Tuple = 5
SCREAMING_SNAKE_CASE_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ )
# check that all scores are -inf except the eos_token_id when max_length is reached
SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 4) ,vocab_size=20 )
SCREAMING_SNAKE_CASE_ : List[Any] = 4
SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
SCREAMING_SNAKE_CASE_ : List[Any] = 3
SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : List[Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
self.assertFalse(jnp.isinf(snake_case__ ).any() )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Dict = 4
SCREAMING_SNAKE_CASE_ : Dict = 10
SCREAMING_SNAKE_CASE_ : int = 15
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
SCREAMING_SNAKE_CASE_ : Optional[Any] = 15
# dummy input_ids and scores
SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, sequence_length) ,snake_case__ )
SCREAMING_SNAKE_CASE_ : int = input_ids.copy()
SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Dict = scores.copy()
# instantiate all dist processors
SCREAMING_SNAKE_CASE_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 )
SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3 )
SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
SCREAMING_SNAKE_CASE_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[int] = 10
# no processor list
SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : List[str] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : str = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : List[Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Tuple = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
# with processor list
SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
SCREAMING_SNAKE_CASE_ : Any = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
# scores should be equal
self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
def snake_case ( self ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4
SCREAMING_SNAKE_CASE_ : Optional[Any] = 10
SCREAMING_SNAKE_CASE_ : Dict = 15
SCREAMING_SNAKE_CASE_ : Dict = 2
SCREAMING_SNAKE_CASE_ : Tuple = 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15
# dummy input_ids and scores
SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, sequence_length) ,snake_case__ )
SCREAMING_SNAKE_CASE_ : int = input_ids.copy()
SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = scores.copy()
# instantiate all dist processors
SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 )
SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 )
SCREAMING_SNAKE_CASE_ : int = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
SCREAMING_SNAKE_CASE_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ )
SCREAMING_SNAKE_CASE_ : List[str] = 10
# no processor list
def run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ):
SCREAMING_SNAKE_CASE_ : int = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : int = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
SCREAMING_SNAKE_CASE_ : Optional[int] = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
return scores
# with processor list
def run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ):
SCREAMING_SNAKE_CASE_ : List[Any] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
SCREAMING_SNAKE_CASE_ : List[str] = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ )
return scores
SCREAMING_SNAKE_CASE_ : Tuple = jax.jit(snake_case__ )
SCREAMING_SNAKE_CASE_ : Any = jax.jit(snake_case__ )
SCREAMING_SNAKE_CASE_ : int = jitted_run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ )
SCREAMING_SNAKE_CASE_ : List[str] = jitted_run_processor_list(snake_case__ ,snake_case__ ,snake_case__ )
# scores should be equal
self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
| 105 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
UpperCamelCase__ : List[Any] = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ) -> Any:
"""simple docstring"""
inspect_dataset(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : List[str] = path + '.py'
assert script_name in os.listdir(lowerCamelCase_ )
assert "__pycache__" not in os.listdir(lowerCamelCase_ )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> Optional[Any]:
"""simple docstring"""
inspect_metric(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : Tuple = path + '.py'
assert script_name in os.listdir(lowerCamelCase_ )
assert "__pycache__" not in os.listdir(lowerCamelCase_ )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ) -> List[Any]:
"""simple docstring"""
with pytest.raises(lowerCamelCase_ ):
get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_ )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = get_dataset_config_names(lowerCamelCase_ )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = get_dataset_infos(lowerCamelCase_ )
assert list(infos.keys() ) == expected_configs
SCREAMING_SNAKE_CASE_ : Optional[Any] = expected_configs[0]
assert expected_config in infos
SCREAMING_SNAKE_CASE_ : Any = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_dataset_infos(lowerCamelCase_ )
assert expected_config in infos
SCREAMING_SNAKE_CASE_ : Tuple = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ) -> int:
"""simple docstring"""
with pytest.raises(lowerCamelCase_ ):
get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_ )
| 105 | 1 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
__lowerCamelCase : Any = """\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
"""
__lowerCamelCase : Tuple = """\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.
"""
__lowerCamelCase : int = r"""
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting \"1/2\" to \"\\frac{1}{2}\")
Examples:
>>> metric = datasets.load_metric(\"competition_math\")
>>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])
>>> print(results)
{'accuracy': 1.0}
"""
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , )
def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ : Optional[int] = 0.0
for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ):
n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0
lowerCamelCase_ : Union[str, Any] = n_correct / len(UpperCamelCase_ )
return {
"accuracy": accuracy,
}
| 701 |
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
__lowerCamelCase : Union[str, Any] = """\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
"""
__lowerCamelCase : Union[str, Any] = """\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
"""
__lowerCamelCase : Union[str, Any] = """
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for 'record': list of question-answer dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'prediction_text': the predicted answer text
- for 'multirc': list of question-answer dictionaries with the following keys:
- 'idx': index of the question-answer pair as specified by the dataset
- 'prediction': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for 'record': list of question-answers dictionaries with the following keys:
- 'idx': index of the question as specified by the dataset
- 'answers': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for 'record':
- 'exact_match': Exact match between answer and gold answer
- 'f1': F1 score
- for 'multirc':
- 'exact_match': Exact match between answer and gold answer
- 'f1_m': Per-question macro-F1 score
- 'f1_a': Average F1 score over all answers
- for 'axb':
'matthews_correlation': Matthew Correlation
- for 'cb':
- 'accuracy': Accuracy
- 'f1': F1 score
- for all others:
- 'accuracy': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'cb')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'record')
>>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]
>>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')
>>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}
>>> super_glue_metric = datasets.load_metric('super_glue', 'axb')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def __snake_case (__UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
return float((preds == labels).mean() )
def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="binary" ):
"""simple docstring"""
lowerCamelCase_ : str = simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : Dict = float(fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average=__UpperCAmelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def __snake_case (__UpperCAmelCase , __UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase_ : Dict = {}
for id_pred, label in zip(__UpperCAmelCase , __UpperCAmelCase ):
lowerCamelCase_ : List[str] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}"""
lowerCamelCase_ : List[Any] = id_pred['''prediction''']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
lowerCamelCase_ : Optional[Any] = [(pred, label)]
lowerCamelCase_ , lowerCamelCase_ : List[str] = [], []
for question, preds_labels in question_map.items():
lowerCamelCase_ , lowerCamelCase_ : Any = zip(*__UpperCAmelCase )
lowerCamelCase_ : Dict = fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average='''macro''' )
fas.append(__UpperCAmelCase )
lowerCamelCase_ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCAmelCase ) )
ems.append(__UpperCAmelCase )
lowerCamelCase_ : int = float(sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) )
lowerCamelCase_ : str = sum(__UpperCAmelCase ) / len(__UpperCAmelCase )
lowerCamelCase_ : str = float(fa_score(y_true=__UpperCAmelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , )
def __UpperCamelCase ( self : Tuple ) -> Any:
"""simple docstring"""
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"prediction_text": datasets.Value('''string''' ),
},
"references": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"answers": datasets.Sequence(datasets.Value('''string''' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('''int64''' ),
"paragraph": datasets.Value('''int64''' ),
"question": datasets.Value('''int64''' ),
},
"prediction": datasets.Value('''int64''' ),
},
"references": datasets.Value('''int64''' ),
}
else:
return {
"predictions": datasets.Value('''int64''' ),
"references": datasets.Value('''int64''' ),
}
def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> Optional[Any]:
"""simple docstring"""
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )}
elif self.config_name == "cb":
return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ , fa_avg='''macro''' )
elif self.config_name == "record":
lowerCamelCase_ : List[str] = [
{
'''qas''': [
{'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]}
for ref in references
]
}
]
lowerCamelCase_ : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions}
return evaluate_record(UpperCamelCase_ , UpperCamelCase_ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCamelCase_ , UpperCamelCase_ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
| 418 | 0 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCAmelCase : Tuple = 2
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
def __init__( self : Optional[int] , *, # begin keyword-only arguments
lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Union[str, Any]=None , ) -> Any:
snake_case__ , snake_case__ , snake_case__ , snake_case__ = bos, unk, pad, eos
snake_case__ = []
snake_case__ = []
snake_case__ = {}
snake_case__ = self.add_symbol(lowerCAmelCase__ )
snake_case__ = self.add_symbol(lowerCAmelCase__ )
snake_case__ = self.add_symbol(lowerCAmelCase__ )
snake_case__ = self.add_symbol(lowerCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(lowerCAmelCase__ )
snake_case__ = len(self.symbols )
def __eq__( self : int , lowerCAmelCase__ : Dict ) -> Optional[int]:
return self.indices == other.indices
def __getitem__( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Optional[int] ) -> str:
return len(self.symbols )
def __contains__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
return sym in self.indices
@classmethod
def UpperCAmelCase_ ( cls : Dict , lowerCAmelCase__ : List[Any] ) -> Tuple:
snake_case__ = cls()
d.add_from_file(lowerCAmelCase__ )
return d
def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=False ) -> Optional[Any]:
if word in self.indices and not overwrite:
snake_case__ = self.indices[word]
snake_case__ = self.count[idx] + n
return idx
else:
snake_case__ = len(self.symbols )
snake_case__ = idx
self.symbols.append(lowerCAmelCase__ )
self.count.append(lowerCAmelCase__ )
return idx
def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : Optional[int] ) -> Any:
return 0
def UpperCAmelCase_ ( self : str , lowerCAmelCase__ : str ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
try:
with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowerCAmelCase__ ) )
return
snake_case__ = f.readlines()
snake_case__ = self._load_meta(lowerCAmelCase__ )
for line in lines[indices_start_line:]:
try:
snake_case__ , snake_case__ = line.rstrip().rsplit(""" """ , 1 )
if field == "#fairseq:overwrite":
snake_case__ = True
snake_case__ , snake_case__ = line.rsplit(""" """ , 1 )
else:
snake_case__ = False
snake_case__ = int(lowerCAmelCase__ )
snake_case__ = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(lowerCAmelCase__ ) )
self.add_symbol(lowerCAmelCase__ , n=lowerCAmelCase__ , overwrite=lowerCAmelCase__ )
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" )
def _lowercase ( __UpperCamelCase : Dict ):
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
snake_case__ = dict((re.sub(R"""@@$""" , """""" , __UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , __UpperCamelCase ), v) for k, v in d.items() )
snake_case__ = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
snake_case__ = d[k] # restore
return da
def _lowercase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ):
# prep
if not os.path.exists(__UpperCamelCase ):
raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
snake_case__ = os.path.join(__UpperCamelCase , """checkpoint.pt""" )
if not os.path.isfile(__UpperCamelCase ):
raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' )
snake_case__ = torch.load(__UpperCamelCase , map_location="""cpu""" )
snake_case__ = chkpt["""cfg"""]["""model"""]
# dicts
snake_case__ = os.path.join(__UpperCamelCase , """dict.txt""" )
if not os.path.isfile(__UpperCamelCase ):
raise ValueError(F'''path to the file {dict_file} does not exist!''' )
snake_case__ = Dictionary.load(__UpperCamelCase )
snake_case__ = rewrite_dict_keys(src_dict.indices )
snake_case__ = len(__UpperCamelCase )
snake_case__ = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] )
print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) )
# merges_file (bpecodes)
snake_case__ = os.path.join(__UpperCamelCase , """bpecodes""" )
if not os.path.isfile(__UpperCamelCase ):
raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' )
snake_case__ = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(__UpperCamelCase , __UpperCamelCase )
# model config
snake_case__ = os.path.join(__UpperCamelCase , """config.json""" )
snake_case__ = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.0_2,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1E-12,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(F'''Generating {biogpt_model_config_file}''' )
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) )
# tokenizer config
snake_case__ = os.path.join(__UpperCamelCase , __UpperCamelCase )
snake_case__ = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1024,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(F'''Generating {biogpt_tokenizer_config_file}''' )
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) )
# model
snake_case__ = chkpt["""model"""]
# remove unneeded keys
snake_case__ = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(__UpperCamelCase , __UpperCamelCase )
snake_case__ = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
snake_case__ = model_state_dict.pop(__UpperCamelCase )
else:
snake_case__ = model_state_dict.pop(__UpperCamelCase )
snake_case__ = BioGptConfig.from_pretrained(__UpperCamelCase )
snake_case__ = BioGptForCausalLM(__UpperCamelCase )
# check that it loads ok
model_new.load_state_dict(__UpperCamelCase )
# save
snake_case__ = os.path.join(__UpperCamelCase , __UpperCamelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__UpperCamelCase , __UpperCamelCase )
print("""Conversion is done!""" )
if __name__ == "__main__":
lowerCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase : Dict = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 214 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase : int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __a ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[Any] ) -> None:
warnings.warn(
"""The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use BeitImageProcessor instead.""" , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
| 214 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : str ={
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class _a ( snake_case_ ):
_UpperCamelCase: Tuple = "dpr"
def __init__( self , lowercase_=30522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_ = 0 , **lowercase_ , ) -> Optional[Any]:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowerCAmelCase : Optional[Any] = vocab_size
lowerCAmelCase : Optional[int] = hidden_size
lowerCAmelCase : str = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : int = hidden_act
lowerCAmelCase : Optional[int] = intermediate_size
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : Any = attention_probs_dropout_prob
lowerCAmelCase : Tuple = max_position_embeddings
lowerCAmelCase : Any = type_vocab_size
lowerCAmelCase : int = initializer_range
lowerCAmelCase : Tuple = layer_norm_eps
lowerCAmelCase : str = projection_dim
lowerCAmelCase : Optional[Any] = position_embedding_type
| 693 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
requests.request("""GET""" ,"""https://huggingface.co""" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 )
@pytest.mark.integration
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("""GET""" ,"""https://huggingface.co""" )
def _UpperCAmelCase ( ):
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
http_head("""https://huggingface.co""" )
| 693 | 1 |
__UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__UpperCAmelCase = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def UpperCamelCase ( snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> str:
assert len(str(snake_case__ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
UpperCamelCase : Dict = year // 100
UpperCamelCase : Optional[Any] = (5 * (century % 4) + 2) % 7
UpperCamelCase : Union[str, Any] = year % 100
UpperCamelCase : Dict = centurian % 12
UpperCamelCase : Optional[int] = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
UpperCamelCase : Tuple = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
UpperCamelCase : Tuple = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ = {
'configuration_bridgetower': [
'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BridgeTowerConfig',
'BridgeTowerTextConfig',
'BridgeTowerVisionConfig',
],
'processing_bridgetower': ['BridgeTowerProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['BridgeTowerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST',
'BridgeTowerForContrastiveLearning',
'BridgeTowerForImageAndTextRetrieval',
'BridgeTowerForMaskedLM',
'BridgeTowerModel',
'BridgeTowerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure) | 296 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ : Any = {
"configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"],
"tokenization_biogpt": ["BioGptTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
"BioGptModel",
"BioGptPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 18 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowercase__( _UpperCAmelCase ):
'''simple docstring'''
UpperCamelCase = """blenderbot-small"""
UpperCamelCase = ["""past_key_values"""]
UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any:
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = vocab_size
SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[Any] = d_model
SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim
SCREAMING_SNAKE_CASE : Tuple = encoder_layers
SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads
SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim
SCREAMING_SNAKE_CASE : str = decoder_layers
SCREAMING_SNAKE_CASE : str = decoder_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = dropout
SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout
SCREAMING_SNAKE_CASE : Any = activation_dropout
SCREAMING_SNAKE_CASE : List[str] = activation_function
SCREAMING_SNAKE_CASE : Optional[int] = init_std
SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop
SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop
SCREAMING_SNAKE_CASE : List[Any] = use_cache
SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers
SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
class lowercase__( _UpperCAmelCase ):
'''simple docstring'''
@property
def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE : Tuple = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''}
SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''}
SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
SCREAMING_SNAKE_CASE : Tuple = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''}
SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
SCREAMING_SNAKE_CASE : Any = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE : Any = super().outputs
else:
SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs
if self.use_past:
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers
for i in range(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''}
SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Generate decoder inputs
SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1
SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape
SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1]
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads
SCREAMING_SNAKE_CASE : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3
SCREAMING_SNAKE_CASE : int = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
SCREAMING_SNAKE_CASE : List[Any] = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 )
SCREAMING_SNAKE_CASE : Optional[int] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers
SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers
SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowerCamelCase_ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowerCamelCase_ ),
torch.zeros(lowerCamelCase_ ),
torch.zeros(lowerCamelCase_ ),
torch.zeros(lowerCamelCase_ ),
) )
# TODO: test this.
SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowerCamelCase_ , lowerCamelCase_ ):
common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) )
return common_inputs
def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE : List[str] = seqlen + 2
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers
SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads
SCREAMING_SNAKE_CASE : Union[str, Any] = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype
SCREAMING_SNAKE_CASE : Any = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 )
SCREAMING_SNAKE_CASE : Optional[int] = [
(torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ )
]
return common_inputs
def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension(
lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension(
lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ )
# Generate dummy inputs according to compute batch and sequence
SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) )
return common_inputs
def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ )
elif self.task == "causal-lm":
SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm(
lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ )
return common_inputs
def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]:
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
| 18 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 638 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
lowercase__ = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n"
lowercase__ = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n"
lowercase__ = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def lowerCAmelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Optional[Any]:
"""simple docstring"""
snake_case : Tuple = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
snake_case : Dict = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
snake_case : int = evaluate(dataset=UpperCamelCase__ , predictions=UpperCamelCase__ )
return score
| 638 | 1 |
'''simple docstring'''
def a ( lowerCamelCase__ ):
'''simple docstring'''
A_ : Any = False
while is_sorted is False: # Until all the indices are traversed keep looping
A_ : List[Any] = True
for i in range(0 , len(lowerCamelCase__ ) - 1 , 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
A_, A_ : int = input_list[i + 1], input_list[i]
# swapping if elements not in order
A_ : Any = False
for i in range(1 , len(lowerCamelCase__ ) - 1 , 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
A_, A_ : Dict = input_list[i + 1], input_list[i]
# swapping if elements not in order
A_ : Dict = False
return input_list
if __name__ == "__main__":
print('''Enter list to be sorted''')
lowerCamelCase :List[Any] = [int(x) for x in input().split()]
# inputing elements of the list in one line
lowerCamelCase :Union[str, Any] = odd_even_sort(input_list)
print('''The sorted list is''')
print(sorted_list) | 686 |
'''simple docstring'''
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _lowerCAmelCase ( __UpperCAmelCase ):
def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ):
super().__init__(
lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , )
A_ : Optional[int] = field
A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths}
A_ : Optional[Any] = Json(
cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , )
def _a (self ):
# Build iterable dataset
if self.streaming:
A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ : int = None
A_ : Union[str, Any] = None
A_ : int = None
A_ : List[str] = None
self.builder.download_and_prepare(
download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , )
A_ : str = self.builder.as_dataset(
split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory )
return dataset
class _lowerCAmelCase :
def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(F'num_proc {num_proc} must be an integer > 0.' )
A_ : Any = dataset
A_ : List[str] = path_or_buf
A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
A_ : Optional[Any] = num_proc
A_ : List[Any] = """utf-8"""
A_ : int = to_json_kwargs
def _a (self ):
A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase )
A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" )
A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False )
A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True )
A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'`datasets` currently does not support {compression} compression' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer:
A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F'The compression parameter is not supported when writing to a buffer, but compression={compression}'
""" was passed. Please provide a local path instead.""" )
A_ : Union[str, Any] = self._write(
file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs )
return written
def _a (self , lowercase ):
A_, A_, A_, A_, A_ : List[str] = args
A_ : List[str] = query_table(
table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , )
A_ : Any = batch.to_pandas().to_json(
path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase )
if not json_str.endswith("""\n""" ):
json_str += "\n"
return json_str.encode(self.encoding )
def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ):
A_ : Dict = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(lowercase )
else:
A_, A_ : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowercase )
return written | 686 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class A_ ( __UpperCamelCase ):
'''simple docstring'''
__snake_case = """pegasus"""
__snake_case = ["""past_key_values"""]
__snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self: List[Any] , a: Any=5_0265 , a: List[str]=1024 , a: Tuple=12 , a: List[str]=4096 , a: List[Any]=16 , a: int=12 , a: List[str]=4096 , a: str=16 , a: List[Any]=0.0 , a: List[Any]=0.0 , a: Tuple=True , a: List[Any]=True , a: str="gelu" , a: str=1024 , a: int=0.1 , a: Union[str, Any]=0.0 , a: Any=0.0 , a: Optional[Any]=0.0_2 , a: Dict=0 , a: Optional[Any]=False , a: Tuple=0 , a: Union[str, Any]=1 , a: List[Any]=1 , **a: Any , ):
__lowerCamelCase : List[str] = vocab_size
__lowerCamelCase : Tuple = max_position_embeddings
__lowerCamelCase : Union[str, Any] = d_model
__lowerCamelCase : Union[str, Any] = encoder_ffn_dim
__lowerCamelCase : str = encoder_layers
__lowerCamelCase : int = encoder_attention_heads
__lowerCamelCase : Dict = decoder_ffn_dim
__lowerCamelCase : int = decoder_layers
__lowerCamelCase : Optional[Any] = decoder_attention_heads
__lowerCamelCase : Dict = dropout
__lowerCamelCase : Optional[Any] = attention_dropout
__lowerCamelCase : Tuple = activation_dropout
__lowerCamelCase : Tuple = activation_function
__lowerCamelCase : Any = init_std
__lowerCamelCase : Optional[int] = encoder_layerdrop
__lowerCamelCase : List[Any] = decoder_layerdrop
__lowerCamelCase : int = use_cache
__lowerCamelCase : Dict = encoder_layers
__lowerCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , )
@property
def _snake_case ( self: Any ):
return self.encoder_attention_heads
@property
def _snake_case ( self: str ):
return self.d_model
| 669 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( __UpperCamelCase ):
'''simple docstring'''
__snake_case = """char"""
__snake_case = """bpe"""
__snake_case = """wp"""
lowercase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( __UpperCamelCase ):
'''simple docstring'''
__snake_case = ["""image_processor""", """char_tokenizer"""]
__snake_case = """ViTImageProcessor"""
__snake_case = """MgpstrTokenizer"""
def __init__( self: int , a: Dict=None , a: Optional[int]=None , **a: List[str] ):
__lowerCamelCase : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , a , )
__lowerCamelCase : Optional[Any] = kwargs.pop('feature_extractor' )
__lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
__lowerCamelCase : Any = tokenizer
__lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('gpt2' )
__lowerCamelCase : int = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(a , a )
def __call__( self: Optional[int] , a: Optional[int]=None , a: List[Any]=None , a: int=None , **a: str ):
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
__lowerCamelCase : Dict = self.image_processor(a , return_tensors=a , **a )
if text is not None:
__lowerCamelCase : Dict = self.char_tokenizer(a , return_tensors=a , **a )
if text is None:
return inputs
elif images is None:
return encodings
else:
__lowerCamelCase : List[str] = encodings['input_ids']
return inputs
def _snake_case ( self: List[str] , a: List[Any] ):
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = sequences
__lowerCamelCase : List[str] = char_preds.size(0 )
__lowerCamelCase , __lowerCamelCase : str = self._decode_helper(a , 'char' )
__lowerCamelCase , __lowerCamelCase : Optional[int] = self._decode_helper(a , 'bpe' )
__lowerCamelCase , __lowerCamelCase : Optional[Any] = self._decode_helper(a , 'wp' )
__lowerCamelCase : Tuple = []
__lowerCamelCase : List[Any] = []
for i in range(a ):
__lowerCamelCase : List[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]]
__lowerCamelCase : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]]
__lowerCamelCase : Any = scores.index(max(a ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__lowerCamelCase : List[str] = {}
__lowerCamelCase : Optional[int] = final_strs
__lowerCamelCase : Dict = final_scores
__lowerCamelCase : Dict = char_strs
__lowerCamelCase : List[Any] = bpe_strs
__lowerCamelCase : Tuple = wp_strs
return out
def _snake_case ( self: int , a: Optional[int] , a: Optional[Any] ):
if format == DecodeType.CHARACTER:
__lowerCamelCase : Optional[Any] = self.char_decode
__lowerCamelCase : Union[str, Any] = 1
__lowerCamelCase : List[str] = '[s]'
elif format == DecodeType.BPE:
__lowerCamelCase : Dict = self.bpe_decode
__lowerCamelCase : List[str] = 2
__lowerCamelCase : Any = '#'
elif format == DecodeType.WORDPIECE:
__lowerCamelCase : List[str] = self.wp_decode
__lowerCamelCase : int = 102
__lowerCamelCase : Dict = '[SEP]'
else:
raise ValueError(F'Format {format} is not supported.' )
__lowerCamelCase , __lowerCamelCase : int = [], []
__lowerCamelCase : Tuple = pred_logits.size(0 )
__lowerCamelCase : List[Any] = pred_logits.size(1 )
__lowerCamelCase , __lowerCamelCase : Dict = pred_logits.topk(1 , dim=-1 , largest=a , sorted=a )
__lowerCamelCase : List[str] = preds_index.view(-1 , a )[:, 1:]
__lowerCamelCase : Dict = decoder(a )
__lowerCamelCase , __lowerCamelCase : Optional[Any] = torch.nn.functional.softmax(a , dim=2 ).max(dim=2 )
__lowerCamelCase : List[str] = preds_max_prob[:, 1:]
for index in range(a ):
__lowerCamelCase : str = preds_str[index].find(a )
__lowerCamelCase : Tuple = preds_str[index][:pred_eos]
__lowerCamelCase : Any = preds_index[index].cpu().tolist()
__lowerCamelCase : Any = pred_index.index(a ) if eos_token in pred_index else -1
__lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
__lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(a )
conf_scores.append(a )
return dec_strs, conf_scores
def _snake_case ( self: Tuple , a: Optional[int] ):
__lowerCamelCase : Dict = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(a )]
return decode_strs
def _snake_case ( self: Optional[int] , a: Tuple ):
return self.bpe_tokenizer.batch_decode(a )
def _snake_case ( self: Optional[int] , a: List[Any] ):
__lowerCamelCase : int = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(a )]
return decode_strs
| 669 | 1 |
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"""b0""": efficientnet.EfficientNetBa,
"""b1""": efficientnet.EfficientNetBa,
"""b2""": efficientnet.EfficientNetBa,
"""b3""": efficientnet.EfficientNetBa,
"""b4""": efficientnet.EfficientNetBa,
"""b5""": efficientnet.EfficientNetBa,
"""b6""": efficientnet.EfficientNetBa,
"""b7""": efficientnet.EfficientNetBa,
}
UpperCamelCase = {
"""b0""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.0,
"""image_size""": 224,
"""dropout_rate""": 0.2,
"""dw_padding""": [],
},
"""b1""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.1,
"""image_size""": 240,
"""dropout_rate""": 0.2,
"""dw_padding""": [16],
},
"""b2""": {
"""hidden_dim""": 1408,
"""width_coef""": 1.1,
"""depth_coef""": 1.2,
"""image_size""": 260,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 8, 16],
},
"""b3""": {
"""hidden_dim""": 1536,
"""width_coef""": 1.2,
"""depth_coef""": 1.4,
"""image_size""": 300,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 18],
},
"""b4""": {
"""hidden_dim""": 1792,
"""width_coef""": 1.4,
"""depth_coef""": 1.8,
"""image_size""": 380,
"""dropout_rate""": 0.4,
"""dw_padding""": [6],
},
"""b5""": {
"""hidden_dim""": 2048,
"""width_coef""": 1.6,
"""depth_coef""": 2.2,
"""image_size""": 456,
"""dropout_rate""": 0.4,
"""dw_padding""": [13, 27],
},
"""b6""": {
"""hidden_dim""": 2304,
"""width_coef""": 1.8,
"""depth_coef""": 2.6,
"""image_size""": 528,
"""dropout_rate""": 0.5,
"""dw_padding""": [31],
},
"""b7""": {
"""hidden_dim""": 2560,
"""width_coef""": 2.0,
"""depth_coef""": 3.1,
"""image_size""": 600,
"""dropout_rate""": 0.5,
"""dw_padding""": [18],
},
}
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
A_ : Tuple = EfficientNetConfig()
A_ : List[Any] = CONFIG_MAP[model_name]['''hidden_dim''']
A_ : Union[str, Any] = CONFIG_MAP[model_name]['''width_coef''']
A_ : Optional[int] = CONFIG_MAP[model_name]['''depth_coef''']
A_ : List[Any] = CONFIG_MAP[model_name]['''image_size''']
A_ : List[Any] = CONFIG_MAP[model_name]['''dropout_rate''']
A_ : List[str] = CONFIG_MAP[model_name]['''dw_padding''']
A_ : Optional[int] = '''huggingface/label-files'''
A_ : Tuple = '''imagenet-1k-id2label.json'''
A_ : Any = 1_000
A_ : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) )
A_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
A_ : List[str] = idalabel
A_ : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def _SCREAMING_SNAKE_CASE ( ):
A_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A_ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
return im
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
A_ : Dict = CONFIG_MAP[model_name]['''image_size''']
A_ : List[Any] = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=SCREAMING_SNAKE_CASE , )
return preprocessor
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
A_ : Union[str, Any] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
A_ : Any = sorted(set(SCREAMING_SNAKE_CASE ) )
A_ : Optional[int] = len(SCREAMING_SNAKE_CASE )
A_ : Dict = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )}
A_ : Optional[Any] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
A_ : Tuple = block_name_mapping[b]
rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
A_ : Any = {}
for item in rename_keys:
if item[0] in original_param_names:
A_ : Optional[Any] = '''efficientnet.''' + item[1]
A_ : List[str] = '''classifier.weight'''
A_ : Dict = '''classifier.bias'''
return key_mapping
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
for key, value in tf_params.items():
if "normalization" in key:
continue
A_ : int = key_mapping[key]
if "_conv" in key and "kernel" in key:
A_ : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A_ : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A_ : str = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) )
else:
A_ : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A_ : str = model_classes[model_name](
include_top=SCREAMING_SNAKE_CASE , weights='''imagenet''' , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1_000 , classifier_activation='''softmax''' , )
A_ : Any = original_model.trainable_variables
A_ : int = original_model.non_trainable_variables
A_ : List[Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A_ : List[Any] = param.numpy()
A_ : List[str] = list(tf_params.keys() )
# Load HuggingFace model
A_ : List[Any] = get_efficientnet_config(SCREAMING_SNAKE_CASE )
A_ : List[str] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval()
A_ : List[str] = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
A_ : Optional[int] = rename_keys(SCREAMING_SNAKE_CASE )
replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Initialize preprocessor and preprocess input image
A_ : Union[str, Any] = convert_image_processor(SCREAMING_SNAKE_CASE )
A_ : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
A_ : str = hf_model(**SCREAMING_SNAKE_CASE )
A_ : Dict = outputs.logits.detach().numpy()
# Original model inference
A_ : int = False
A_ : str = CONFIG_MAP[model_name]['''image_size''']
A_ : List[str] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A_ : str = image.img_to_array(SCREAMING_SNAKE_CASE )
A_ : str = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 )
A_ : Optional[Any] = original_model.predict(SCREAMING_SNAKE_CASE )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
os.mkdir(SCREAMING_SNAKE_CASE )
# Save converted model and image processor
hf_model.save_pretrained(SCREAMING_SNAKE_CASE )
preprocessor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
# Push model and image processor to hub
print(f'''Pushing converted {model_name} to the hub...''' )
A_ : Tuple = f'''efficientnet-{model_name}'''
preprocessor.push_to_hub(SCREAMING_SNAKE_CASE )
hf_model.push_to_hub(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""b0""",
type=str,
help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""hf_model""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""")
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
UpperCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 152 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
UpperCamelCase = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
UpperCamelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _lowerCamelCase ( UpperCamelCase ):
"""simple docstring"""
snake_case = VOCAB_FILES_NAMES
snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case = PRETRAINED_VOCAB_FILES_MAP
snake_case = ["input_ids", "attention_mask"]
snake_case = MBartTokenizer
snake_case = []
snake_case = []
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , )->str:
'''simple docstring'''
A_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
A_ : Union[str, Any] = vocab_file
A_ : List[Any] = False if not self.vocab_file else True
A_ : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
A_ : List[Any] = {
lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
A_ : int = src_lang if src_lang is not None else '''en_XX'''
A_ : Tuple = self.convert_tokens_to_ids(self._src_lang )
A_ : Optional[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _snake_case ( self )->str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None:
'''simple docstring'''
A_ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[int]:
'''simple docstring'''
A_ : List[str] = [self.sep_token_id]
A_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
A_ : str = src_lang
A_ : Optional[int] = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
A_ : Any = tgt_lang_id
return inputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "en_XX" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "ro_RO" , **_SCREAMING_SNAKE_CASE , )->BatchEncoding:
'''simple docstring'''
A_ : Optional[int] = src_lang
A_ : Union[str, Any] = tgt_lang
return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self )->Optional[Any]:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def _snake_case ( self )->Union[str, Any]:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None:
'''simple docstring'''
A_ : str = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
A_ : int = []
A_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
A_ : int = self.convert_ids_to_tokens(self.prefix_tokens )
A_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
A_ : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->None:
'''simple docstring'''
A_ : Union[str, Any] = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
A_ : str = []
A_ : Tuple = [self.eos_token_id, self.cur_lang_code]
A_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
A_ : Any = self.convert_ids_to_tokens(self.suffix_tokens )
A_ : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
A_ : Any = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 152 | 1 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase_ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class __A ( unittest.TestCase ):
'''simple docstring'''
def a__ (self ) -> Optional[int]:
"""simple docstring"""
_a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
_a = self.transformer_dir
shutil.copy(
os.path.join(A , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def a__ (self ) -> Union[str, Any]:
"""simple docstring"""
_a = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def a__ (self , A , A , A , A=None ) -> Dict:
"""simple docstring"""
_a = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
_a = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
_a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_a = black.format_str(A , mode=A )
_a = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(A , '''w''' , newline='''\n''' ) as f:
f.write(A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=A )
with open(A , '''r''' ) as f:
self.assertTrue(f.read() , A )
def a__ (self ) -> List[str]:
"""simple docstring"""
_a = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(A , A )
def a__ (self ) -> Any:
"""simple docstring"""
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , A , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , A ) , )
# Copy consistency with a really long name
_a = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , A , A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , A , overwrite_result=re.sub('''Bert''' , '''TestModel''' , A ) , )
def a__ (self ) -> int:
"""simple docstring"""
_a = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
_a , _a = check_copies.convert_to_localized_md(
A , A , localized_readme['''format_model_list'''] )
self.assertFalse(A )
self.assertEqual(A , A )
_a , _a = check_copies.convert_to_localized_md(
A , A , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(A )
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
_a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
_a , _a = check_copies.convert_to_localized_md(
A , A , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(A , A )
| 11 |
from __future__ import annotations
def __lowerCAmelCase ( A , A ):
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = 0
UpperCAmelCase_ = sum(A )
create_state_space_tree(A , A , A , A , A , A )
return result
def __lowerCAmelCase ( A , A , A , A , A , A , ):
if sum(A ) > max_sum or (remaining_nums_sum + sum(A )) < max_sum:
return
if sum(A ) == max_sum:
result.append(A )
return
for index in range(A , len(A ) ):
create_state_space_tree(
A , A , index + 1 , [*path, nums[index]] , A , remaining_nums_sum - nums[index] , )
_a: Optional[int] = [3, 34, 4, 12, 5, 2]
_a: int = 9
_a: List[Any] = generate_sum_of_subsets_soln(nums, max_sum)
print(*result) | 162 | 0 |
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def __A ( a_ : Union[str, Any] ,a_ : int ):
# ===== initialization =====
lowerCAmelCase : Optional[int] = Mock()
lowerCAmelCase : Union[str, Any] = conn, Mock()
lowerCAmelCase : List[str] = iter([1, None] )
lowerCAmelCase : Dict = lambda a_ : next(a_ )
# ===== invoke =====
send_file(filename="mytext.txt" ,testing=a_ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 551 |
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase = []
def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ):
for i in range(len(a_ ) ):
if board[row][i] == 1:
return False
for i in range(len(a_ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ):
if board[i][j] == 1:
return False
return True
def __A ( a_ : list[list[int]] ,a_ : int ):
if row >= len(a_ ):
solution.append(a_ )
printboard(a_ )
print()
return True
for i in range(len(a_ ) ):
if is_safe(a_ ,a_ ,a_ ):
lowerCAmelCase : Any = 1
solve(a_ ,row + 1 )
lowerCAmelCase : List[Any] = 0
return False
def __A ( a_ : list[list[int]] ):
for i in range(len(a_ ) ):
for j in range(len(a_ ) ):
if board[i][j] == 1:
print("Q" ,end=" " )
else:
print("." ,end=" " )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase = 8
lowerCAmelCase = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 551 | 1 |
"""simple docstring"""
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class a :
"""simple docstring"""
@property
def __A ( self ) -> Any:
return self.get_dummy_input()
@property
def __A ( self ) -> Any:
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" )
def __A ( self , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , ) -> int:
_UpperCAmelCase = 4
_UpperCAmelCase = 32
_UpperCAmelCase = (32, 32)
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = torch.device(_A )
_UpperCAmelCase = (batch_size, num_channels) + sizes
_UpperCAmelCase = randn_tensor(_A , generator=_A , device=_A )
_UpperCAmelCase = {'''hidden_states''': hidden_states}
if include_temb:
_UpperCAmelCase = 128
_UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=_A , device=_A )
if include_res_hidden_states_tuple:
_UpperCAmelCase = torch.manual_seed(1 )
_UpperCAmelCase = (randn_tensor(_A , generator=_A , device=_A ),)
if include_encoder_hidden_states:
_UpperCAmelCase = floats_tensor((batch_size, 32, 32) ).to(_A )
if include_skip_sample:
_UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=_A , device=_A )
return dummy_input
def __A ( self ) -> Union[str, Any]:
_UpperCAmelCase = {
'''in_channels''': 32,
'''out_channels''': 32,
'''temb_channels''': 128,
}
if self.block_type == "up":
_UpperCAmelCase = 32
if self.block_type == "mid":
init_dict.pop("out_channels" )
_UpperCAmelCase = self.dummy_input
return init_dict, inputs_dict
def __A ( self , snake_case_ ) -> Tuple:
_UpperCAmelCase = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase = self.block_class(**_A )
unet_block.to(_A )
unet_block.eval()
with torch.no_grad():
_UpperCAmelCase = unet_block(**_A )
if isinstance(_A , _A ):
_UpperCAmelCase = output[0]
self.assertEqual(output.shape , self.output_shape )
_UpperCAmelCase = output[0, -1, -3:, -3:]
_UpperCAmelCase = torch.tensor(_A ).to(_A )
assert torch_all_close(output_slice.flatten() , _A , atol=5e-3 )
@unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" )
def __A ( self ) -> List[Any]:
_UpperCAmelCase = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase = self.block_class(**_A )
model.to(_A )
model.train()
_UpperCAmelCase = model(**_A )
if isinstance(_A , _A ):
_UpperCAmelCase = output[0]
_UpperCAmelCase = torch.device(_A )
_UpperCAmelCase = randn_tensor(output.shape , device=_A )
_UpperCAmelCase = torch.nn.functional.mse_loss(_A , _A )
loss.backward()
| 426 |
import unittest
from knapsack import greedy_knapsack as kp
class _A ( unittest.TestCase ):
def __a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase : Dict = [10, 20, 30, 40, 50, 60]
lowercase : Union[str, Any] = [2, 4, 6, 8, 10, 12]
lowercase : Optional[int] = 100
self.assertEqual(kp.calc_profit(_A , _A , _A ) , 210 )
def __a ( self : Dict ) -> int:
"""simple docstring"""
self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' )
def __a ( self : str ) -> Dict:
"""simple docstring"""
self.assertRaisesRegex(_A , '''Weight can not be negative.''' )
def __a ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
self.assertRaisesRegex(_A , '''Profit can not be negative.''' )
def __a ( self : Tuple ) -> Dict:
"""simple docstring"""
self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' )
def __a ( self : List[str] ) -> List[Any]:
"""simple docstring"""
self.assertRaisesRegex(
_A , '''The length of profit and weight must be same.''' )
if __name__ == "__main__":
unittest.main() | 217 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase: Dict ={
'configuration_longformer': [
'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LongformerConfig',
'LongformerOnnxConfig',
],
'tokenization_longformer': ['LongformerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase: Optional[int] =['LongformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase: Dict =[
'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongformerForMaskedLM',
'LongformerForMultipleChoice',
'LongformerForQuestionAnswering',
'LongformerForSequenceClassification',
'LongformerForTokenClassification',
'LongformerModel',
'LongformerPreTrainedModel',
'LongformerSelfAttention',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase: Optional[int] =[
'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLongformerForMaskedLM',
'TFLongformerForMultipleChoice',
'TFLongformerForQuestionAnswering',
'TFLongformerForSequenceClassification',
'TFLongformerForTokenClassification',
'TFLongformerModel',
'TFLongformerPreTrainedModel',
'TFLongformerSelfAttention',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
_UpperCamelCase: str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 706 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class __lowercase( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
_lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
_lowerCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
_lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
_lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
_lowerCAmelCase = {'unk_token': '<unk>'}
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_lowerCAmelCase ) )
_lowerCAmelCase = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48145466, 0.4578275, 0.40821073],
'image_std': [0.26862954, 0.26130258, 0.27577711],
}
_lowerCAmelCase = os.path.join(self.tmpdirname , _lowerCAmelCase )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any , **_lowerCAmelCase : List[str] ) -> int:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> List[str]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : str , **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
_lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowerCAmelCase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = self.get_rust_tokenizer()
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
_lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase )
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
_lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase )
self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
_lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 )
_lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
_lowerCAmelCase = self.prepare_image_inputs()
_lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors='np' )
_lowerCAmelCase = processor(images=_lowerCAmelCase , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict:
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
_lowerCAmelCase = 'lower newer'
_lowerCAmelCase = processor(text=_lowerCAmelCase )
_lowerCAmelCase = tokenizer(_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
_lowerCAmelCase = 'lower newer'
_lowerCAmelCase = self.prepare_image_inputs()
_lowerCAmelCase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]:
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
_lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase = processor.batch_decode(_lowerCAmelCase )
_lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
_lowerCAmelCase = self.get_image_processor()
_lowerCAmelCase = self.get_tokenizer()
_lowerCAmelCase = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase )
_lowerCAmelCase = 'lower newer'
_lowerCAmelCase = self.prepare_image_inputs()
_lowerCAmelCase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 585 | 0 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase__ = get_logger(__name__)
lowerCAmelCase__ = Path(__file__).parent / 'model_card_template.md'
lowerCAmelCase__ = uuida().hex
lowerCAmelCase__ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase__ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/'
def __lowercase ( _UpperCAmelCase = None ) -> List[Any]:
'''simple docstring'''
__lowercase = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'''; torch/{_torch_version}'''
if is_flax_available():
ua += f'''; jax/{_jax_version}'''
ua += f'''; flax/{_flax_version}'''
if is_onnx_available():
ua += f'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(__UpperCamelCase , __UpperCamelCase ):
ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(__UpperCamelCase , __UpperCamelCase ):
ua += "; " + user_agent
return ua
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> List[str]:
'''simple docstring'''
if token is None:
__lowercase = HfFolder.get_token()
if organization is None:
__lowercase = whoami(__UpperCamelCase )['''name''']
return f'''{username}/{model_id}'''
else:
return f'''{organization}/{model_id}'''
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(__UpperCamelCase , "local_rank" ) and args.local_rank not in [-1, 0]:
return
__lowercase = args.hub_token if hasattr(__UpperCamelCase , "hub_token" ) else None
__lowercase = get_full_repo_name(__UpperCamelCase , token=__UpperCamelCase )
__lowercase = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCamelCase , model_name=__UpperCamelCase , repo_name=__UpperCamelCase , dataset_name=args.dataset_name if hasattr(__UpperCamelCase , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(__UpperCamelCase , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(__UpperCamelCase , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
__lowercase = os.path.join(args.output_dir , "README.md" )
model_card.save(__UpperCamelCase )
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None ) -> Dict:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
__lowercase = str(Path(__UpperCamelCase ).as_posix() )
__lowercase = re.search(R"snapshots/([^/]+)/" , __UpperCamelCase )
if search is None:
return None
__lowercase = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase__ = os.path.expanduser(
os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface'))
)
lowerCAmelCase__ = os.path.join(hf_cache_home, 'diffusers')
def __lowercase ( _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any:
'''simple docstring'''
if new_cache_dir is None:
__lowercase = DIFFUSERS_CACHE
if old_cache_dir is None:
__lowercase = old_diffusers_cache
__lowercase = Path(__UpperCamelCase ).expanduser()
__lowercase = Path(__UpperCamelCase ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
__lowercase = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase )
new_blob_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase )
os.replace(__UpperCamelCase , __UpperCamelCase )
try:
os.symlink(__UpperCamelCase , __UpperCamelCase )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase__ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt')
if not os.path.isfile(cache_version_file):
lowerCAmelCase__ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase__ = int(f.read())
except ValueError:
lowerCAmelCase__ = 0
if cache_version < 1:
lowerCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '
'existing cached models. This is a one-time operation, you can interrupt it or run it '
'later by calling `diffusers.utils.hub_utils.move_cache()`.'
)
try:
move_cache()
except Exception as e:
lowerCAmelCase__ = '\n'.join(traceback.format_tb(e.__traceback__))
logger.error(
F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '
'message and we will do our best to help.'
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, 'w') as f:
f.write('1')
except Exception:
logger.warning(
F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure "
'the directory exists and can be written to.'
)
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple:
'''simple docstring'''
if variant is not None:
__lowercase = weights_name.split("." )
__lowercase = splits[:-1] + [variant] + splits[-1:]
__lowercase = '''.'''.join(__UpperCamelCase )
return weights_name
def __lowercase ( _UpperCAmelCase , *,
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
__lowercase = str(__UpperCamelCase )
if os.path.isfile(__UpperCamelCase ):
return pretrained_model_name_or_path
elif os.path.isdir(__UpperCamelCase ):
if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) ):
# Load from a PyTorch checkpoint
__lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ):
__lowercase = os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return model_file
else:
raise EnvironmentError(
f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" )
):
try:
__lowercase = hf_hub_download(
__UpperCamelCase , filename=_add_variant(__UpperCamelCase , __UpperCamelCase ) , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , )
warnings.warn(
f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __UpperCamelCase , )
return model_file
except: # noqa: E722
warnings.warn(
f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase , __UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase , __UpperCamelCase )}\' so that the correct variant file can be added.''' , __UpperCamelCase , )
try:
# 2. Load model file as usual
__lowercase = hf_hub_download(
__UpperCamelCase , filename=__UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
"listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
"this model name. Check the model page at "
f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
f''' directory containing a file named {weights_name} or'''
" \nCheckout your internet connection or see how to run the library in"
" offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." )
except EnvironmentError:
raise EnvironmentError(
f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
"\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. "
f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
f'''containing a file named {weights_name}''' )
| 321 |
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( __UpperCamelCase = 4 ):
__lowercase : Dict = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Dict = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Union[str, Any] = matrix[::-1]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Dict = [x[::-1] for x in matrix]
return matrix
def __UpperCAmelCase ( __UpperCamelCase ):
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
a_ = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 76 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Dict , __a : Any , ) ->Tuple:
lowerCamelCase_ : List[str] = parent
lowerCamelCase_ : Any = 13
lowerCamelCase_ : List[Any] = 7
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : List[Any] = True
lowerCamelCase_ : List[Any] = True
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : Tuple = True
lowerCamelCase_ : Dict = False
lowerCamelCase_ : int = False
lowerCamelCase_ : Tuple = False
lowerCamelCase_ : List[str] = 2
lowerCamelCase_ : Dict = 99
lowerCamelCase_ : str = 0
lowerCamelCase_ : Optional[int] = 32
lowerCamelCase_ : str = 2
lowerCamelCase_ : Optional[Any] = 4
lowerCamelCase_ : Union[str, Any] = 0.1
lowerCamelCase_ : str = 0.1
lowerCamelCase_ : Dict = 512
lowerCamelCase_ : List[Any] = 16
lowerCamelCase_ : Optional[Any] = 2
lowerCamelCase_ : List[Any] = 0.02
lowerCamelCase_ : Optional[Any] = 3
lowerCamelCase_ : Optional[int] = 4
lowerCamelCase_ : Optional[Any] = """last"""
lowerCamelCase_ : Optional[Any] = True
lowerCamelCase_ : Optional[int] = None
lowerCamelCase_ : List[Any] = 0
def _lowerCAmelCase ( self : Tuple ) ->Tuple:
lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
lowerCamelCase_ : List[Any] = None
if self.use_input_lengths:
lowerCamelCase_ : Union[str, Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowerCamelCase_ : List[str] = None
if self.use_token_type_ids:
lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowerCamelCase_ : List[str] = None
lowerCamelCase_ : Union[str, Any] = None
lowerCamelCase_ : Any = None
if self.use_labels:
lowerCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ : Optional[Any] = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : int , __a : Optional[int] , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , ) ->Dict:
lowerCamelCase_ : Tuple = TFFlaubertModel(config=__a )
lowerCamelCase_ : Any = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
lowerCamelCase_ : str = model(__a )
lowerCamelCase_ : Optional[int] = [input_ids, input_mask]
lowerCamelCase_ : Any = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : int , __a : Dict , __a : str , __a : List[str] , __a : Tuple , __a : int , __a : List[str] , __a : Tuple , ) ->str:
lowerCamelCase_ : Any = TFFlaubertWithLMHeadModel(__a )
lowerCamelCase_ : List[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
lowerCamelCase_ : List[Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Any , __a : List[str] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Tuple , __a : List[str] , __a : List[str] , __a : Optional[int] , __a : List[Any] , ) ->Optional[Any]:
lowerCamelCase_ : Any = TFFlaubertForQuestionAnsweringSimple(__a )
lowerCamelCase_ : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths}
lowerCamelCase_ : Union[str, Any] = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[int] , __a : str , __a : Union[str, Any] , __a : List[str] , __a : List[str] , __a : Dict , __a : int , __a : Tuple , __a : Optional[Any] , __a : str , ) ->Dict:
lowerCamelCase_ : Tuple = TFFlaubertForSequenceClassification(__a )
lowerCamelCase_ : int = {"""input_ids""": input_ids, """lengths""": input_lengths}
lowerCamelCase_ : Tuple = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Dict , __a : Optional[int] , __a : Tuple , __a : Tuple , __a : Any , ) ->str:
lowerCamelCase_ : Any = self.num_labels
lowerCamelCase_ : List[str] = TFFlaubertForTokenClassification(config=__a )
lowerCamelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowerCamelCase_ : Union[str, Any] = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : int , __a : List[str] , __a : List[str] , __a : Tuple , __a : Optional[int] , ) ->Optional[int]:
lowerCamelCase_ : Dict = self.num_choices
lowerCamelCase_ : Optional[int] = TFFlaubertForMultipleChoice(config=__a )
lowerCamelCase_ : str = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : int = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
lowerCamelCase_ : List[str] = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
lowerCamelCase_ : str = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Dict ) ->Optional[Any]:
lowerCamelCase_ : List[str] = self.prepare_config_and_inputs()
(
lowerCamelCase_
) : Any = config_and_inputs
lowerCamelCase_ : Optional[Any] = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""langs""": token_type_ids,
"""lengths""": input_lengths,
}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ (a__ , a__ , unittest.TestCase ):
'''simple docstring'''
_a = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
_a = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
_a = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
_a = False
_a = False
def _lowerCAmelCase ( self : Dict , __a : List[Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] ) ->List[Any]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _lowerCAmelCase ( self : List[str] ) ->Optional[int]:
lowerCamelCase_ : Dict = TFFlaubertModelTester(self )
lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=__a , emb_dim=37 )
def _lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : int ) ->Optional[int]:
lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__a )
def _lowerCAmelCase ( self : str ) ->Tuple:
lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__a )
def _lowerCAmelCase ( self : List[Any] ) ->Optional[Any]:
lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__a )
def _lowerCAmelCase ( self : List[str] ) ->List[str]:
lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__a )
def _lowerCAmelCase ( self : Optional[int] ) ->Dict:
lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__a )
def _lowerCAmelCase ( self : Any ) ->List[Any]:
lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__a )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ : Tuple = TFFlaubertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ (unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self : Any ) ->List[Any]:
lowerCamelCase_ : Dict = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" )
lowerCamelCase_ : Optional[int] = tf.convert_to_tensor(
[[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
lowerCamelCase_ : Optional[int] = model(__a )[0]
lowerCamelCase_ : List[str] = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __a )
# compare the actual values for a slice.
lowerCamelCase_ : str = tf.convert_to_tensor(
[
[
[-1.8_768_773, -1.566_555, 0.27_072_418],
[-1.6_920_038, -0.5_873_505, 1.9_329_599],
[-2.9_563_985, -1.6_993_835, 1.7_972_052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 707 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
snake_case__ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def __lowerCamelCase ( A__ : Dict ) -> Optional[int]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(f'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
snake_case__ : Dict = parser.parse_args()
snake_case__ : List[str] = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 171 | 0 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a: Dict = logging.get_logger(__name__)
__a: Optional[int] = {
'''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''',
}
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
_lowerCamelCase = '''efficientnet'''
def __init__( self : Dict , lowerCamelCase : int = 3 , lowerCamelCase : int = 600 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 3.1 , lowerCamelCase : int = 8 , lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase : List[int] = [] , lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase : float = 0.25 , lowerCamelCase : str = "swish" , lowerCamelCase : int = 2560 , lowerCamelCase : str = "mean" , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 0.001 , lowerCamelCase : float = 0.99 , lowerCamelCase : float = 0.5 , lowerCamelCase : float = 0.2 , **lowerCamelCase : List[str] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCamelCase )
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = width_coefficient
_UpperCAmelCase = depth_coefficient
_UpperCAmelCase = depth_divisor
_UpperCAmelCase = kernel_sizes
_UpperCAmelCase = in_channels
_UpperCAmelCase = out_channels
_UpperCAmelCase = depthwise_padding
_UpperCAmelCase = strides
_UpperCAmelCase = num_block_repeats
_UpperCAmelCase = expand_ratios
_UpperCAmelCase = squeeze_expansion_ratio
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dim
_UpperCAmelCase = pooling_type
_UpperCAmelCase = initializer_range
_UpperCAmelCase = batch_norm_eps
_UpperCAmelCase = batch_norm_momentum
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = drop_connect_rate
_UpperCAmelCase = sum(lowerCamelCase ) * 4
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
_lowerCamelCase = version.parse('''1.11''' )
@property
def lowerCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowerCamelCase ( self : Dict ) -> float:
"""simple docstring"""
return 1E-5 | 108 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase__ :
def __init__( self , lowercase , ) -> List[str]:
__UpperCamelCase = parent
__UpperCamelCase = 1_3
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = 9_9
__UpperCamelCase = 3_2
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 3_7
__UpperCamelCase = """gelu"""
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 5_1_2
__UpperCamelCase = 1_6
__UpperCamelCase = 2
__UpperCamelCase = 0.02
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = None
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFDistilBertModel(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
__UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase )
__UpperCamelCase = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForSequenceClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]:
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFDistilBertForMultipleChoice(lowercase )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForTokenClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__SCREAMING_SNAKE_CASE = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFDistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def __lowerCamelCase ( self ) -> Union[str, Any]:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCamelCase = model(lowercase )[0]
__UpperCamelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowercase )
__UpperCamelCase = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
| 601 | 0 |
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( __UpperCAmelCase ):
"""simple docstring"""
def __init__( self :Optional[Any] , **lowerCamelCase__ :str ):
requires_backends(self , ["""bs4"""] )
super().__init__(**_lowerCamelCase )
def __a ( self :Optional[Any] , lowerCamelCase__ :Union[str, Any] ):
UpperCamelCase__ :int = []
UpperCamelCase__ :Optional[Any] = []
UpperCamelCase__ :Dict = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
UpperCamelCase__ :Optional[Any] = parent.find_all(child.name , recursive=_lowerCamelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) )
UpperCamelCase__ :str = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def __a ( self :List[Any] , lowerCamelCase__ :List[Any] ):
UpperCamelCase__ :int = BeautifulSoup(_lowerCamelCase , """html.parser""" )
UpperCamelCase__ :List[str] = []
UpperCamelCase__ :Any = []
UpperCamelCase__ :Tuple = []
for element in html_code.descendants:
if type(_lowerCamelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
UpperCamelCase__ :Optional[int] = html.unescape(_lowerCamelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(_lowerCamelCase )
UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.xpath_soup(_lowerCamelCase )
stringaxtag_seq.append(_lowerCamelCase )
stringaxsubs_seq.append(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("""Number of doc strings and xtags does not correspond""" )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("""Number of doc strings and xsubs does not correspond""" )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any] ):
UpperCamelCase__ :Tuple = """"""
for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ):
xpath += f"""/{tagname}"""
if subs != 0:
xpath += f"""[{subs}]"""
return xpath
def __call__( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] ):
UpperCamelCase__ :Any = False
# Check that strings has a valid type
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase__ :List[Any] = True
elif isinstance(_lowerCamelCase , (list, tuple) ):
if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ):
UpperCamelCase__ :Optional[Any] = True
if not valid_strings:
raise ValueError(
"""HTML strings must of type `str`, `List[str]` (batch of examples), """
f"""but is of type {type(_lowerCamelCase )}.""" )
UpperCamelCase__ :Optional[int] = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) )
if not is_batched:
UpperCamelCase__ :str = [html_strings]
# Get nodes + xpaths
UpperCamelCase__ :Any = []
UpperCamelCase__ :Union[str, Any] = []
for html_string in html_strings:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = self.get_three_from_single(_lowerCamelCase )
nodes.append(_lowerCamelCase )
UpperCamelCase__ :Dict = []
for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase__ :Any = self.construct_xpath(_lowerCamelCase , _lowerCamelCase )
xpath_strings.append(_lowerCamelCase )
xpaths.append(_lowerCamelCase )
# return as Dict
UpperCamelCase__ :str = {"""nodes""": nodes, """xpaths""": xpaths}
UpperCamelCase__ :List[str] = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
return encoded_inputs | 701 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ):
"""simple docstring"""
_snake_case : Any = StableDiffusionInstructPixaPixPipeline
_snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""}
_snake_case : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
_snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
_snake_case : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __a ( self :List[Any] ):
torch.manual_seed(0 )
UpperCamelCase__ :int = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
UpperCamelCase__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ )
torch.manual_seed(0 )
UpperCamelCase__ :Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCamelCase__ :int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
UpperCamelCase__ :Any = CLIPTextModel(lowerCamelCase__ )
UpperCamelCase__ :Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
UpperCamelCase__ :Optional[int] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __a ( self :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any]=0 ):
UpperCamelCase__ :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCamelCase__ :int = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" )
if str(lowerCamelCase__ ).startswith("""mps""" ):
UpperCamelCase__ :Dict = torch.manual_seed(lowerCamelCase__ )
else:
UpperCamelCase__ :Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ )
UpperCamelCase__ :List[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""image_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def __a ( self :Union[str, Any] ):
UpperCamelCase__ :Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ :List[Any] = self.get_dummy_components()
UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ )
UpperCamelCase__ :str = sd_pipe.to(lowerCamelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
UpperCamelCase__ :Dict = self.get_dummy_inputs(lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = sd_pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCamelCase__ :Optional[int] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self :int ):
UpperCamelCase__ :List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ :Optional[Any] = self.get_dummy_components()
UpperCamelCase__ :int = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ )
UpperCamelCase__ :int = sd_pipe.to(lowerCamelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
UpperCamelCase__ :Dict = self.get_dummy_inputs(lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = """french fries"""
UpperCamelCase__ :str = sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ )
UpperCamelCase__ :str = output.images
UpperCamelCase__ :int = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCamelCase__ :int = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self :str ):
UpperCamelCase__ :int = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ :Optional[Any] = self.get_dummy_components()
UpperCamelCase__ :str = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ )
UpperCamelCase__ :Dict = sd_pipe.to(lowerCamelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
UpperCamelCase__ :Any = self.get_dummy_inputs(lowerCamelCase__ )
UpperCamelCase__ :Dict = [inputs["""prompt"""]] * 2
UpperCamelCase__ :List[Any] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0
UpperCamelCase__ :int = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ )
UpperCamelCase__ :List[str] = image / 2 + 0.5
UpperCamelCase__ :List[Any] = image.permute(0 , 3 , 1 , 2 )
UpperCamelCase__ :Optional[Any] = image.repeat(2 , 1 , 1 , 1 )
UpperCamelCase__ :Union[str, Any] = sd_pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :str = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
UpperCamelCase__ :Optional[Any] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self :str ):
UpperCamelCase__ :Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ :Optional[int] = self.get_dummy_components()
UpperCamelCase__ :str = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ )
UpperCamelCase__ :Union[str, Any] = sd_pipe.to(lowerCamelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ )
UpperCamelCase__ :List[Any] = self.get_dummy_inputs(lowerCamelCase__ )
UpperCamelCase__ :Optional[Any] = sd_pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :int = image[0, -3:, -3:, -1]
UpperCamelCase__ :str = [round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()]
print(""",""".join([str(lowerCamelCase__ ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
UpperCamelCase__ :Dict = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self :Optional[int] ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def __a ( self :Union[str, Any] ):
UpperCamelCase__ :Dict = self.get_dummy_components()
UpperCamelCase__ :Tuple = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ )
UpperCamelCase__ :Optional[Any] = VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ )
UpperCamelCase__ :Optional[Any] = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
UpperCamelCase__ :List[str] = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) )[0]
UpperCamelCase__ :Union[str, Any] = components["""vae"""]
UpperCamelCase__ :int = self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
UpperCamelCase__ :Any = vae.encode(inputs[image_param] ).latent_dist.mode()
UpperCamelCase__ :str = pipe(**lowerCamelCase__ )[0]
UpperCamelCase__ :Union[str, Any] = np.abs(out - out_latents_inputs ).max()
self.assertLess(lowerCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __a ( self :List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self :int , lowerCamelCase__ :Tuple=0 ):
UpperCamelCase__ :Union[str, Any] = torch.manual_seed(lowerCamelCase__ )
UpperCamelCase__ :int = load_image(
"""https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" )
UpperCamelCase__ :str = {
"""prompt""": """turn him into a cyborg""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""image_guidance_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def __a ( self :Optional[int] ):
UpperCamelCase__ :Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ )
pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing()
UpperCamelCase__ :Any = self.get_inputs()
UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
UpperCamelCase__ :Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self :Tuple ):
UpperCamelCase__ :List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ )
UpperCamelCase__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing()
UpperCamelCase__ :Tuple = self.get_inputs()
UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :Optional[Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
UpperCamelCase__ :List[str] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self :Optional[Any] ):
UpperCamelCase__ :int = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ )
UpperCamelCase__ :Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing()
UpperCamelCase__ :Optional[Any] = self.get_inputs()
UpperCamelCase__ :int = pipe(**lowerCamelCase__ ).images
UpperCamelCase__ :Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
UpperCamelCase__ :Any = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self :Dict ):
UpperCamelCase__ :Optional[Any] = 0
def callback_fn(lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :torch.FloatTensor ) -> None:
UpperCamelCase__ :Optional[int] = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
UpperCamelCase__ :int = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
UpperCamelCase__ :Tuple = latents[0, -3:, -3:, -1]
UpperCamelCase__ :Union[str, Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
UpperCamelCase__ :Any = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
UpperCamelCase__ :List[Any] = latents[0, -3:, -3:, -1]
UpperCamelCase__ :Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
UpperCamelCase__ :Any = False
UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa )
UpperCamelCase__ :Optional[int] = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing()
UpperCamelCase__ :str = self.get_inputs()
pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __a ( self :List[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCamelCase__ :List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"""timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa )
UpperCamelCase__ :str = pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCamelCase__ :Optional[int] = self.get_inputs()
UpperCamelCase__ :List[Any] = pipe(**lowerCamelCase__ )
UpperCamelCase__ :Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def __a ( self :Optional[Any] ):
UpperCamelCase__ :Dict = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
UpperCamelCase__ :List[Any] = inputs["""image"""].resize((5_04, 5_04) )
UpperCamelCase__ :Dict = """timbrooks/instruct-pix2pix"""
UpperCamelCase__ :Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
lowerCamelCase__ , safety_checker=lowerCamelCase__ , )
pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
pipe.enable_attention_slicing()
UpperCamelCase__ :Union[str, Any] = pipe(**lowerCamelCase__ )
UpperCamelCase__ :Tuple = output.images[0]
UpperCamelCase__ :Optional[int] = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 5_04, 3)
UpperCamelCase__ :Union[str, Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 | 383 | 0 |
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
__SCREAMING_SNAKE_CASE : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCamelCase__ ( lowerCAmelCase__ ):
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(lowerCAmelCase__ ):
return ext
raise Exception(
f"""Unable to determine file format from file extension {path}. """
f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" )
def UpperCamelCase__ ( lowerCAmelCase__ ):
lowercase = pipeline(
task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,)
lowercase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format
lowercase = PipelineDataFormat.from_str(
format=lowerCAmelCase__ ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,)
return RunCommand(lowerCAmelCase__ ,lowerCAmelCase__ )
class A_ ( __a ):
def __init__( self : List[Any] , snake_case__ : Pipeline , snake_case__ : PipelineDataFormat ):
lowercase = nlp
lowercase = reader
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case__ : ArgumentParser ):
lowercase = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" )
run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" )
run_parser.add_argument("""--input""" , type=snake_case__ , help="""Path to the file to use for inference""" )
run_parser.add_argument("""--output""" , type=snake_case__ , help="""Path to the file that will be used post to write results.""" )
run_parser.add_argument("""--model""" , type=snake_case__ , help="""Name or path to the model to instantiate.""" )
run_parser.add_argument("""--config""" , type=snake_case__ , help="""Name or path to the model's config to instantiate.""" )
run_parser.add_argument(
"""--tokenizer""" , type=snake_case__ , help="""Name of the tokenizer to use. (default: same as the model name)""" )
run_parser.add_argument(
"""--column""" , type=snake_case__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , )
run_parser.add_argument(
"""--format""" , type=snake_case__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , )
run_parser.add_argument(
"""--device""" , type=snake_case__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , )
run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" )
run_parser.set_defaults(func=snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
lowercase , lowercase = self._nlp, []
for entry in self._reader:
lowercase = nlp(**snake_case__ ) if self._reader.is_multi_columns else nlp(snake_case__ )
if isinstance(snake_case__ , snake_case__ ):
outputs.append(snake_case__ )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
lowercase = self._reader.save_binary(snake_case__ )
logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" )
else:
self._reader.save(snake_case__ )
| 428 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A_ ( __a , unittest.TestCase ):
_A :Tuple = KandinskyVaaInpaintPipeline
_A :Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
_A :Optional[int] = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
_A :Optional[Any] = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_A :Union[str, Any] = False
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
return 32
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ):
return 32
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
return 1_00
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**snake_case__ )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def SCREAMING_SNAKE_CASE__ ( self : int ):
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , )
lowercase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 ):
lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(snake_case__ ).startswith("""mps""" ):
lowercase = torch.manual_seed(snake_case__ )
else:
lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
lowercase = {
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**snake_case__ )
lowercase = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
lowercase = pipe(**self.get_dummy_inputs(snake_case__ ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(F"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def SCREAMING_SNAKE_CASE__ ( self : str ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((7_68, 7_68) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
lowercase = KandinskyVaaInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 428 | 1 |
from jiwer import compute_measures
import datasets
a_ = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
a_ = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
a_ = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase__ ( datasets.Metric ):
"""simple docstring"""
def _UpperCAmelCase ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any=None , __lowerCAmelCase: int=None , __lowerCAmelCase: Dict=False ) -> List[str]:
'''simple docstring'''
if concatenate_texts:
return compute_measures(__lowerCAmelCase , __lowerCAmelCase )["wer"]
else:
__UpperCAmelCase = 0
__UpperCAmelCase = 0
for prediction, reference in zip(__lowerCAmelCase , __lowerCAmelCase ):
__UpperCAmelCase = compute_measures(__lowerCAmelCase , __lowerCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 286 | from ..utils import DummyObject, requires_backends
class UpperCAmelCase__ ( metaclass=snake_case ):
"""simple docstring"""
lowerCAmelCase__ : List[str] = ['transformers', 'torch', 'note_seq']
def __init__( self: List[str] , *__lowerCAmelCase: Optional[int] , **__lowerCAmelCase: List[Any] ) -> Optional[int]:
'''simple docstring'''
requires_backends(self , ["transformers", "torch", "note_seq"] )
@classmethod
def _UpperCAmelCase ( cls: Optional[int] , *__lowerCAmelCase: Any , **__lowerCAmelCase: List[str] ) -> Dict:
'''simple docstring'''
requires_backends(cls , ["transformers", "torch", "note_seq"] )
@classmethod
def _UpperCAmelCase ( cls: Union[str, Any] , *__lowerCAmelCase: Optional[Any] , **__lowerCAmelCase: Optional[Any] ) -> Any:
'''simple docstring'''
requires_backends(cls , ["transformers", "torch", "note_seq"] )
| 286 | 1 |
"""simple docstring"""
from statistics import mean, stdev
def __snake_case ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list:
'''simple docstring'''
_UpperCAmelCase : str = min(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Any = max(SCREAMING_SNAKE_CASE__ )
# normalize data
return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data]
def __snake_case ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list:
'''simple docstring'''
_UpperCAmelCase : int = mean(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Dict = stdev(SCREAMING_SNAKE_CASE__ )
# standardize data
return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
| 289 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = ["model.decoder.embed_positions.weights"]
def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
'''simple docstring'''
if "emb" in name:
_UpperCAmelCase : int = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
_UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
_UpperCAmelCase : Any = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
_UpperCAmelCase : List[str] = name.replace("linear1" , "fc1" )
if "linear2" in name:
_UpperCAmelCase : Any = name.replace("linear2" , "fc2" )
if "norm1" in name:
_UpperCAmelCase : List[str] = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
_UpperCAmelCase : List[Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
_UpperCAmelCase : Dict = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
_UpperCAmelCase : List[str] = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
_UpperCAmelCase : Dict = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
_UpperCAmelCase : Optional[Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def __snake_case ( SCREAMING_SNAKE_CASE__ : OrderedDict , SCREAMING_SNAKE_CASE__ : int ) -> Tuple[Dict, Dict]:
'''simple docstring'''
_UpperCAmelCase : Tuple = list(state_dict.keys() )
_UpperCAmelCase : Dict = {}
for key in keys:
_UpperCAmelCase : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Any = rename_keys(SCREAMING_SNAKE_CASE__ )
if "in_proj_weight" in key:
# split fused qkv proj
_UpperCAmelCase : Optional[int] = val[:hidden_size, :]
_UpperCAmelCase : str = val[hidden_size : 2 * hidden_size, :]
_UpperCAmelCase : List[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_UpperCAmelCase : Union[str, Any] = val
else:
_UpperCAmelCase : int = val
return state_dict, enc_dec_proj_state_dict
def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> MusicgenDecoderConfig:
'''simple docstring'''
if checkpoint == "small":
# default config values
_UpperCAmelCase : Union[str, Any] = 1_024
_UpperCAmelCase : Tuple = 24
_UpperCAmelCase : List[str] = 16
elif checkpoint == "medium":
_UpperCAmelCase : List[str] = 1_536
_UpperCAmelCase : List[str] = 48
_UpperCAmelCase : str = 24
elif checkpoint == "large":
_UpperCAmelCase : Dict = 2_048
_UpperCAmelCase : Optional[int] = 48
_UpperCAmelCase : Tuple = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
_UpperCAmelCase : Union[str, Any] = MusicgenDecoderConfig(
hidden_size=SCREAMING_SNAKE_CASE__ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE__ , num_attention_heads=SCREAMING_SNAKE_CASE__ , )
return config
@torch.no_grad()
def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict="cpu" ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Tuple = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : str = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Optional[int] = fairseq_model.lm.state_dict()
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = rename_state_dict(
SCREAMING_SNAKE_CASE__ , hidden_size=decoder_config.hidden_size )
_UpperCAmelCase : Tuple = TaEncoderModel.from_pretrained("t5-base" )
_UpperCAmelCase : List[str] = EncodecModel.from_pretrained("facebook/encodec_32khz" )
_UpperCAmelCase : Union[str, Any] = MusicgenForCausalLM(SCREAMING_SNAKE_CASE__ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = decoder.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
_UpperCAmelCase : Dict = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE__ , audio_encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE__ )
# check we can do a forward pass
_UpperCAmelCase : int = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
_UpperCAmelCase : List[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
_UpperCAmelCase : List[str] = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
_UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("t5-base" )
_UpperCAmelCase : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
_UpperCAmelCase : Optional[Any] = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
# set the appropriate bos/pad token ids
_UpperCAmelCase : Optional[int] = 2_048
_UpperCAmelCase : Union[str, Any] = 2_048
# set other default generation config params
_UpperCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate )
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Dict = 3.0
if pytorch_dump_folder is not None:
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(SCREAMING_SNAKE_CASE__ )
processor.push_to_hub(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
_lowerCAmelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
_lowerCAmelCase : List[str] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 289 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json',
}
class snake_case_ ( __lowercase ):
A_ = 'data2vec-text'
def __init__( self : List[str] , _snake_case : List[Any]=30522 , _snake_case : Optional[Any]=768 , _snake_case : Dict=12 , _snake_case : int=12 , _snake_case : Any=3072 , _snake_case : Tuple="gelu" , _snake_case : List[str]=0.1 , _snake_case : int=0.1 , _snake_case : Dict=512 , _snake_case : List[Any]=2 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=1E-12 , _snake_case : Union[str, Any]=1 , _snake_case : List[Any]=0 , _snake_case : List[str]=2 , _snake_case : Optional[Any]="absolute" , _snake_case : Any=True , _snake_case : List[Any]=None , **_snake_case : Union[str, Any] , )->Any:
'''simple docstring'''
super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
__lowerCAmelCase : Dict = vocab_size
__lowerCAmelCase : Any = hidden_size
__lowerCAmelCase : Union[str, Any] = num_hidden_layers
__lowerCAmelCase : Optional[Any] = num_attention_heads
__lowerCAmelCase : Dict = hidden_act
__lowerCAmelCase : List[Any] = intermediate_size
__lowerCAmelCase : Dict = hidden_dropout_prob
__lowerCAmelCase : str = attention_probs_dropout_prob
__lowerCAmelCase : List[str] = max_position_embeddings
__lowerCAmelCase : str = type_vocab_size
__lowerCAmelCase : List[str] = initializer_range
__lowerCAmelCase : Dict = layer_norm_eps
__lowerCAmelCase : Dict = position_embedding_type
__lowerCAmelCase : Union[str, Any] = use_cache
__lowerCAmelCase : List[Any] = classifier_dropout
class snake_case_ ( __lowercase ):
@property
def UpperCAmelCase__ ( self : Optional[int] )->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
__lowerCAmelCase : int = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] ) | 240 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = '▁'
_UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'}
_UpperCAmelCase = {
'vocab_file': {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',
}
}
_UpperCAmelCase = {
'facebook/xglm-564M': 2048,
}
class snake_case_ ( __lowercase ):
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] , _snake_case : Dict , _snake_case : List[Any]="<s>" , _snake_case : int="</s>" , _snake_case : List[str]="</s>" , _snake_case : Dict="<s>" , _snake_case : Tuple="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[str] , )->None:
'''simple docstring'''
__lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
__lowerCAmelCase : Tuple = 7
__lowerCAmelCase : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
__lowerCAmelCase : Tuple = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
__lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_snake_case ) )
__lowerCAmelCase : List[str] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowerCAmelCase : Optional[Any] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
__lowerCAmelCase : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
__lowerCAmelCase : Union[str, Any] = len(self.sp_model )
__lowerCAmelCase : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(_snake_case )
__lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Tuple )->List[str]:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = self.__dict__.copy()
__lowerCAmelCase : Tuple = None
__lowerCAmelCase : Any = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : str , _snake_case : List[Any] )->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : List[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowerCAmelCase : Tuple = {}
__lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase__ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
__lowerCAmelCase : str = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCAmelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False )->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case )
if token_ids_a is None:
return [1] + ([0] * len(_snake_case ))
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case ))
def UpperCAmelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]:
'''simple docstring'''
__lowerCAmelCase : int = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def UpperCAmelCase__ ( self : Optional[int] )->Dict:
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def UpperCAmelCase__ ( self : Dict )->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase__ ( self : List[Any] , _snake_case : str )->List[str]:
'''simple docstring'''
return self.sp_model.encode(_snake_case , out_type=_snake_case )
def UpperCAmelCase__ ( self : List[Any] , _snake_case : Union[str, Any] )->Any:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowerCAmelCase : Union[str, Any] = self.sp_model.PieceToId(_snake_case )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[int] )->Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Any )->List[Any]:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = """""".join(_snake_case ).replace(_snake_case , """ """ ).strip()
return out_string
def UpperCAmelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_snake_case ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCAmelCase : int = os.path.join(
_snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case , """wb""" ) as fi:
__lowerCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,) | 240 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : int | None = None ) -> Union[str, Any]:
'''simple docstring'''
lowercase : str =value
lowercase : Tuple =random()
lowercase : Node | None =None
lowercase : Node | None =None
def __repr__( self : Tuple ) -> str:
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return f'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self : Tuple ) -> str:
'''simple docstring'''
lowercase : Dict =str(self.value ) + ''' '''
lowercase : Optional[Any] =str(self.left or '''''' )
lowercase : int =str(self.right or '''''' )
return value + left + right
def lowercase_ ( __A : Node | None , __A : int ) -> tuple[Node | None, Node | None]:
"""simple docstring"""
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
lowercase , lowercase : Optional[Any] =split(root.left , __A )
return left, root
else:
lowercase , lowercase : List[str] =split(root.right , __A )
return root, right
def lowercase_ ( __A : Node | None , __A : Node | None ) -> Node | None:
"""simple docstring"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
lowercase : Union[str, Any] =merge(left.right , __A )
return left
else:
lowercase : Union[str, Any] =merge(__A , right.left )
return right
def lowercase_ ( __A : Node | None , __A : int ) -> Node | None:
"""simple docstring"""
lowercase : Union[str, Any] =Node(__A )
lowercase , lowercase : Union[str, Any] =split(__A , __A )
return merge(merge(__A , __A ) , __A )
def lowercase_ ( __A : Node | None , __A : int ) -> Node | None:
"""simple docstring"""
lowercase , lowercase : str =split(__A , value - 1 )
lowercase , lowercase : Optional[Any] =split(__A , __A )
return merge(__A , __A )
def lowercase_ ( __A : Node | None ) -> None:
"""simple docstring"""
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowercase_ ( __A : Node | None , __A : str ) -> Node | None:
"""simple docstring"""
for arg in args.split():
if arg[0] == "+":
lowercase : Tuple =insert(__A , int(arg[1:] ) )
elif arg[0] == "-":
lowercase : Optional[int] =erase(__A , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowercase_ ( ) -> None:
"""simple docstring"""
lowercase : List[Any] =None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
lowercase : Optional[int] =input()
while args != "q":
lowercase : Tuple =interact_treap(__A , __A )
print(__A )
lowercase : List[str] =input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 94 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase : Optional[int] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : str = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 649 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 576 | import math
def __lowercase ( _UpperCAmelCase ) -> str:
'''simple docstring'''
__lowercase = 0
__lowercase = 0
while num > 0:
__lowercase = num % 8
__lowercase = octal + (remainder * math.floor(math.pow(10 , _UpperCAmelCase ) ))
counter += 1
__lowercase = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'''0o{int(_UpperCAmelCase )}'''
def __lowercase ( ) -> None:
'''simple docstring'''
print("\n2 in octal is:" )
print(decimal_to_octal(2 ) ) # = 2
print("\n8 in octal is:" )
print(decimal_to_octal(8 ) ) # = 10
print("\n65 in octal is:" )
print(decimal_to_octal(65 ) ) # = 101
print("\n216 in octal is:" )
print(decimal_to_octal(216 ) ) # = 330
print("\n512 in octal is:" )
print(decimal_to_octal(512 ) ) # = 1000
print("\n" )
if __name__ == "__main__":
main()
| 576 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class A__(unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self ) -> Union[str, Any]:
a_ : List[Any] = tempfile.mkdtemp()
a_ : Any = BlipImageProcessor()
a_ : Optional[int] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
a_ : Tuple = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
a_ : Dict = InstructBlipProcessor(_lowercase , _lowercase , _lowercase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self , **_lowercase ) -> Tuple:
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer
def UpperCamelCase__ ( self , **_lowercase ) -> List[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor
def UpperCamelCase__ ( self , **_lowercase ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).qformer_tokenizer
def UpperCamelCase__ ( self ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def UpperCamelCase__ ( self ) -> List[str]:
a_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
a_ : Optional[Any] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase__ ( self ) -> Union[str, Any]:
a_ : List[str] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
a_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
a_ : str = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 )
a_ : List[str] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowercase )
self.assertIsInstance(processor.qformer_tokenizer , _lowercase )
def UpperCamelCase__ ( self ) -> str:
a_ : Optional[int] = self.get_image_processor()
a_ : str = self.get_tokenizer()
a_ : Dict = self.get_qformer_tokenizer()
a_ : List[str] = InstructBlipProcessor(
tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase )
a_ : int = self.prepare_image_inputs()
a_ : Any = image_processor(_lowercase , return_tensors="""np""" )
a_ : str = processor(images=_lowercase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCamelCase__ ( self ) -> Optional[int]:
a_ : Any = self.get_image_processor()
a_ : Optional[int] = self.get_tokenizer()
a_ : str = self.get_qformer_tokenizer()
a_ : Tuple = InstructBlipProcessor(
tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase )
a_ : List[Any] = """lower newer"""
a_ : int = processor(text=_lowercase )
a_ : Dict = tokenizer(_lowercase , return_token_type_ids=_lowercase )
a_ : Any = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def UpperCamelCase__ ( self ) -> List[Any]:
a_ : Optional[Any] = self.get_image_processor()
a_ : str = self.get_tokenizer()
a_ : Dict = self.get_qformer_tokenizer()
a_ : int = InstructBlipProcessor(
tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase )
a_ : Dict = """lower newer"""
a_ : Optional[Any] = self.prepare_image_inputs()
a_ : str = processor(text=_lowercase , images=_lowercase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(_lowercase ):
processor()
def UpperCamelCase__ ( self ) -> Tuple:
a_ : int = self.get_image_processor()
a_ : int = self.get_tokenizer()
a_ : Tuple = self.get_qformer_tokenizer()
a_ : Dict = InstructBlipProcessor(
tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase )
a_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a_ : int = processor.batch_decode(_lowercase )
a_ : Any = tokenizer.batch_decode(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
a_ : str = self.get_image_processor()
a_ : Dict = self.get_tokenizer()
a_ : Optional[int] = self.get_qformer_tokenizer()
a_ : Optional[int] = InstructBlipProcessor(
tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase )
a_ : List[str] = """lower newer"""
a_ : Union[str, Any] = self.prepare_image_inputs()
a_ : Union[str, Any] = processor(text=_lowercase , images=_lowercase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 540 |
import math
def _UpperCAmelCase ( a__ = 1_0_0):
'''simple docstring'''
a_ : List[str] = sum(i * i for i in range(1 , n + 1))
a_ : Optional[Any] = int(math.pow(sum(range(1 , n + 1)) , 2))
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F"""{solution() = }""")
| 540 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = '▁'
UpperCamelCase_ = {'vocab_file': 'spiece.model'}
UpperCamelCase_ = {
'vocab_file': {
'google/reformer-crime-and-punishment': (
'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'
)
}
}
UpperCamelCase_ = {
'google/reformer-crime-and-punishment': 5_2_4_2_8_8,
}
class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
a_ : List[str] = VOCAB_FILES_NAMES
a_ : int = PRETRAINED_VOCAB_FILES_MAP
a_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__(self , UpperCAmelCase , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=[] , UpperCAmelCase = None , **UpperCAmelCase , ):
'''simple docstring'''
__UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__UpperCAmelCase =vocab_file
__UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(UpperCAmelCase)
@property
def A__ (self):
'''simple docstring'''
return self.sp_model.get_piece_size()
def A__ (self):
'''simple docstring'''
__UpperCAmelCase ={self.convert_ids_to_tokens(UpperCAmelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
'''simple docstring'''
__UpperCAmelCase =self.__dict__.copy()
__UpperCAmelCase =None
return state
def __setstate__(self , UpperCAmelCase):
'''simple docstring'''
__UpperCAmelCase =d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
__UpperCAmelCase ={}
__UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def A__ (self , UpperCAmelCase):
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase)
def A__ (self , UpperCAmelCase):
'''simple docstring'''
return self.sp_model.piece_to_id(UpperCAmelCase)
def A__ (self , UpperCAmelCase):
'''simple docstring'''
if index < self.sp_model.get_piece_size():
__UpperCAmelCase =self.sp_model.IdToPiece(UpperCAmelCase)
return token
def A__ (self , UpperCAmelCase):
'''simple docstring'''
__UpperCAmelCase =[]
__UpperCAmelCase =''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(UpperCAmelCase) + token
__UpperCAmelCase =[]
else:
current_sub_tokens.append(UpperCAmelCase)
out_string += self.sp_model.decode(UpperCAmelCase)
return out_string.strip()
def A__ (self , UpperCAmelCase , UpperCAmelCase = None):
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
__UpperCAmelCase =os.path.join(
UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase , '''wb''') as fi:
__UpperCAmelCase =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase)
return (out_vocab_file,)
| 142 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> list:
__UpperCAmelCase =[]
__UpperCAmelCase , __UpperCAmelCase =input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__UpperCAmelCase =result + left + right
return input_list
def SCREAMING_SNAKE_CASE ( snake_case__ ) -> list:
if len(snake_case__ ) <= 1:
return input_list
__UpperCAmelCase =list(snake_case__ )
# iteration for two-way merging
__UpperCAmelCase =2
while p <= len(snake_case__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(snake_case__ ) , snake_case__ ):
__UpperCAmelCase =i
__UpperCAmelCase =i + p - 1
__UpperCAmelCase =(low + high + 1) // 2
__UpperCAmelCase =merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# final merge of last two parts
if p * 2 >= len(snake_case__ ):
__UpperCAmelCase =i
__UpperCAmelCase =merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
UpperCamelCase_ = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
UpperCamelCase_ = []
else:
UpperCamelCase_ = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 142 | 1 |
def lowerCamelCase__ ( _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : Dict = [0 for i in range(r + 1 )]
# nc0 = 1
UpperCAmelCase_ : int = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
UpperCAmelCase_ : Union[str, Any] = min(_lowercase , _lowercase )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 30 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def lowerCamelCase ( a_=None ) -> List[str]:
if subparsers is not None:
lowerCAmelCase_ = subparsers.add_parser('test' )
else:
lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' )
parser.add_argument(
'--config_file' , default=a_ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=a_ )
return parser
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] )
if args.config_file is None:
lowerCAmelCase_ = script_name
else:
lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}'''
lowerCAmelCase_ = ['accelerate-launch'] + test_args.split()
lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() )
if result.returncode == 0:
print('Test is a success! You are ready for your distributed training!' )
def lowerCamelCase ( ) -> Optional[Any]:
lowerCAmelCase_ = test_command_parser()
lowerCAmelCase_ = parser.parse_args()
test_command(a_ )
if __name__ == "__main__":
main()
| 318 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
_UpperCamelCase:List[Any] = "ClapFeatureExtractor"
_UpperCamelCase:List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Any:
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> str:
lowerCamelCase_ =kwargs.pop("""sampling_rate""" , _SCREAMING_SNAKE_CASE )
if text is None and audios is None:
raise ValueError("""You have to specify either text or audios. Both cannot be none.""" )
if text is not None:
lowerCamelCase_ =self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if audios is not None:
lowerCamelCase_ =self.feature_extractor(
_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if text is not None and audios is not None:
lowerCamelCase_ =audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE )
def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Tuple:
return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> List[str]:
return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@property
def _snake_case ( self )-> Dict:
lowerCamelCase_ =self.tokenizer.model_input_names
lowerCamelCase_ =self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 75 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
__A : List[str] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'
def __UpperCamelCase ( ) ->List[str]:
"""simple docstring"""
lowerCamelCase_ =_ask_options(
"""In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
lowerCamelCase_ =get_sagemaker_input()
else:
lowerCamelCase_ =get_cluster_input()
return config
def __UpperCamelCase ( _A : List[str]=None ) ->str:
"""simple docstring"""
if subparsers is not None:
lowerCamelCase_ =subparsers.add_parser("""config""" , description=_A )
else:
lowerCamelCase_ =argparse.ArgumentParser("""Accelerate config command""" , description=_A )
parser.add_argument(
"""--config_file""" , default=_A , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , )
if subparsers is not None:
parser.set_defaults(func=_A )
return parser
def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_user_input()
if args.config_file is not None:
lowerCamelCase_ =args.config_file
else:
if not os.path.isdir(_A ):
os.makedirs(_A )
lowerCamelCase_ =default_yaml_config_file
if config_file.endswith(""".json""" ):
config.to_json_file(_A )
else:
config.to_yaml_file(_A )
print(f'accelerate configuration saved at {config_file}' )
def __UpperCamelCase ( ) ->Dict:
"""simple docstring"""
lowerCamelCase_ =config_command_parser()
lowerCamelCase_ =parser.parse_args()
config_command(_A )
if __name__ == "__main__":
main()
| 75 | 1 |
class a_ :
def __init__( self , SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE = False ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = {}
# A node will be a leaf if the tree contains its word
SCREAMING_SNAKE_CASE_ = is_leaf
SCREAMING_SNAKE_CASE_ = prefix
def A_( self , SCREAMING_SNAKE_CASE ) -> tuple[str, str, str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = 0
for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def A_( self , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
for word in words:
self.insert(SCREAMING_SNAKE_CASE )
def A_( self , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
if self.prefix == word:
SCREAMING_SNAKE_CASE_ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
SCREAMING_SNAKE_CASE_ = RadixNode(prefix=SCREAMING_SNAKE_CASE , is_leaf=SCREAMING_SNAKE_CASE )
else:
SCREAMING_SNAKE_CASE_ = self.nodes[word[0]]
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match(
SCREAMING_SNAKE_CASE )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
SCREAMING_SNAKE_CASE_ = remaining_prefix
SCREAMING_SNAKE_CASE_ = self.nodes[matching_string[0]]
SCREAMING_SNAKE_CASE_ = RadixNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = aux_node
if remaining_word == "":
SCREAMING_SNAKE_CASE_ = True
else:
self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE )
def A_( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE )
if not incoming_node:
return False
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match(
SCREAMING_SNAKE_CASE )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(SCREAMING_SNAKE_CASE )
def A_( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE )
if not incoming_node:
return False
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match(
SCREAMING_SNAKE_CASE )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(SCREAMING_SNAKE_CASE )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
SCREAMING_SNAKE_CASE_ = list(self.nodes.values() )[0]
SCREAMING_SNAKE_CASE_ = merging_node.is_leaf
self.prefix += merging_node.prefix
SCREAMING_SNAKE_CASE_ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
SCREAMING_SNAKE_CASE_ = False
# If there is 1 edge, we merge it with its child
else:
SCREAMING_SNAKE_CASE_ = list(incoming_node.nodes.values() )[0]
SCREAMING_SNAKE_CASE_ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
SCREAMING_SNAKE_CASE_ = merging_node.nodes
return True
def A_( self , SCREAMING_SNAKE_CASE = 0 ) -> None:
"""simple docstring"""
if self.prefix != "":
print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def lowercase ( ) -> bool:
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = 'banana bananas bandana band apple all beast'.split()
SCREAMING_SNAKE_CASE_ = RadixNode()
root.insert_many(SCREAMING_SNAKE_CASE )
assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words )
assert not root.find('bandanas' )
assert not root.find('apps' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def lowercase ( ) -> None:
'''simple docstring'''
assert test_trie()
def lowercase ( ) -> None:
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = RadixNode()
SCREAMING_SNAKE_CASE_ = 'banana bananas bandanas bandana band apple all beast'.split()
root.insert_many(SCREAMING_SNAKE_CASE )
print('Words:' , SCREAMING_SNAKE_CASE )
print('Tree:' )
root.print_tree()
if __name__ == "__main__":
main()
| 205 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class a_ :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=14 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=19 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE=25 , SCREAMING_SNAKE_CASE=5 , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = prediction_length
SCREAMING_SNAKE_CASE_ = context_length
SCREAMING_SNAKE_CASE_ = cardinality
SCREAMING_SNAKE_CASE_ = num_time_features
SCREAMING_SNAKE_CASE_ = lags_sequence
SCREAMING_SNAKE_CASE_ = embedding_dimension
SCREAMING_SNAKE_CASE_ = is_training
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = context_length
SCREAMING_SNAKE_CASE_ = prediction_length + label_length
SCREAMING_SNAKE_CASE_ = label_length
SCREAMING_SNAKE_CASE_ = moving_average
SCREAMING_SNAKE_CASE_ = autocorrelation_factor
def A_( self ) -> List[str]:
"""simple docstring"""
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def A_( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = config.context_length + max(config.lags_sequence )
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] )
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length] )
SCREAMING_SNAKE_CASE_ = {
'past_values': past_values,
'static_categorical_features': static_categorical_features,
'past_time_features': past_time_features,
'past_observed_mask': past_observed_mask,
'future_time_features': future_time_features,
'future_values': future_values,
}
return inputs_dict
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = self.get_config()
SCREAMING_SNAKE_CASE_ = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE )
return config, inputs_dict
def A_( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
return config, inputs_dict
def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AutoformerModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = outputs.encoder_last_hidden_state
SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE_ = model.get_encoder()
encoder.save_pretrained(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.create_network_inputs(**SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
SCREAMING_SNAKE_CASE_ = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
SCREAMING_SNAKE_CASE_ = encoder(inputs_embeds=SCREAMING_SNAKE_CASE )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
SCREAMING_SNAKE_CASE_ = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
SCREAMING_SNAKE_CASE_ = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
SCREAMING_SNAKE_CASE_ = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
SCREAMING_SNAKE_CASE_ = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE_ = model.get_decoder()
decoder.save_pretrained(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = decoder(
trend=SCREAMING_SNAKE_CASE , inputs_embeds=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class a_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
A = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
A = (AutoformerForPrediction,) if is_torch_available() else ()
A = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {}
A = False
A = False
A = False
A = False
A = False
A = False
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AutoformerModelTester(self )
SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE )
def A_( self ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE )
self.assertEqual(info['missing_keys'] , [] )
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE )
@unittest.skip(reason='Model has no tokens embeddings' )
def A_( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def A_( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = inspect.signature(getattr(SCREAMING_SNAKE_CASE , 'forward' ) )
# The main input is the name of the argument after `self`
SCREAMING_SNAKE_CASE_ = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE )
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ = [
'past_values',
'past_time_features',
'past_observed_mask',
'static_categorical_features',
'static_real_features',
'future_values',
'future_time_features',
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append('future_observed_mask' )
expected_arg_names.extend(
[
'decoder_attention_mask',
'head_mask',
'decoder_head_mask',
'cross_attn_head_mask',
'encoder_outputs',
'past_key_values',
'output_hidden_states',
'output_attentions',
'use_cache',
'return_dict',
] )
self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE )
def A_( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'seq_length' , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'decoder_seq_length' , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'encoder_seq_length' , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'd_model' , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'num_attention_heads' , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = d_model // num_attention_heads
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# decoder attentions
SCREAMING_SNAKE_CASE_ = outputs.decoder_attentions
self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
SCREAMING_SNAKE_CASE_ = outputs.cross_attentions
self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE ) )
SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def A_( self ) -> Any:
"""simple docstring"""
super().test_retain_grad_hidden_states_attentions()
def lowercase ( SCREAMING_SNAKE_CASE="train-batch.pt" ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=SCREAMING_SNAKE_CASE , repo_type='dataset' )
SCREAMING_SNAKE_CASE_ = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE )
return batch
@require_torch
@slow
class a_ ( unittest.TestCase ):
def A_( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = prepare_batch()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(
past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0]
SCREAMING_SNAKE_CASE_ = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = torch.tensor(
[[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def A_( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(
past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state
SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = torch.tensor(
[[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) )
def A_( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model.generate(
static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , )
SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE_ = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE , rtol=1e-1 ) )
| 205 | 1 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase_ : int = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[Any] = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCAmelCase__ ( A ):
lowerCAmelCase_ = 'detr'
lowerCAmelCase_ = ['past_key_values']
lowerCAmelCase_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[int],__A : Tuple=True,__A : List[Any]=None,__A : List[str]=3,__A : Any=1_0_0,__A : Union[str, Any]=6,__A : Union[str, Any]=2_0_4_8,__A : str=8,__A : Dict=6,__A : Tuple=2_0_4_8,__A : Optional[int]=8,__A : int=0.0,__A : Union[str, Any]=0.0,__A : Optional[Any]=True,__A : Union[str, Any]="relu",__A : str=2_5_6,__A : int=0.1,__A : List[str]=0.0,__A : Union[str, Any]=0.0,__A : int=0.02,__A : Union[str, Any]=1.0,__A : str=False,__A : int="sine",__A : List[str]="resnet50",__A : List[Any]=True,__A : Tuple=False,__A : Dict=1,__A : Optional[Any]=5,__A : Optional[int]=2,__A : List[str]=1,__A : int=1,__A : str=5,__A : List[Any]=2,__A : Union[str, Any]=0.1,**__A : Union[str, Any],):
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
_lowerCamelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__A,__A ):
_lowerCamelCase : Union[str, Any] = backbone_config.get("model_type" )
_lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
_lowerCamelCase : Optional[int] = config_class.from_dict(__A )
# set timm attributes to None
_lowerCamelCase : List[Any] = None, None, None
_lowerCamelCase : Tuple = use_timm_backbone
_lowerCamelCase : Dict = backbone_config
_lowerCamelCase : List[Any] = num_channels
_lowerCamelCase : Union[str, Any] = num_queries
_lowerCamelCase : Optional[Any] = d_model
_lowerCamelCase : Any = encoder_ffn_dim
_lowerCamelCase : Optional[Any] = encoder_layers
_lowerCamelCase : int = encoder_attention_heads
_lowerCamelCase : Union[str, Any] = decoder_ffn_dim
_lowerCamelCase : Dict = decoder_layers
_lowerCamelCase : Dict = decoder_attention_heads
_lowerCamelCase : Optional[Any] = dropout
_lowerCamelCase : Tuple = attention_dropout
_lowerCamelCase : Union[str, Any] = activation_dropout
_lowerCamelCase : List[Any] = activation_function
_lowerCamelCase : str = init_std
_lowerCamelCase : Dict = init_xavier_std
_lowerCamelCase : Tuple = encoder_layerdrop
_lowerCamelCase : List[str] = decoder_layerdrop
_lowerCamelCase : Optional[int] = encoder_layers
_lowerCamelCase : List[str] = auxiliary_loss
_lowerCamelCase : Optional[int] = position_embedding_type
_lowerCamelCase : Union[str, Any] = backbone
_lowerCamelCase : str = use_pretrained_backbone
_lowerCamelCase : Union[str, Any] = dilation
# Hungarian matcher
_lowerCamelCase : Any = class_cost
_lowerCamelCase : int = bbox_cost
_lowerCamelCase : Tuple = giou_cost
# Loss coefficients
_lowerCamelCase : Union[str, Any] = mask_loss_coefficient
_lowerCamelCase : Tuple = dice_loss_coefficient
_lowerCamelCase : str = bbox_loss_coefficient
_lowerCamelCase : Dict = giou_loss_coefficient
_lowerCamelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=__A,**__A )
@property
def lowerCamelCase_ ( self : Tuple ):
return self.encoder_attention_heads
@property
def lowerCamelCase_ ( self : str ):
return self.d_model
@classmethod
def lowerCamelCase_ ( cls : str,__A : PretrainedConfig,**__A : Optional[Any] ):
return cls(backbone_config=__A,**__A )
def lowerCamelCase_ ( self : Optional[Any] ):
_lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_lowerCamelCase : List[Any] = self.backbone_config.to_dict()
_lowerCamelCase : List[str] = self.__class__.model_type
return output
class UpperCAmelCase__ ( A ):
lowerCAmelCase_ = version.parse('1.11' )
@property
def lowerCamelCase_ ( self : Union[str, Any] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def lowerCamelCase_ ( self : Union[str, Any] ):
return 1e-5
@property
def lowerCamelCase_ ( self : Optional[int] ):
return 1_2 | 711 |
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class UpperCAmelCase__ ( A ):
def __init__( self : int,__A : Any=None,**__A : Optional[Any] ):
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead.",__A,)
super().__init__(args=__A,**__A ) | 11 | 0 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int]=0) ->Union[str, Any]:
'''simple docstring'''
A__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCAmelCase__))
A__ = torch.manual_seed(UpperCAmelCase__)
A__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs()
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
A__ = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
A__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs()
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A__ = np.array(
[0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]:
'''simple docstring'''
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs()
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A__ = np.array(
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs()
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A__ = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs()
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A__ = np.array(
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
A__ = ort.SessionOptions()
A__ = False
return options
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
A__ = init_image.resize((128, 128))
# using the PNDM scheduler by default
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = '''A fantasy landscape, trending on artstation'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images
A__ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
A__ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
A__ = init_image.resize((128, 128))
A__ = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''')
A__ = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=UpperCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = '''A fantasy landscape, trending on artstation'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images
A__ = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
A__ = np.array(
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 87 |
'''simple docstring'''
from collections.abc import Sequence
def _A ( _lowerCAmelCase = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError('Input sequence should not be empty' )
__lowercase =nums[0]
for i in range(1 , len(_lowerCAmelCase ) ):
__lowercase =nums[i]
__lowercase =max(_lowerCAmelCase , ans + num , _lowerCAmelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
lowerCamelCase = int(input("""Enter number of elements : """).strip())
lowerCamelCase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n]
print(max_subsequence_sum(array))
| 474 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case :str = {
'''configuration_xmod''': [
'''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XmodConfig''',
'''XmodOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case :Union[str, Any] = [
'''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XmodForCausalLM''',
'''XmodForMaskedLM''',
'''XmodForMultipleChoice''',
'''XmodForQuestionAnswering''',
'''XmodForSequenceClassification''',
'''XmodForTokenClassification''',
'''XmodModel''',
'''XmodPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
__snake_case :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 718 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
__snake_case :int = ''''''
if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''):
class _A ( tr.AbstractTransform ):
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "):
'''simple docstring'''
__a = sentence_delimiter
def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str):
'''simple docstring'''
return list(__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]):
'''simple docstring'''
__a = []
for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE):
chars.extend(self.process_string(__SCREAMING_SNAKE_CASE))
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1:
chars.append(self.sentence_delimiter)
return chars
__snake_case :Any = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
__snake_case :Optional[int] = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
__snake_case :Optional[int] = '''\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
'''
__snake_case :Tuple = '''\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
'''
__snake_case :Tuple = '''
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> cer = datasets.load_metric("cer")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False):
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"]
__a = 0
__a = 0
for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
__a = jiwer.compute_measures(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 60 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> list:
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return []
a_ , a_ : Dict = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ )
a_ : Any = int(max_value - min_value ) + 1
a_ : list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )]
for i in my_list:
buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE__ )
return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 237 |
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str:
a_ : Tuple = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
a_ : Any = downstream_dict["projector.weight"]
a_ : Dict = downstream_dict["projector.bias"]
a_ : Tuple = downstream_dict["model.post_net.linear.weight"]
a_ : int = downstream_dict["model.post_net.linear.bias"]
return model
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]:
a_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
a_ : List[str] = downstream_dict["model.linear.weight"]
a_ : List[Any] = downstream_dict["model.linear.bias"]
return model
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]:
a_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
a_ : Any = downstream_dict["connector.weight"]
a_ : Tuple = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
a_ : List[str] = downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
a_ : int = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
a_ : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
a_ : str = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
a_ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
a_ : List[str] = downstream_dict["objective.W"]
return model
@torch.no_grad()
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple:
a_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location="cpu" )
a_ : List[str] = checkpoint["Downstream"]
a_ : Union[str, Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
a_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(
SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ )
a_ : Tuple = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
a_ : int = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith("ForAudioFrameClassification" ):
a_ : Any = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith("ForXVector" ):
a_ : Any = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
a_ : Tuple = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model."""
)
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""")
parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""")
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path) | 237 | 1 |
'''simple docstring'''
from math import log
from scipy.constants import Boltzmann, physical_constants
_A : Optional[int] =300 # TEMPERATURE (unit = K)
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> float:
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 631 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _lowercase ( _lowercase ):
def lowerCamelCase_ ( self: Any ):
lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCamelCase__ , """width_multiplier""" ) )
class _lowercase :
def __init__( self: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: str=13 , UpperCamelCase__: Any=64 , UpperCamelCase__: Optional[Any]=2 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]="swish" , UpperCamelCase__: Any=3 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Dict=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Any=10 , UpperCamelCase__: int=None , UpperCamelCase__: List[Any]=0.25 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Optional[int]=0.0 , ):
lowerCamelCase__ : Any = parent
lowerCamelCase__ : Optional[Any] = batch_size
lowerCamelCase__ : Optional[int] = image_size
lowerCamelCase__ : str = patch_size
lowerCamelCase__ : Optional[int] = num_channels
lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 )
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : Any = conv_kernel_size
lowerCamelCase__ : Any = output_stride
lowerCamelCase__ : Union[str, Any] = classifier_dropout_prob
lowerCamelCase__ : List[str] = use_labels
lowerCamelCase__ : Optional[Any] = is_training
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : Dict = initializer_range
lowerCamelCase__ : List[Any] = scope
lowerCamelCase__ : Tuple = width_multiplier
lowerCamelCase__ : List[Any] = ffn_dropout
lowerCamelCase__ : Any = attn_dropout
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : Optional[Any] = None
if self.use_labels:
lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowerCamelCase_ ( self: List[Any] ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] ):
lowerCamelCase__ : Union[str, Any] = MobileViTVaModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase__ : str = model(UpperCamelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ):
lowerCamelCase__ : Tuple = self.num_labels
lowerCamelCase__ : Dict = MobileViTVaForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase__ : int = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str ):
lowerCamelCase__ : List[str] = self.num_labels
lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase__ : Tuple = model(UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowerCamelCase_ ( self: Tuple ):
lowerCamelCase__ : Any = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs
lowerCamelCase__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowercase ( _lowercase , _lowercase , unittest.TestCase ):
a = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
a = (
{
"""feature-extraction""": MobileViTVaModel,
"""image-classification""": MobileViTVaForImageClassification,
"""image-segmentation""": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a = False
a = False
a = False
a = False
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : Tuple = MobileViTVaModelTester(self )
lowerCamelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ )
def lowerCamelCase_ ( self: Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def lowerCamelCase_ ( self: int ):
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def lowerCamelCase_ ( self: List[str] ):
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def lowerCamelCase_ ( self: Union[str, Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def lowerCamelCase_ ( self: int ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowerCamelCase_ ( self: Tuple ):
pass
def lowerCamelCase_ ( self: Tuple ):
lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ )
lowerCamelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : Tuple = [*signature.parameters.keys()]
lowerCamelCase__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
def lowerCamelCase_ ( self: str ):
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def lowerCamelCase_ ( self: List[str] ):
def check_hidden_states_output(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ):
lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
lowerCamelCase__ : Optional[int] = outputs.hidden_states
lowerCamelCase__ : List[Any] = 5
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowerCamelCase__ : int = 2
for i in range(len(UpperCamelCase__ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : int = True
check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : str = True
check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase_ ( self: Any ):
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ )
def lowerCamelCase_ ( self: Dict ):
lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ )
@slow
def lowerCamelCase_ ( self: Union[str, Any] ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Union[str, Any] = MobileViTVaModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE_ () -> Optional[int]:
lowerCamelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _lowercase ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self: Tuple ):
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def lowerCamelCase_ ( self: Any ):
lowerCamelCase__ : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = self.default_image_processor
lowerCamelCase__ : List[Any] = prepare_img()
lowerCamelCase__ : Any = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase__ : int = model(**UpperCamelCase__ )
# verify the logits
lowerCamelCase__ : str = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
def lowerCamelCase_ ( self: Union[str, Any] ):
lowerCamelCase__ : int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ : Optional[Any] = model.to(UpperCamelCase__ )
lowerCamelCase__ : Any = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ : Union[str, Any] = prepare_img()
lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase__ )
lowerCamelCase__ : str = outputs.logits
# verify the logits
lowerCamelCase__ : List[str] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , UpperCamelCase__ )
lowerCamelCase__ : Any = torch.tensor(
[
[[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]],
[[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]],
[[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]],
] , device=UpperCamelCase__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
def lowerCamelCase_ ( self: Optional[int] ):
lowerCamelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ : List[Any] = model.to(UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowerCamelCase__ : Optional[Any] = prepare_img()
lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase__ : Dict = model(**UpperCamelCase__ )
lowerCamelCase__ : List[str] = outputs.logits.detach().cpu()
lowerCamelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] )
lowerCamelCase__ : int = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ )
lowerCamelCase__ : int = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
| 631 | 1 |
"""simple docstring"""
import numpy as np
def lowercase__ ( lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray , lowerCAmelCase : float = 1E-1_2 , lowerCAmelCase : int = 100 , ) -> tuple[float, np.ndarray]:
"""simple docstring"""
assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1]
# Ensure proper dimensionality.
assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase )
UpperCAmelCase = np.iscomplexobj(lowerCAmelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCAmelCase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
UpperCAmelCase = False
UpperCAmelCase = 0
UpperCAmelCase = 0
UpperCAmelCase = 1E1_2
while not convergence:
# Multiple matrix by the vector.
UpperCAmelCase = np.dot(lowerCAmelCase , lowerCAmelCase )
# Normalize the resulting output vector.
UpperCAmelCase = w / np.linalg.norm(lowerCAmelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
UpperCAmelCase = vector.conj().T if is_complex else vector.T
UpperCAmelCase = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) )
# Check convergence.
UpperCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
UpperCAmelCase = True
UpperCAmelCase = lambda_
if is_complex:
UpperCAmelCase = np.real(lambda_ )
return lambda_, vector
def lowercase__ ( ) -> None:
"""simple docstring"""
UpperCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
UpperCAmelCase = np.array([41, 4, 20] )
UpperCAmelCase = real_input_matrix.astype(np.complexaaa )
UpperCAmelCase = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
UpperCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
UpperCAmelCase = real_input_matrix
UpperCAmelCase = real_vector
elif problem_type == "complex":
UpperCAmelCase = complex_input_matrix
UpperCAmelCase = complex_vector
# Our implementation.
UpperCAmelCase , UpperCAmelCase = power_iteration(lowerCAmelCase , lowerCAmelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
UpperCAmelCase , UpperCAmelCase = np.linalg.eigh(lowerCAmelCase )
# Last eigenvalue is the maximum one.
UpperCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
UpperCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 373 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ):
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=2 , lowercase_=9_9 , lowercase_=0 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_2 , lowercase_=2 , lowercase_=0.0_2 , lowercase_=3 , lowercase_=4 , lowercase_="last" , lowercase_=None , lowercase_=None , ) -> str:
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_lengths
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = gelu_activation
UpperCAmelCase = sinusoidal_embeddings
UpperCAmelCase = causal
UpperCAmelCase = asm
UpperCAmelCase = n_langs
UpperCAmelCase = vocab_size
UpperCAmelCase = n_special
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = summary_type
UpperCAmelCase = use_proj
UpperCAmelCase = scope
def a_ ( self ) -> int:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_input_lengths:
UpperCAmelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float()
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a_ ( self ) -> Union[str, Any]:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
UpperCAmelCase = FlaubertModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ , lengths=lowercase_ , langs=lowercase_ )
UpperCAmelCase = model(lowercase_ , langs=lowercase_ )
UpperCAmelCase = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Any:
UpperCAmelCase = FlaubertWithLMHeadModel(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
UpperCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ )
UpperCAmelCase = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int:
UpperCAmelCase = FlaubertForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ )
UpperCAmelCase = model(
lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , )
UpperCAmelCase = model(
lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , )
((UpperCAmelCase) , ) = result_with_labels.to_tuple()
UpperCAmelCase = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
((UpperCAmelCase) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict:
UpperCAmelCase = FlaubertForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ )
UpperCAmelCase = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
UpperCAmelCase = self.num_labels
UpperCAmelCase = FlaubertForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple:
UpperCAmelCase = self.num_choices
UpperCAmelCase = FlaubertForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self ) -> Union[str, Any]:
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'lengths': input_lengths,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE : str = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a_ ( self , lowercase_ , lowercase_ , lowercase_=False ) -> List[str]:
UpperCAmelCase = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
return inputs_dict
def a_ ( self ) -> List[str]:
UpperCAmelCase = FlaubertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , emb_dim=3_7 )
def a_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def a_ ( self ) -> Dict:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*lowercase_ )
def a_ ( self ) -> int:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ )
def a_ ( self ) -> Any:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ )
def a_ ( self ) -> str:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*lowercase_ )
def a_ ( self ) -> Union[str, Any]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ )
def a_ ( self ) -> Tuple:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ )
def a_ ( self ) -> List[str]:
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ )
@slow
def a_ ( self ) -> List[str]:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = FlaubertModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@slow
@require_torch_gpu
def a_ ( self ) -> Optional[Any]:
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
UpperCAmelCase = True
UpperCAmelCase = model_class(config=lowercase_ )
UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ )
UpperCAmelCase = torch.jit.trace(
lowercase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase_ , os.path.join(lowercase_ , 'traced_model.pt' ) )
UpperCAmelCase = torch.jit.load(os.path.join(lowercase_ , 'traced_model.pt' ) , map_location=lowercase_ )
loaded(inputs_dict['input_ids'].to(lowercase_ ) , inputs_dict['attention_mask'].to(lowercase_ ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def a_ ( self ) -> List[Any]:
UpperCAmelCase = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' )
UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
with torch.no_grad():
UpperCAmelCase = model(lowercase_ )[0]
UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , lowercase_ )
UpperCAmelCase = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
| 373 | 1 |
from __future__ import annotations
from collections import Counter
from random import random
class _a :
"""simple docstring"""
def __init__( self ):
_lowercase ={}
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
_lowercase ={}
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
if nodea not in self.connections:
self.add_node(lowerCAmelCase_ )
if nodea not in self.connections:
self.add_node(lowerCAmelCase_ )
_lowercase =probability
def __lowerCAmelCase ( self ):
return list(self.connections )
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
_lowercase =0
_lowercase =random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def __lowerCamelCase ( __a : str , __a : list[tuple[str, str, float]] , __a : int ) -> dict[str, int]:
_lowercase =MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(__a , __a , __a )
_lowercase =Counter(graph.get_nodes() )
_lowercase =start
for _ in range(__a ):
_lowercase =graph.transition(__a )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 594 | import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowerCAmelCase__ = None
lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowerCAmelCase__ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class _a :
"""simple docstring"""
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = None
# Automatically constructed
__SCREAMING_SNAKE_CASE = "PIL.Image.Image"
__SCREAMING_SNAKE_CASE = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
__SCREAMING_SNAKE_CASE = field(default='Image' , init=lowerCamelCase_ , repr=lowerCamelCase_ )
def __call__( self ):
return self.pa_type
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_lowercase =np.array(lowerCAmelCase_ )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCAmelCase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCAmelCase_ )
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ):
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support decoding images, please install 'Pillow'." )
if token_per_repo_id is None:
_lowercase ={}
_lowercase , _lowercase =value["path"], value["bytes"]
if bytes_ is None:
if path is None:
raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowerCAmelCase_ ):
_lowercase =PIL.Image.open(lowerCAmelCase_ )
else:
_lowercase =path.split("::" )[-1]
try:
_lowercase =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["repo_id"]
_lowercase =token_per_repo_id.get(lowerCAmelCase_ )
except ValueError:
_lowercase =None
with xopen(lowerCAmelCase_ , "rb" , use_auth_token=lowerCAmelCase_ ) as f:
_lowercase =BytesIO(f.read() )
_lowercase =PIL.Image.open(bytes_ )
else:
_lowercase =PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def __lowerCAmelCase ( self ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("binary" ),
"path": Value("string" ),
}
)
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
if pa.types.is_string(storage.type ):
_lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() )
_lowercase =pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
_lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
_lowercase =pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
_lowercase =storage.field("bytes" )
else:
_lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
_lowercase =storage.field("path" )
else:
_lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
_lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
_lowercase =pa.array(
[encode_np_array(np.array(lowerCAmelCase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
_lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
_lowercase =pa.StructArray.from_arrays(
[bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase_ , self.pa_type )
def __lowerCAmelCase ( self , lowerCAmelCase_ ):
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase_ ):
with xopen(lowerCAmelCase_ , "rb" ) as f:
_lowercase =f.read()
return bytes_
_lowercase =pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
_lowercase =pa.array(
[os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
_lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase_ , self.pa_type )
def __lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
_lowercase =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> bytes:
_lowercase =BytesIO()
if image.format in list_image_compression_formats():
_lowercase =image.format
else:
_lowercase ="PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
image.save(__a , format=__a )
return buffer.getvalue()
def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> dict:
if hasattr(__a , "filename" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__a )}
def __lowerCamelCase ( __a : np.ndarray ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
_lowercase =array.dtype
_lowercase =dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
_lowercase =dtype.kind
_lowercase =dtype.itemsize
_lowercase =None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
_lowercase =np.dtype("|u1" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
_lowercase =dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
_lowercase =dtype_byteorder + dtype_kind + str(__a )
_lowercase =np.dtype(__a )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
_lowercase =PIL.Image.fromarray(array.astype(__a ) )
return {"path": None, "bytes": image_to_bytes(__a )}
def __lowerCamelCase ( __a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("To support encoding images, please install 'Pillow'." )
if objs:
_lowercase , _lowercase =first_non_null_value(__a )
if isinstance(__a , __a ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__a , np.ndarray ):
_lowercase =no_op_if_value_is_null(__a )
return [obj_to_image_dict_func(__a ) for obj in objs]
elif isinstance(__a , PIL.Image.Image ):
_lowercase =no_op_if_value_is_null(__a )
return [obj_to_image_dict_func(__a ) for obj in objs]
else:
return objs
else:
return objs
| 594 | 1 |
def __lowerCamelCase ( ):
'''simple docstring'''
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = 1
snake_case_ = 2
while i * i <= n:
snake_case_ = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def __lowerCamelCase ( ):
'''simple docstring'''
return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE_ ) > 500 )
if __name__ == "__main__":
print(solution())
| 362 |
'''simple docstring'''
class _a :
"""simple docstring"""
def __init__( self , A__ ) -> List[Any]:
# we need a list not a string, so do something to change the type
_SCREAMING_SNAKE_CASE = arr.split(""",""" )
def UpperCamelCase ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array )
_SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
_SCREAMING_SNAKE_CASE = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
_SCREAMING_SNAKE_CASE = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
UpperCamelCase__ : Optional[Any] = input("please input some numbers:")
UpperCamelCase__ : List[Any] = SubArray(whole_array)
UpperCamelCase__ : str = array.solve_sub_array()
print(("the results is:", re))
| 591 | 0 |
'''simple docstring'''
def UpperCAmelCase_ (__a : List[Any] ):
"""simple docstring"""
_a : Any = [0] * len(__a )
_a : Optional[Any] = []
_a : Union[str, Any] = []
_a : Union[str, Any] = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__a ) ):
if indegree[i] == 0:
queue.append(__a )
while queue:
_a : Tuple = queue.pop(0 )
cnt += 1
topo.append(__a )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(__a )
if cnt != len(__a ):
print('Cycle exists' )
else:
print(__a )
# Adjacency List of Graph
__lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 319 |
'''simple docstring'''
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class UpperCAmelCase__ ( lowercase__ , lowercase__ ):
"""simple docstring"""
__UpperCAmelCase : Any = 1
@register_to_config
def __init__( self : Tuple ,_a : Dict=2000 ,_a : Union[str, Any]=0.1 ,_a : Dict=20 ,_a : List[Any]=1E-3 ):
'''simple docstring'''
_a : Dict = None
_a : int = None
_a : Union[str, Any] = None
def __lowercase ( self : Any ,_a : Dict ,_a : Union[str, torch.device] = None ):
'''simple docstring'''
_a : List[Any] = torch.linspace(1 ,self.config.sampling_eps ,_a ,device=_a )
def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[int] ,_a : Any ,_a : Union[str, Any]=None ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_a : int = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_a : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_a : Dict = std.flatten()
while len(std.shape ) < len(score.shape ):
_a : Any = std.unsqueeze(-1 )
_a : int = -score / std
# compute
_a : List[Any] = -1.0 / len(self.timesteps )
_a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_a : Union[str, Any] = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_a : List[str] = beta_t.unsqueeze(-1 )
_a : Any = -0.5 * beta_t * x
_a : Any = torch.sqrt(_a )
_a : Optional[Any] = drift - diffusion**2 * score
_a : List[Any] = x + drift * dt
# add noise
_a : int = randn_tensor(x.shape ,layout=x.layout ,generator=_a ,device=x.device ,dtype=x.dtype )
_a : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self : Optional[int] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 319 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ):
"""simple docstring"""
__snake_case = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" )
__snake_case = AutoTokenizer.from_pretrained("xlm-roberta-base" )
__snake_case = '''The dog is cute and lives in the garden house'''
__snake_case = jnp.array([tokenizer.encode(A__ )] )
__snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
__snake_case = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
__snake_case = model(A__ )['''last_hidden_state''']
self.assertEqual(output.shape , A__ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , A__ , atol=1e-3 ) )
| 69 |
'''simple docstring'''
import enum
import shutil
import sys
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size()
__SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'}
class lowerCAmelCase__ ( enum.Enum ):
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 1
def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ):
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ):
forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def __a ( ):
forceWrite('''\r''' )
def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def __a ( ):
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def __a ( ):
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 688 | 0 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def __UpperCAmelCase( lowercase_ ):
return EnvironmentCommand()
def __UpperCAmelCase( lowercase_ ):
return EnvironmentCommand(args.accelerate_config_file )
class __A ( lowerCamelCase__ ):
"""simple docstring"""
@staticmethod
def __snake_case ( a__):
"""simple docstring"""
_lowerCamelCase : List[Any] = parser.add_parser('''env''')
download_parser.set_defaults(func=a__)
download_parser.add_argument(
'''--accelerate-config_file''' , default=a__ , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=a__)
def __init__( self , a__ , *a__):
"""simple docstring"""
_lowerCamelCase : str = accelerate_config_file
def __snake_case ( self):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = '''not installed'''
if is_safetensors_available():
import safetensors
_lowerCamelCase : Optional[Any] = safetensors.__version__
elif importlib.util.find_spec('''safetensors''') is not None:
import safetensors
_lowerCamelCase : Optional[int] = F"""{safetensors.__version__} but is ignored because of PyTorch version too old."""
_lowerCamelCase : Union[str, Any] = '''not installed'''
_lowerCamelCase : Any = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
_lowerCamelCase : Optional[int] = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(a__):
_lowerCamelCase : Optional[int] = load_config_from_file(self._accelerate_config_file).to_dict()
_lowerCamelCase : str = (
'''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()])
if isinstance(a__ , a__)
else F"""\t{accelerate_config}"""
)
_lowerCamelCase : List[Any] = '''not installed'''
_lowerCamelCase : Tuple = '''NA'''
if is_torch_available():
import torch
_lowerCamelCase : int = torch.__version__
_lowerCamelCase : List[str] = torch.cuda.is_available()
_lowerCamelCase : str = '''not installed'''
_lowerCamelCase : Union[str, Any] = '''NA'''
if is_tf_available():
import tensorflow as tf
_lowerCamelCase : List[str] = tf.__version__
try:
# deprecated in v2.1
_lowerCamelCase : Optional[int] = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
_lowerCamelCase : Optional[int] = bool(tf.config.list_physical_devices('''GPU'''))
_lowerCamelCase : str = '''not installed'''
_lowerCamelCase : List[Any] = '''not installed'''
_lowerCamelCase : List[Any] = '''not installed'''
_lowerCamelCase : Optional[int] = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
_lowerCamelCase : Any = flax.__version__
_lowerCamelCase : str = jax.__version__
_lowerCamelCase : Any = jaxlib.__version__
_lowerCamelCase : int = jax.lib.xla_bridge.get_backend().platform
_lowerCamelCase : int = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F"""{safetensors_version}""",
'''Accelerate version''': F"""{accelerate_version}""",
'''Accelerate config''': F"""{accelerate_config_str}""",
'''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""",
'''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""",
'''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""",
'''Jax version''': F"""{jax_version}""",
'''JaxLib version''': F"""{jaxlib_version}""",
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''')
print(self.format_dict(a__))
return info
@staticmethod
def __snake_case ( a__):
"""simple docstring"""
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
| 721 |
import pytest
import datasets
# Import fixture modules as plugins
_lowerCamelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec']
def __UpperCAmelCase( lowercase_ , lowercase_ ):
# Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit")
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __UpperCAmelCase( lowercase_ ):
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __UpperCAmelCase( lowercase_ , lowercase_ ):
# test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work?
_lowerCamelCase : Optional[Any] = tmp_path_factory.getbasetemp() / '''cache'''
_lowerCamelCase : Optional[Any] = test_hf_cache_home / '''datasets'''
_lowerCamelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
_lowerCamelCase : Dict = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
_lowerCamelCase : str = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
_lowerCamelCase : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __UpperCAmelCase( ):
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __UpperCAmelCase( lowercase_ ):
# don't take tests into account when counting downloads
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __UpperCAmelCase( lowercase_ ):
# Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0
# To be removed once SQLAlchemy 2.0 supported
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 613 | 0 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def A_ ( _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : Tuple = tmp_path / "file.csv"
_lowerCamelCase : Optional[int] = textwrap.dedent(
"\\n header1,header2\n 1,2\n 10,20\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_lowerCamelCase : Any = tmp_path / "malformed_file.csv"
_lowerCamelCase : Any = textwrap.dedent(
"\\n header1,header2\n 1,2\n 10,20,\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : int = tmp_path / "csv_with_image.csv"
_lowerCamelCase : int = textwrap.dedent(
F'\\n image\n {image_file}\n ' )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_lowerCamelCase : Dict = tmp_path / "csv_with_label.csv"
_lowerCamelCase : int = textwrap.dedent(
"\\n label\n good\n bad\n good\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv"
_lowerCamelCase : Any = textwrap.dedent(
"\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ):
"""simple docstring"""
_lowerCamelCase : List[Any] = Csv()
_lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ):
for _ in generator:
pass
assert any(
record.levelname == "ERROR"
and "Failed to read file" in record.message
and os.path.basename(_lowerCAmelCase ) in record.message
for record in caplog.records )
@require_pil
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with open(_lowerCAmelCase , encoding="utf-8" ) as f:
_lowerCamelCase : Any = f.read().splitlines()[1]
_lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) )
_lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] )
_lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("image" ).type == Image()()
_lowerCamelCase : int = pa_table.to_pydict()["image"]
assert generated_content == [{"path": image_file, "bytes": None}]
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
with open(_lowerCAmelCase , encoding="utf-8" ) as f:
_lowerCamelCase : List[Any] = f.read().splitlines()[1:]
_lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) )
_lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] )
_lowerCamelCase : int = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )()
_lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"]
assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels]
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} )
_lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] )
_lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("int_list" ).type )
_lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | 44 |
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
'''snap-research/efficientformer-l1-300''': (
'''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json'''
),
}
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = '''efficientformer'''
def __init__( self , snake_case_ = [3, 2, 6, 4] , snake_case_ = [48, 96, 224, 448] , snake_case_ = [True, True, True, True] , snake_case_ = 448 , snake_case_ = 32 , snake_case_ = 4 , snake_case_ = 7 , snake_case_ = 5 , snake_case_ = 8 , snake_case_ = 4 , snake_case_ = 0.0 , snake_case_ = 16 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 2 , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = 1 , snake_case_ = True , snake_case_ = True , snake_case_ = 1e-5 , snake_case_ = "gelu" , snake_case_ = 0.02 , snake_case_ = 1e-1_2 , snake_case_ = 224 , snake_case_ = 1e-0_5 , **snake_case_ , ) -> None:
super().__init__(**snake_case_ )
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = hidden_sizes
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = patch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = depths
__lowerCAmelCase = mlp_expansion_ratio
__lowerCAmelCase = downsamples
__lowerCAmelCase = dim
__lowerCAmelCase = key_dim
__lowerCAmelCase = attention_ratio
__lowerCAmelCase = resolution
__lowerCAmelCase = pool_size
__lowerCAmelCase = downsample_patch_size
__lowerCAmelCase = downsample_stride
__lowerCAmelCase = downsample_pad
__lowerCAmelCase = drop_path_rate
__lowerCAmelCase = num_metaad_blocks
__lowerCAmelCase = distillation
__lowerCAmelCase = use_layer_scale
__lowerCAmelCase = layer_scale_init_value
__lowerCAmelCase = image_size
__lowerCAmelCase = batch_norm_eps
| 465 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[Any] , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Union[str, Any] , *snake_case_ : Tuple , **snake_case_ : int ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : Any ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Optional[Any] , *snake_case_ : Any , **snake_case_ : List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[Any] , *snake_case_ : Any , **snake_case_ : Dict ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Optional[int] , *snake_case_ : Dict , **snake_case_ : Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : int , *snake_case_ : Any , **snake_case_ : Union[str, Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Any , *snake_case_ : List[Any] , **snake_case_ : Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Union[str, Any] , *snake_case_ : int , **snake_case_ : Dict ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[Any] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[str] , *snake_case_ : Dict , **snake_case_ : Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : List[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[str] , *snake_case_ : Dict , **snake_case_ : int ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : int , *snake_case_ : List[str] , **snake_case_ : Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[str] , *snake_case_ : Optional[Any] , **snake_case_ : List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Optional[Any] , *snake_case_ : int , **snake_case_ : Optional[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Union[str, Any] , *snake_case_ : str , **snake_case_ : str ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Optional[Any] , *snake_case_ : List[Any] , **snake_case_ : List[Any] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : int ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[str] , *snake_case_ : List[Any] , **snake_case_ : str ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : Any ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : str , *snake_case_ : Optional[Any] , **snake_case_ : Dict ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Union[str, Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Dict ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Any , *snake_case_ : List[Any] , **snake_case_ : Tuple ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Dict , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Tuple , *snake_case_ : str , **snake_case_ : Any ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : List[str] ):
requires_backends(self , ["""sentencepiece"""] )
class UpperCAmelCase_ ( metaclass=_a ):
"""simple docstring"""
lowercase = ["sentencepiece"]
def __init__( self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : Tuple ):
requires_backends(self , ["""sentencepiece"""] )
| 301 |
'''simple docstring'''
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float:
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
snake_case__ : List[Any] = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCAmelCase ) )
return round(_lowerCAmelCase , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 301 | 1 |
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase_ :
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ) -> List[Any]:
__lowercase : int = parent
__lowercase : Optional[Any] = batch_size
__lowercase : Union[str, Any] = seq_length
__lowercase : Optional[int] = is_training
__lowercase : Union[str, Any] = use_input_mask
__lowercase : Any = use_token_type_ids
__lowercase : Any = use_labels
__lowercase : Optional[Any] = vocab_size
__lowercase : Optional[Any] = hidden_size
__lowercase : str = num_hidden_layers
__lowercase : Any = num_attention_heads
__lowercase : Dict = intermediate_size
__lowercase : Dict = hidden_act
__lowercase : List[str] = hidden_dropout_prob
__lowercase : List[str] = attention_probs_dropout_prob
__lowercase : Optional[int] = max_position_embeddings
__lowercase : Tuple = type_vocab_size
__lowercase : Tuple = type_sequence_label_size
__lowercase : str = initializer_range
__lowercase : List[str] = num_labels
__lowercase : Dict = num_choices
__lowercase : Dict = scope
def _lowerCamelCase ( self ) -> Optional[Any]:
__lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase : List[Any] = None
if self.use_input_mask:
__lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase : Dict = None
if self.use_token_type_ids:
__lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase : List[Any] = None
__lowercase : int = None
__lowercase : Dict = None
if self.use_labels:
__lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__lowercase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCamelCase ( self ) -> Tuple:
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int:
__lowercase : Dict = NystromformerModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
__lowercase : Dict = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
__lowercase : List[str] = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str:
__lowercase : Tuple = NystromformerForMaskedLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict:
__lowercase : Union[str, Any] = NystromformerForQuestionAnswering(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : Any = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
__lowercase : List[str] = self.num_labels
__lowercase : Any = NystromformerForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
__lowercase : Optional[int] = self.num_labels
__lowercase : Optional[int] = NystromformerForTokenClassification(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]:
__lowercase : Tuple = self.num_choices
__lowercase : Dict = NystromformerForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase : Dict = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCamelCase ( self ) -> Union[str, Any]:
__lowercase : Optional[int] = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) : Union[str, Any] = config_and_inputs
__lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ):
UpperCamelCase =(
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase =(
{
"feature-extraction": NystromformerModel,
"fill-mask": NystromformerForMaskedLM,
"question-answering": NystromformerForQuestionAnswering,
"text-classification": NystromformerForSequenceClassification,
"token-classification": NystromformerForTokenClassification,
"zero-shot": NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase =False
UpperCamelCase =False
def _lowerCamelCase ( self ) -> int:
__lowercase : Dict = NystromformerModelTester(self )
__lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 )
def _lowerCamelCase ( self ) -> Dict:
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ) -> Any:
__lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> Any:
__lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase : Dict = type
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> str:
__lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> List[str]:
__lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ )
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ )
@slow
def _lowerCamelCase ( self ) -> Union[str, Any]:
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase : Dict = NystromformerModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : Dict = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' )
__lowercase : str = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
__lowercase : Union[str, Any] = model(UpperCamelCase_ )[0]
__lowercase : List[Any] = torch.Size((1, 6, 7_68) )
self.assertEqual(output.shape , UpperCamelCase_ )
__lowercase : int = torch.tensor(
[[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
@slow
def _lowerCamelCase ( self ) -> Tuple:
__lowercase : Tuple = '''the [MASK] of Belgium is Brussels'''
__lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' )
__lowercase : str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' )
__lowercase : int = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
with torch.no_grad():
__lowercase : str = model(encoding.input_ids ).logits
__lowercase : int = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , '''capital''' )
| 76 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
__magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__magic_name__ = {
"vocab_file": {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
},
"tokenizer_file": {
"unc-nlp/lxmert-base-uncased": (
"https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__magic_name__ = {
"unc-nlp/lxmert-base-uncased": 512,
}
__magic_name__ = {
"unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
}
class lowercase ( A__ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = LxmertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Tuple:
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars
):
UpperCAmelCase = getattr(_snake_case , normalizer_state.pop('''type''' ) )
UpperCAmelCase = do_lower_case
UpperCAmelCase = strip_accents
UpperCAmelCase = tokenize_chinese_chars
UpperCAmelCase = normalizer_class(**_snake_case )
UpperCAmelCase = do_lower_case
def snake_case_ ( self , _snake_case , _snake_case=None ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]:
"""simple docstring"""
UpperCAmelCase = [self.sep_token_id]
UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 254 | 0 |
from typing import Any
def _lowerCamelCase( a ):
if not input_list:
return []
__a = [input_list.count(a ) for value in input_list]
__a = max(a ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(a ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 | """simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class snake_case__ ( snake_case_ ):
def a__ ( self , lowerCamelCase ):
with open(lowerCamelCase , encoding="utf-8" ) as input_file:
__a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
__a = input_file.read()
__a = regexp.search(lowerCamelCase )
return match
def a__ ( self , lowerCamelCase ):
with open(lowerCamelCase , encoding="utf-8" ) as input_file:
__a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
__a = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
__a = regexp.finditer(lowerCamelCase )
__a = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def a__ ( self ):
__a = Path("./datasets" )
__a = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(lowerCamelCase ) ):
raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" )
def a__ ( self ):
__a = Path("./datasets" )
__a = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(lowerCamelCase ) ):
raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
| 67 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
__snake_case = logging.get_logger(__name__)
__snake_case = {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"""
),
}
class lowercase__ ( _UpperCAmelCase ):
A__ : str ="""longformer"""
def __init__( self : List[str] , UpperCAmelCase_ : Union[List[int], int] = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 30522 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1e-1_2 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Union[str, Any] , ):
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = attention_window
SCREAMING_SNAKE_CASE__ = sep_token_id
SCREAMING_SNAKE_CASE__ = bos_token_id
SCREAMING_SNAKE_CASE__ = eos_token_id
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = layer_norm_eps
SCREAMING_SNAKE_CASE__ = onnx_export
class lowercase__ ( _UpperCAmelCase ):
def __init__( self : Optional[int] , UpperCAmelCase_ : "PretrainedConfig" , UpperCAmelCase_ : str = "default" , UpperCAmelCase_ : "List[PatchingSpec]" = None ):
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = True
@property
def A_ ( self : int ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def A_ ( self : str ):
SCREAMING_SNAKE_CASE__ = super().outputs
if self.task == "default":
SCREAMING_SNAKE_CASE__ = {0: 'batch'}
return outputs
@property
def A_ ( self : List[Any] ):
return 1e-4
@property
def A_ ( self : List[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def A_ ( self : Any , UpperCAmelCase_ : "PreTrainedTokenizerBase" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(
preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
SCREAMING_SNAKE_CASE__ = torch.zeros_like(inputs['input_ids'] )
# make every second token global
SCREAMING_SNAKE_CASE__ = 1
return inputs
| 472 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__snake_case = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
def _lowercase ( ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = 'https://pypi.org/pypi/diffusers/json'
SCREAMING_SNAKE_CASE__ = json.loads(request.urlopen(UpperCamelCase_ ).read() )['releases'].keys()
return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : version.Version(UpperCamelCase_ ) )
def _lowercase ( ) -> Union[str, Any]:
'''simple docstring'''
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(UpperCamelCase_ )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / '__init__.py'
if not init_path.exists():
init_path.touch()
def _lowercase ( UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
init_hf_modules()
SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = dynamic_module_path / '__init__.py'
if not init_path.exists():
init_path.touch()
def _lowercase ( UpperCamelCase_ ) -> Optional[int]:
'''simple docstring'''
with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE__ = f.read()
# Imports of the form `import .xxx`
SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+\.(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE )
# Unique-ify
return list(set(UpperCamelCase_ ) )
def _lowercase ( UpperCamelCase_ ) -> Any:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = [module_file]
SCREAMING_SNAKE_CASE__ = []
# Let's recurse through all relative imports
while not no_change:
SCREAMING_SNAKE_CASE__ = []
for f in files_to_check:
new_imports.extend(get_relative_imports(UpperCamelCase_ ) )
SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ).parent
SCREAMING_SNAKE_CASE__ = [str(module_path / m ) for m in new_imports]
SCREAMING_SNAKE_CASE__ = [f for f in new_import_files if f not in all_relative_imports]
SCREAMING_SNAKE_CASE__ = [F'{f}.py' for f in new_import_files]
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) == 0
all_relative_imports.extend(UpperCamelCase_ )
return all_relative_imports
def _lowercase ( UpperCamelCase_ ) -> Dict:
'''simple docstring'''
with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE__ = f.read()
# Imports of the form `import xxx`
SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall('^\s*from\s+(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE )
# Only keep the top-level module
SCREAMING_SNAKE_CASE__ = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )]
# Unique-ify and test we got them all
SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) )
SCREAMING_SNAKE_CASE__ = []
for imp in imports:
try:
importlib.import_module(UpperCamelCase_ )
except ImportError:
missing_packages.append(UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
raise ImportError(
'This modeling file requires the following packages that were not found in your environment: '
F'{", ".join(UpperCamelCase_ )}. Run `pip install {" ".join(UpperCamelCase_ )}`' )
return get_relative_imports(UpperCamelCase_ )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = module_path.replace(os.path.sep , '.' )
SCREAMING_SNAKE_CASE__ = importlib.import_module(UpperCamelCase_ )
if class_name is None:
return find_pipeline_class(UpperCamelCase_ )
return getattr(UpperCamelCase_ , UpperCamelCase_ )
def _lowercase ( UpperCamelCase_ ) -> str:
'''simple docstring'''
from ..pipelines import DiffusionPipeline
SCREAMING_SNAKE_CASE__ = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) )
SCREAMING_SNAKE_CASE__ = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , UpperCamelCase_ )
and cls.__module__.split('.' )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:'
F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in'
F' {loaded_module}.' )
SCREAMING_SNAKE_CASE__ = cls
return pipeline_class
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = str(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
if os.path.isfile(UpperCamelCase_ ):
SCREAMING_SNAKE_CASE__ = module_file_or_url
SCREAMING_SNAKE_CASE__ = 'local'
elif pretrained_model_name_or_path.count('/' ) == 0:
SCREAMING_SNAKE_CASE__ = get_diffusers_versions()
# cut ".dev0"
SCREAMING_SNAKE_CASE__ = 'v' + '.'.join(__version__.split('.' )[:3] )
# retrieve github version that matches
if revision is None:
SCREAMING_SNAKE_CASE__ = latest_version if latest_version[1:] in available_versions else 'main'
logger.info(F'Defaulting to latest_version: {revision}.' )
elif revision in available_versions:
SCREAMING_SNAKE_CASE__ = F'v{revision}'
elif revision == "main":
SCREAMING_SNAKE_CASE__ = revision
else:
raise ValueError(
F'`custom_revision`: {revision} does not exist. Please make sure to choose one of'
F' {", ".join(available_versions + ["main"] )}.' )
# community pipeline on GitHub
SCREAMING_SNAKE_CASE__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ )
try:
SCREAMING_SNAKE_CASE__ = cached_download(
UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , )
SCREAMING_SNAKE_CASE__ = 'git'
SCREAMING_SNAKE_CASE__ = pretrained_model_name_or_path + '.py'
except EnvironmentError:
logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
else:
try:
# Load from URL or cache if already cached
SCREAMING_SNAKE_CASE__ = hf_hub_download(
UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , )
SCREAMING_SNAKE_CASE__ = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) )
except EnvironmentError:
logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
# Check we have all the requirements in our environment
SCREAMING_SNAKE_CASE__ = check_imports(UpperCamelCase_ )
# Now we move the module inside our cached dynamic modules.
SCREAMING_SNAKE_CASE__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(UpperCamelCase_ , submodule_path / module_file )
for module_needed in modules_needed:
SCREAMING_SNAKE_CASE__ = F'{module_needed}.py'
shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
SCREAMING_SNAKE_CASE__ = use_auth_token
elif use_auth_token is True:
SCREAMING_SNAKE_CASE__ = HfFolder.get_token()
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
SCREAMING_SNAKE_CASE__ = submodule_path / commit_hash
SCREAMING_SNAKE_CASE__ = full_submodule + os.path.sep + commit_hash
create_dynamic_module(UpperCamelCase_ )
if not (submodule_path / module_file).exists():
shutil.copy(UpperCamelCase_ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
UpperCamelCase_ , F'{module_needed}.py' , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , )
return os.path.join(UpperCamelCase_ , UpperCamelCase_ )
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , **UpperCamelCase_ , ) -> Optional[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_cached_module_file(
UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , )
return get_class_in_module(UpperCamelCase_ , final_module.replace('.py' , '' ) )
| 472 | 1 |
'''simple docstring'''
def snake_case ( a_ : int ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" )
UpperCamelCase_ : Optional[int] = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
UpperCamelCase_ : Optional[Any] = 1
if upper_limit > 0:
UpperCamelCase_ : Dict = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(a_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("\n********* Catalan Numbers Using Dynamic Programming ************\n")
print("\n*** Enter -1 at any time to quit ***")
print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="")
try:
while True:
UpperCamelCase =int(input().strip())
if N < 0:
print("\n********* Goodbye!! ************")
break
else:
print(f"The Catalan numbers from 0 through {N} are:")
print(catalan_numbers(N))
print("Try another upper limit for the sequence: ", end="")
except (NameError, ValueError):
print("\n********* Invalid input, goodbye! ************\n")
import doctest
doctest.testmod()
| 543 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase ="pt"
elif is_tf_available():
UpperCamelCase ="tf"
else:
UpperCamelCase ="jax"
class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ):
"""simple docstring"""
__a : int = PerceiverTokenizer
__a : List[str] = False
def _UpperCAmelCase ( self ):
super().setUp()
UpperCamelCase_ : Optional[int] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCAmelCase ( self ):
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def _UpperCAmelCase ( self , **__lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=20 , __lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
UpperCamelCase_ : str = []
for i in range(len(__lowerCAmelCase ) ):
try:
UpperCamelCase_ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
UpperCamelCase_ : Optional[Any] = list(filter(lambda __lowerCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , __lowerCAmelCase ) )
UpperCamelCase_ : int = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) )
if max_length is not None and len(__lowerCAmelCase ) > max_length:
UpperCamelCase_ : List[Any] = toks[:max_length]
if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0:
while len(__lowerCAmelCase ) < min_length:
UpperCamelCase_ : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
UpperCamelCase_ : List[Any] = [t[0] for t in toks]
# Ensure consistency
UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
if " " not in output_txt and len(__lowerCAmelCase ) > 1:
UpperCamelCase_ : Tuple = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase )
)
if with_prefix_space:
UpperCamelCase_ : Tuple = """ """ + output_txt
UpperCamelCase_ : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
return output_txt, output_ids
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Dict = self.perceiver_tokenizer
UpperCamelCase_ : Optional[int] = """Unicode €."""
UpperCamelCase_ : Dict = tokenizer(__lowerCAmelCase )
UpperCamelCase_ : Tuple = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5]
self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase )
# decoding
UpperCamelCase_ : str = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , """[CLS]Unicode €.[SEP]""" )
UpperCamelCase_ : str = tokenizer("""e è é ê ë""" )
UpperCamelCase_ : List[str] = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5]
self.assertEqual(encoded["""input_ids"""] , __lowerCAmelCase )
# decoding
UpperCamelCase_ : List[str] = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Union[str, Any] = self.perceiver_tokenizer
UpperCamelCase_ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
UpperCamelCase_ : int = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0]
# fmt: on
UpperCamelCase_ : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
if FRAMEWORK != "jax":
UpperCamelCase_ : Optional[Any] = list(batch.input_ids.numpy()[0] )
else:
UpperCamelCase_ : Optional[int] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Optional[int] = self.perceiver_tokenizer
UpperCamelCase_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
UpperCamelCase_ : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , __lowerCAmelCase )
self.assertIn("""attention_mask""" , __lowerCAmelCase )
self.assertNotIn("""decoder_input_ids""" , __lowerCAmelCase )
self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : int = self.perceiver_tokenizer
UpperCamelCase_ : List[str] = [
"""Summary of the text.""",
"""Another summary.""",
]
UpperCamelCase_ : Dict = tokenizer(
text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def _UpperCAmelCase ( self ):
# safety check on max_len default value so we are sure the test works
UpperCamelCase_ : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCamelCase_ : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCamelCase_ : Tuple = tempfile.mkdtemp()
UpperCamelCase_ : Optional[int] = """ He is very happy, UNwant\u00E9d,running"""
UpperCamelCase_ : Dict = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
tokenizer.save_pretrained(__lowerCAmelCase )
UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase )
UpperCamelCase_ : Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
shutil.rmtree(__lowerCAmelCase )
UpperCamelCase_ : Union[str, Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCamelCase_ : Tuple = tempfile.mkdtemp()
UpperCamelCase_ : List[str] = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
UpperCamelCase_ : Any = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
UpperCamelCase_ : Union[str, Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
tokenizer.save_pretrained(__lowerCAmelCase )
UpperCamelCase_ : Tuple = tokenizer.__class__.from_pretrained(__lowerCAmelCase )
UpperCamelCase_ : List[Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCamelCase_ : int = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCAmelCase )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
UpperCamelCase_ : Union[str, Any] = json.load(__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
UpperCamelCase_ : List[str] = json.load(__lowerCAmelCase )
UpperCamelCase_ : Tuple = [F"<extra_id_{i}>" for i in range(1_25 )]
UpperCamelCase_ : Union[str, Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
UpperCamelCase_ : List[Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(__lowerCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCamelCase_ : Optional[int] = tokenizer_class.from_pretrained(
__lowerCAmelCase , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCamelCase_ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__lowerCAmelCase )]
UpperCamelCase_ : Union[str, Any] = tokenizer_class.from_pretrained(
__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def _UpperCAmelCase ( self ):
UpperCamelCase_ : List[Any] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_78] ) , """�""" )
def _UpperCAmelCase ( self ):
pass
def _UpperCAmelCase ( self ):
pass
def _UpperCAmelCase ( self ):
pass
def _UpperCAmelCase ( self ):
pass
def _UpperCAmelCase ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
UpperCamelCase_ : Dict = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"{tokenizer.__class__.__name__}" ):
UpperCamelCase_ : str = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
UpperCamelCase_ : Optional[Any] = tokenizer.convert_tokens_to_string(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
| 543 | 1 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase( __snake_case ):
'''simple docstring'''
__magic_name__ = 'M-CLIP'
def __init__( self , snake_case_=1024 , snake_case_=768 , **snake_case_ ):
_A = transformerDimSize
_A = imageDimSize
super().__init__(**snake_case_ )
class lowerCamelCase( __snake_case ):
'''simple docstring'''
__magic_name__ = MCLIPConfig
def __init__( self , snake_case_ , *snake_case_ , **snake_case_ ):
super().__init__(snake_case_ , *snake_case_ , **snake_case_ )
_A = XLMRobertaModel(snake_case_ )
_A = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ):
_A = self.transformer(input_ids=snake_case_ , attention_mask=snake_case_ )[0]
_A = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(snake_case_ ), embs
| 27 |
__A : Dict = "Alexander Joslin"
import operator as op
from .stack import Stack
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
_A = Stack()
_A = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(_SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
_A = operator_stack.peek()
operator_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
operand_stack.push(_SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__A : Any = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
| 27 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = ['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
A = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 703 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A = logging.get_logger(__name__)
A = {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json'
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class UpperCAmelCase__ ( UpperCamelCase ):
lowerCAmelCase_ : List[Any] = """fnet"""
def __init__( self : Tuple , snake_case : Optional[int]=32_000 , snake_case : Optional[Any]=768 , snake_case : Union[str, Any]=12 , snake_case : List[str]=3_072 , snake_case : str="gelu_new" , snake_case : Any=0.1 , snake_case : List[str]=512 , snake_case : Any=4 , snake_case : str=0.02 , snake_case : Union[str, Any]=1E-1_2 , snake_case : Optional[Any]=False , snake_case : List[Any]=512 , snake_case : int=3 , snake_case : Any=1 , snake_case : Union[str, Any]=2 , **snake_case : Union[str, Any] , ) -> Dict:
'''simple docstring'''
super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
A = vocab_size
A = max_position_embeddings
A = hidden_size
A = num_hidden_layers
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = initializer_range
A = type_vocab_size
A = layer_norm_eps
A = use_tpu_fourier_optimizations
A = tpu_short_seq_length
| 109 | 0 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowercase :
"""simple docstring"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = parent
SCREAMING_SNAKE_CASE_ : str = batch_size
SCREAMING_SNAKE_CASE_ : List[str] = image_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE_ : Optional[int] = num_stages
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_sizes
SCREAMING_SNAKE_CASE_ : str = depths
SCREAMING_SNAKE_CASE_ : str = is_training
SCREAMING_SNAKE_CASE_ : Any = use_labels
SCREAMING_SNAKE_CASE_ : Dict = intermediate_size
SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act
SCREAMING_SNAKE_CASE_ : str = num_labels
SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : int = out_features
SCREAMING_SNAKE_CASE_ : List[Any] = out_indices
SCREAMING_SNAKE_CASE_ : int = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE_ : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = ConvNextVaModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = ConvNextVaForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = ConvNextVaBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ : Dict = model(_lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE_ : Optional[Any] = None
SCREAMING_SNAKE_CASE_ : str = ConvNextVaBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ : Any = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs
SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': pixel_values, 'labels': labels}
return config, inputs_dict
@require_torch
class __lowercase (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
_UpperCAmelCase = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
_UpperCAmelCase = (
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = ConvNextVaModelTester(self )
SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=3_7 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
@unittest.skip(reason='ConvNextV2 does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='ConvNextV2 does not support input and output embeddings' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='ConvNextV2 does not use feedforward chunking' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE_ : int = True
if model_class.__name__ in [
*get_values(_lowerCamelCase ),
*get_values(_lowerCamelCase ),
]:
continue
SCREAMING_SNAKE_CASE_ : List[str] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
SCREAMING_SNAKE_CASE_ : List[str] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
if (
model_class.__name__
in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
SCREAMING_SNAKE_CASE_ : Any = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
SCREAMING_SNAKE_CASE_ : List[str] = model(**_lowerCamelCase ).loss
loss.backward()
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE_ : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ : int = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def UpperCamelCase__ ( self ):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : List[str] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE_ : str = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ : Dict = ConvNextVaModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def a__ ( ):
SCREAMING_SNAKE_CASE_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowercase (unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE_ : Tuple = self.default_image_processor
SCREAMING_SNAKE_CASE_ : Dict = prepare_img()
SCREAMING_SNAKE_CASE_ : Dict = preprocessor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : Optional[int] = model(**_lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
| 101 | """simple docstring"""
from __future__ import annotations
import math
def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2:
raise Exception("Matrices are not 2x2" )
lowerCamelCase__ =[
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
'''simple docstring'''
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowerCAmelCase ) )
]
def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowerCAmelCase ) )
]
def lowerCamelCase_ ( __lowerCAmelCase ) -> tuple[list, list, list, list]:
'''simple docstring'''
if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("Odd matrices are not supported!" )
lowerCamelCase__ =len(__lowerCAmelCase )
lowerCamelCase__ =matrix_length // 2
lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )]
lowerCamelCase__ =[
[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )
]
lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )]
lowerCamelCase__ =[[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )]
return top_left, top_right, bot_left, bot_right
def lowerCamelCase_ ( __lowerCAmelCase ) -> tuple[int, int]:
'''simple docstring'''
return len(__lowerCAmelCase ), len(matrix[0] )
def lowerCamelCase_ ( __lowerCAmelCase ) -> None:
'''simple docstring'''
print("\n".join(str(__lowerCAmelCase ) for line in matrix ) )
def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if matrix_dimensions(__lowerCAmelCase ) == (2, 2):
return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =split_matrix(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =split_matrix(__lowerCAmelCase )
lowerCamelCase__ =actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
lowerCamelCase__ =actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ =actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ =actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ =actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ =matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase )
lowerCamelCase__ =matrix_addition(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ =matrix_addition(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ =matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase )
# construct the new matrix from our 4 quadrants
lowerCamelCase__ =[]
for i in range(len(__lowerCAmelCase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowerCAmelCase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]:
lowerCamelCase__ =(
"Unable to multiply these matrices, please check the dimensions.\n"
F'''Matrix A: {matrixa}\n'''
F'''Matrix B: {matrixa}'''
)
raise Exception(__lowerCAmelCase )
lowerCamelCase__ =matrix_dimensions(__lowerCAmelCase )
lowerCamelCase__ =matrix_dimensions(__lowerCAmelCase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
lowerCamelCase__ =max(*__lowerCAmelCase , *__lowerCAmelCase )
lowerCamelCase__ =int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) )
lowerCamelCase__ =matrixa
lowerCamelCase__ =matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowerCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
lowerCamelCase__ =actual_strassen(__lowerCAmelCase , __lowerCAmelCase )
# Removing the additional zeros
for i in range(0 , __lowerCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
a =[
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
a =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 530 | 0 |
'''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
lowercase__ = logging.get_logger(__name__)
lowercase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowercase__ = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
lowercase__ = {
"Salesforce/codegen-350M-mono": 2_048,
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
UpperCAmelCase = VOCAB_FILES_NAMES
UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase = ['''input_ids''', '''attention_mask''']
UpperCAmelCase = CodeGenTokenizer
def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase=False , **__UpperCamelCase , ) -> Any:
super().__init__(
__UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , )
if kwargs.pop("add_bos_token" , __UpperCamelCase ):
_a = kwargs.pop("name_or_path" , "" )
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly." )
_a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space:
_a = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) )
_a = add_prefix_space
_a = pre_tok_class(**__UpperCamelCase )
_a = add_prefix_space
def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding:
_a = kwargs.get("is_split_into_words" , __UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase )
def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding:
_a = kwargs.get("is_split_into_words" , __UpperCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase )
def a_ ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]:
_a = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase )
return tuple(__UpperCamelCase )
def a_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> str:
_a = super().decode(
token_ids=__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , **__UpperCamelCase , )
if truncate_before_pattern is not None and len(__UpperCamelCase ) > 0:
_a = self.truncate(__UpperCamelCase , __UpperCamelCase )
return decoded_text
def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]:
def find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
_a = pattern.search(__UpperCamelCase , __UpperCamelCase )
return m.start() if m else -1
_a = [re.compile(__UpperCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern]
_a = list(re.finditer("^print" , __UpperCamelCase , re.MULTILINE ) )
if len(__UpperCamelCase ) > 1:
_a = completion[: prints[1].start()]
_a = list(re.finditer("^def" , __UpperCamelCase , re.MULTILINE ) )
if len(__UpperCamelCase ) > 1:
_a = completion[: defs[1].start()]
_a = 0
_a = [
pos for pos in [find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for terminal in terminals] if pos != -1
]
if len(__UpperCamelCase ) > 0:
return completion[: min(__UpperCamelCase )]
else:
return completion
| 276 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
UpperCAmelCase = '''convbert'''
def __init__( self , __UpperCamelCase=30_522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3_072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=768 , __UpperCamelCase=2 , __UpperCamelCase=9 , __UpperCamelCase=1 , __UpperCamelCase=None , **__UpperCamelCase , ) -> Optional[int]:
super().__init__(
pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , )
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = embedding_size
_a = head_ratio
_a = conv_kernel_size
_a = num_groups
_a = classifier_dropout
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
@property
def a_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_a = {0: "batch", 1: "choice", 2: "sequence"}
else:
_a = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 276 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowercase_ :
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Node | None = None
SCREAMING_SNAKE_CASE : Node | None = None
def _A ( ):
"""simple docstring"""
__lowercase = Node(1 )
__lowercase = Node(2 )
__lowercase = Node(3 )
__lowercase = Node(4 )
__lowercase = Node(5 )
return tree
def _A ( A__ ):
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def _A ( A__ ):
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def _A ( A__ ):
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def _A ( A__ ):
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def _A ( A__ ):
"""simple docstring"""
__lowercase = []
if root is None:
return output
__lowercase = deque([root] )
while process_queue:
__lowercase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = []
def populate_output(A__ , A__ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(A__ , A__ )
return output
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = []
def populate_output(A__ , A__ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(A__ , A__ )
return output
def _A ( A__ ):
"""simple docstring"""
if root is None:
return []
__lowercase = []
__lowercase = 0
__lowercase = height(A__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(A__ , A__ ) )
__lowercase = 1
else:
output.append(get_nodes_from_right_to_left(A__ , A__ ) )
__lowercase = 0
return output
def _A ( ): # Main function for testing.
"""simple docstring"""
__lowercase = make_tree()
print(F"In-order Traversal: {inorder(A__ )}" )
print(F"Pre-order Traversal: {preorder(A__ )}" )
print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' )
print(F"Height of Tree: {height(A__ )}" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(A__ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(A__ ) + 1 ):
print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 41 |
"""simple docstring"""
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
_lowercase = {
'''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'''
}
def lowerCAmelCase__ ( __magic_name__ = "dhaka" , __magic_name__ = 5 ) ->int:
__lowercase = min(__magic_name__ , 5_0 ) # Prevent abuse!
__lowercase = {
"q": query,
"tbm": "isch",
"hl": "en",
"ijn": "0",
}
__lowercase = requests.get("https://www.google.com/search" , params=__magic_name__ , headers=__magic_name__ )
__lowercase = BeautifulSoup(html.text , "html.parser" )
__lowercase = "".join(
re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) )
__lowercase = json.dumps(__magic_name__ )
__lowercase = json.loads(__magic_name__ )
__lowercase = re.findall(
R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __magic_name__ , )
if not matched_google_image_data:
return 0
__lowercase = re.sub(
R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__magic_name__ ) , )
__lowercase = re.findall(
R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __magic_name__ , )
for index, fixed_full_res_image in enumerate(__magic_name__ ):
if index >= max_images:
return index
__lowercase = bytes(__magic_name__ , "ascii" ).decode(
"unicode-escape" )
__lowercase = bytes(__magic_name__ , "ascii" ).decode(
"unicode-escape" )
__lowercase = urllib.request.build_opener()
__lowercase = [
(
"User-Agent",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582",
)
]
urllib.request.install_opener(__magic_name__ )
__lowercase = F'''query_{query.replace(' ' , '_' )}'''
if not os.path.exists(__magic_name__ ):
os.makedirs(__magic_name__ )
urllib.request.urlretrieve( # noqa: S310
__magic_name__ , F'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
_lowercase = download_images_from_google_query(sys.argv[1])
print(F"{image_count} images were downloaded to disk.")
except IndexError:
print('''Please provide a search term.''')
raise
| 118 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Tuple= logging.get_logger(__name__)
_a : Optional[int]= {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class UpperCamelCase ( lowercase ):
UpperCAmelCase : str = """audio-spectrogram-transformer"""
def __init__(self : Dict , _A : Dict=7_68 , _A : int=12 , _A : List[Any]=12 , _A : Any=30_72 , _A : List[str]="gelu" , _A : int=0.0 , _A : Dict=0.0 , _A : List[Any]=0.02 , _A : List[Any]=1E-12 , _A : Any=16 , _A : Optional[Any]=True , _A : Tuple=10 , _A : Dict=10 , _A : str=10_24 , _A : Union[str, Any]=1_28 , **_A : Dict , ) -> Union[str, Any]:
super().__init__(**_A)
__snake_case : Any = hidden_size
__snake_case : Any = num_hidden_layers
__snake_case : Optional[Any] = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : Optional[int] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Tuple = attention_probs_dropout_prob
__snake_case : Any = initializer_range
__snake_case : List[Any] = layer_norm_eps
__snake_case : Tuple = patch_size
__snake_case : Any = qkv_bias
__snake_case : List[str] = frequency_stride
__snake_case : Union[str, Any] = time_stride
__snake_case : Union[str, Any] = max_length
__snake_case : Tuple = num_mel_bins
| 703 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a : Optional[Any]= {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any]= [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str]= [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any]= [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_a : Tuple= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 192 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.