path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72073997/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_train.head()
code
72073997/cell_38
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) y_preds_tree
code
72073997/cell_47
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) xgb_reg = xgb.XGBRegressor(gpu_id=0, tree_method='gpu_hist') xgb_reg.fit(X_train_scaled, y_train) y_preds_xgb = xgb_reg.predict(X_val_scaled) print('RMSE for XGBoost Regressor: ', np.sqrt(mse(y_val, y_preds_xgb)))
code
72073997/cell_17
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_train.info()
code
72073997/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) target_pred_ridge = ridge.predict(X_test_scaled) sub_ridge = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_ridge['target'] = target_pred_ridge sub_ridge.to_csv('sub_ridge.csv', index=False) sub_ridge.head()
code
72073997/cell_43
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) sub_ridge = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) target_pred_for = for_reg.predict(X_test_scaled) target_pred_for sub_for = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_for['target'] = target_pred_for sub_for.head()
code
72073997/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) print('RMSE of Ridge Regression: ', np.sqrt(mse(y_val, y_preds_ridge)))
code
72073997/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) print('Training Data Shape: ', train.shape) print('Testing Data Shape: ', test.shape)
code
72073997/cell_27
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) target_pred_lr = lr.predict(X_test_scaled) target_pred_lr
code
72073997/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) print('RMSE for Decision Tree Regressor: ', np.sqrt(mse(y_val, y_preds_tree)))
code
72073997/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.info()
code
32069487/cell_4
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() import missingno as msno msno.matrix(p)
code
32069487/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.head()
code
32069487/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32069487/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() import missingno as msno msno.matrix(p) msno.matrix(p)
code
32069487/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p.head()
code
32069487/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p['deaths'] = p['deaths'].fillna(0) p['recovered'] = p['recovered'].fillna(0) p['tests'] = np.where(p['tests'].isnull(), p['casecount'], p['tests']) p.drop(p.columns[[4, 30, 31, 32, 33, 34, 35]], axis=1, inplace=True) import seaborn as sns import matplotlib.pyplot as plt y = p[['pop0to4_2019', 'pop5to9_2019', 'pop10to14_2019', 'pop15to19_2019', 'pop20to24_2019', 'pop25to29_2019', 'pop30to34_2019', 'pop35to39_2019', 'pop40to44_2019', 'pop45to49_2019', 'pop50to54_2019', 'pop55to59_2019', 'pop60to64_2019', 'pop65to69_2019', 'pop70to74_2019', 'pop75to79_2019', 'pop80to84_2019', 'pop85older']] plt.xticks(np.arange(0, 34, 2)) plt.figure(figsize=(40, 30)) plt.subplots_adjust(hspace=1.0) j = 1 for i in y.columns: plt.subplot(4, 5, j) sns.barplot(p['deaths'], p[i]) plt.ylabel(i) plt.xlabel('deaths') j += 1
code
32069487/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any()
code
32069487/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p['deaths'] = p['deaths'].fillna(0) p['recovered'] = p['recovered'].fillna(0) p['tests'] = np.where(p['tests'].isnull(), p['casecount'], p['tests']) p.drop(p.columns[[4, 30, 31, 32, 33, 34, 35]], axis=1, inplace=True) import seaborn as sns import matplotlib.pyplot as plt y = p[['pop0to4_2019', 'pop5to9_2019', 'pop10to14_2019', 'pop15to19_2019', 'pop20to24_2019', 'pop25to29_2019', 'pop30to34_2019', 'pop35to39_2019', 'pop40to44_2019', 'pop45to49_2019', 'pop50to54_2019', 'pop55to59_2019', 'pop60to64_2019', 'pop65to69_2019', 'pop70to74_2019', 'pop75to79_2019', 'pop80to84_2019', 'pop85older']] plt.figure(figsize=(20, 20)) plt.bar('deaths', 'pop0to4_2019', data=p) plt.bar('deaths', 'pop5to9_2019', data=p) plt.bar('deaths', 'pop10to14_2019', data=p) plt.bar('deaths', 'pop15to19_2019', data=p) plt.bar('deaths', 'pop20to24_2019', data=p) plt.bar('deaths', 'pop25to29_2019', data=p) plt.bar('deaths', 'pop30to34_2019', data=p) plt.bar('deaths', 'pop35to39_2019', data=p) plt.bar('deaths', 'pop40to44_2019', data=p) plt.bar('deaths', 'pop45to49_2019', data=p) plt.bar('deaths', 'pop50to54_2019', data=p, color='black') plt.bar('deaths', 'pop55to59_2019', data=p, color='maroon') plt.bar('deaths', 'pop60to64_2019', data=p, color='greenyellow') plt.bar('deaths', 'pop65to69_2019', data=p, color='floralwhite') plt.bar('deaths', 'pop70to74_2019', data=p, color='indigo') plt.bar('deaths', 'pop75to79_2019', data=p, color='crimson') plt.bar('deaths', 'pop80to84_2019', data=p, color='lightpink') plt.bar('deaths', 'pop85older_2019', data=p, color='slategrey') plt.xticks(np.arange(0, 34, 2)) plt.xlabel('Deaths') plt.ylabel('Population categories distribution') plt.title('DEATHS PER POPULATION') plt.legend(y, loc='best')
code
32069487/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p.head()
code
32069487/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p.drop(p.columns[[4, 30, 31, 32, 33, 34, 35]], axis=1, inplace=True) p.head()
code
32069487/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) p = pd.read_csv('/kaggle/input/uncover/UNCOVER/canadian_outbreak_tracker/canada-cumulative-case-count-by-new-hybrid-regional-health-boundaries.csv') p.isnull().any() p.info()
code
49126654/cell_11
[ "text_html_output_1.png", "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) games = pd.read_csv('../input/nfl-big-data-bowl-2021/games.csv') players = pd.read_csv('../input/nfl-big-data-bowl-2021/players.csv') plays = pd.read_csv('../input/nfl-big-data-bowl-2021/plays.csv') week_1 = pd.read_csv('../input/nfl-big-data-bowl-2021/week1.csv') week_2 = pd.read_csv('../input/nfl-big-data-bowl-2021/week2.csv') week_3 = pd.read_csv('../input/nfl-big-data-bowl-2021/week3.csv') week_4 = pd.read_csv('../input/nfl-big-data-bowl-2021/week4.csv') week_5 = pd.read_csv('../input/nfl-big-data-bowl-2021/week5.csv') week_6 = pd.read_csv('../input/nfl-big-data-bowl-2021/week6.csv') week_7 = pd.read_csv('../input/nfl-big-data-bowl-2021/week7.csv') week_8 = pd.read_csv('../input/nfl-big-data-bowl-2021/week8.csv') week_9 = pd.read_csv('../input/nfl-big-data-bowl-2021/week9.csv') week_10 = pd.read_csv('../input/nfl-big-data-bowl-2021/week10.csv') week_11 = pd.read_csv('../input/nfl-big-data-bowl-2021/week11.csv') week_12 = pd.read_csv('../input/nfl-big-data-bowl-2021/week12.csv') week_13 = pd.read_csv('../input/nfl-big-data-bowl-2021/week13.csv') week_14 = pd.read_csv('../input/nfl-big-data-bowl-2021/week14.csv') week_15 = pd.read_csv('../input/nfl-big-data-bowl-2021/week15.csv') week_16 = pd.read_csv('../input/nfl-big-data-bowl-2021/week16.csv') week_17 = pd.read_csv('../input/nfl-big-data-bowl-2021/week17.csv') all_col = list(games.columns) + list(plays.columns) + list(players.columns) + list(week_1.columns) week_1 = week_1[(week_1['event'] == 'ball_snap') & (week_1['position'] == 'CB')] week1 = pd.merge(week_1, plays, how='inner', on=['gameId', 'playId']) def calculate_distance(absYdline, x): distance = abs(absYdline - x) return distance week1['distance'] = week1.apply(lambda y: calculate_distance(y['absoluteYardlineNumber'], y['x']), axis=1) week1 = week1[week1['distance'] <= 20] week1 = week1.drop_duplicates(subset=['playId']) x = week1['distance'] y = week1['offensePlayResult'] slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) plt.figure(figsize=(20, 10)) plt.plot(x, y, '.') plt.plot(x, slope * x + intercept, '#EB6E1F') x_list = x.tolist() y_list = y.tolist() plt.xlabel('distance') plt.ylabel('yards gained by offense') plt.show() summary_frame = pd.DataFrame(index=['slope', 'intercept', 'r_value', 'p_value', 'std_err']) summary_stats = ['{:.7f}'.format(slope), '{:.7f}'.format(intercept), '{:.7f}'.format(r_value), '{:.7f}'.format(p_value), '{:.7f}'.format(std_err)] summary_frame['summary stats'] = summary_stats summary_frame
code
49126654/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) games = pd.read_csv('../input/nfl-big-data-bowl-2021/games.csv') players = pd.read_csv('../input/nfl-big-data-bowl-2021/players.csv') plays = pd.read_csv('../input/nfl-big-data-bowl-2021/plays.csv') week_1 = pd.read_csv('../input/nfl-big-data-bowl-2021/week1.csv') week_2 = pd.read_csv('../input/nfl-big-data-bowl-2021/week2.csv') week_3 = pd.read_csv('../input/nfl-big-data-bowl-2021/week3.csv') week_4 = pd.read_csv('../input/nfl-big-data-bowl-2021/week4.csv') week_5 = pd.read_csv('../input/nfl-big-data-bowl-2021/week5.csv') week_6 = pd.read_csv('../input/nfl-big-data-bowl-2021/week6.csv') week_7 = pd.read_csv('../input/nfl-big-data-bowl-2021/week7.csv') week_8 = pd.read_csv('../input/nfl-big-data-bowl-2021/week8.csv') week_9 = pd.read_csv('../input/nfl-big-data-bowl-2021/week9.csv') week_10 = pd.read_csv('../input/nfl-big-data-bowl-2021/week10.csv') week_11 = pd.read_csv('../input/nfl-big-data-bowl-2021/week11.csv') week_12 = pd.read_csv('../input/nfl-big-data-bowl-2021/week12.csv') week_13 = pd.read_csv('../input/nfl-big-data-bowl-2021/week13.csv') week_14 = pd.read_csv('../input/nfl-big-data-bowl-2021/week14.csv') week_15 = pd.read_csv('../input/nfl-big-data-bowl-2021/week15.csv') week_16 = pd.read_csv('../input/nfl-big-data-bowl-2021/week16.csv') week_17 = pd.read_csv('../input/nfl-big-data-bowl-2021/week17.csv') all_col = list(games.columns) + list(plays.columns) + list(players.columns) + list(week_1.columns) week_1 = week_1[(week_1['event'] == 'ball_snap') & (week_1['position'] == 'CB')] week1 = pd.merge(week_1, plays, how='inner', on=['gameId', 'playId']) def calculate_distance(absYdline, x): distance = abs(absYdline - x) return distance week1['distance'] = week1.apply(lambda y: calculate_distance(y['absoluteYardlineNumber'], y['x']), axis=1) week1 = week1[week1['distance'] <= 20] week1 = week1.drop_duplicates(subset=['playId']) week1.corr('kendall')
code
16144430/cell_21
[ "image_output_1.png" ]
from PIL import Image from PIL import Image from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import random import torch import torchvision transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) ship = {1: 'Cargo', 2: 'Military', 3: 'Carrier', 4: 'Cruise', 5: 'Tankers'} def imshow(img, title): npimg = img.numpy() plt.axis('off') def show_batch_images(dataloader): images, labels = next(iter(dataloader)) img = torchvision.utils.make_grid(images) show_batch_images(trainfull_loader)
code
16144430/cell_30
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from sklearn.model_selection import train_test_split from torch.utils.data.sampler import SubsetRandomSampler from torchvision import datasets, transforms import numpy as np import os import pandas as pd import random import torch transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') tr, val = train_test_split(train_data.category, stratify=train_data.category, test_size=0.15, random_state=10) training_batchsize = 16 num_workers = 8 train_sampler = SubsetRandomSampler(list(tr.index)) valid_sampler = SubsetRandomSampler(list(val.index)) len(list(tr.index))
code
16144430/cell_33
[ "image_output_1.png" ]
from PIL import Image from PIL import Image from sklearn.model_selection import train_test_split from torch.utils.data.sampler import SubsetRandomSampler from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import random import torch import torchvision transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) ship = {1: 'Cargo', 2: 'Military', 3: 'Carrier', 4: 'Cruise', 5: 'Tankers'} def imshow(img, title): npimg = img.numpy() plt.axis('off') def show_batch_images(dataloader): images, labels = next(iter(dataloader)) img = torchvision.utils.make_grid(images) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') from torchvision import models import torch.optim as optim num_classes = 5 Training_transforms = transforms.Compose([transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), transforms.RandomAffine(degrees=15, translate=(0.3, 0.3), scale=(0.5, 1.5), shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) tr, val = train_test_split(train_data.category, stratify=train_data.category, test_size=0.15, random_state=10) training_batchsize = 16 num_workers = 8 train_sampler = SubsetRandomSampler(list(tr.index)) valid_sampler = SubsetRandomSampler(list(val.index)) traindataset = ShipDataLoader('../input/train/train.csv', 'train', Training_transforms, '../input/train/images', map_img_class_dict) train_loader = torch.utils.data.DataLoader(traindataset, batch_size=training_batchsize, sampler=train_sampler, num_workers=num_workers) show_batch_images(train_loader)
code
16144430/cell_44
[ "text_plain_output_1.png" ]
from torchvision import models model_ft = models.resnet50(pretrained=True) model_ft.fc.in_features
code
16144430/cell_40
[ "text_plain_output_1.png" ]
from torchvision import models model_ft = models.resnet50(pretrained=True) print('Number of trainable parameters: ', sum((p.numel() for p in model_ft.parameters() if p.requires_grad)))
code
16144430/cell_39
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from torchvision import models model_ft = models.resnet50(pretrained=True) print(model_ft)
code
16144430/cell_41
[ "text_plain_output_1.png" ]
from torchvision import models model_ft = models.resnet50(pretrained=True) for name, child in model_ft.named_children(): print(name)
code
16144430/cell_49
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from sklearn.model_selection import train_test_split from torch.utils.data.sampler import SubsetRandomSampler from torchvision import datasets, transforms from torchvision import models import numpy as np import os import pandas as pd import random import torch import torch.nn as nn transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') from torchvision import models import torch.optim as optim num_classes = 5 Training_transforms = transforms.Compose([transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), transforms.RandomAffine(degrees=15, translate=(0.3, 0.3), scale=(0.5, 1.5), shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) tr, val = train_test_split(train_data.category, stratify=train_data.category, test_size=0.15, random_state=10) training_batchsize = 16 num_workers = 8 train_sampler = SubsetRandomSampler(list(tr.index)) valid_sampler = SubsetRandomSampler(list(val.index)) traindataset = ShipDataLoader('../input/train/train.csv', 'train', Training_transforms, '../input/train/images', map_img_class_dict) train_loader = torch.utils.data.DataLoader(traindataset, batch_size=training_batchsize, sampler=train_sampler, num_workers=num_workers) dataiter = iter(train_loader) images, labels = dataiter.next() model_ft = models.resnet50(pretrained=True) model_ft.fc.in_features from collections import OrderedDict fc = nn.Sequential(nn.Linear(model_ft.fc.in_features, 720), nn.ReLU(), nn.Dropout(0.5), nn.Linear(720, 256), nn.ReLU(), nn.Dropout(0.4), nn.Linear(256, 64), nn.ReLU(), nn.Dropout(0.3), nn.Linear(64, 5), nn.Softmax(dim=1)) model_ft.fc = fc out = model_ft(images) out
code
16144430/cell_38
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from sklearn.model_selection import train_test_split from torch.utils.data.sampler import SubsetRandomSampler from torchvision import datasets, transforms import numpy as np import os import pandas as pd import random import torch transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') from torchvision import models import torch.optim as optim num_classes = 5 Training_transforms = transforms.Compose([transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), transforms.RandomAffine(degrees=15, translate=(0.3, 0.3), scale=(0.5, 1.5), shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) tr, val = train_test_split(train_data.category, stratify=train_data.category, test_size=0.15, random_state=10) training_batchsize = 16 num_workers = 8 train_sampler = SubsetRandomSampler(list(tr.index)) valid_sampler = SubsetRandomSampler(list(val.index)) traindataset = ShipDataLoader('../input/train/train.csv', 'train', Training_transforms, '../input/train/images', map_img_class_dict) train_loader = torch.utils.data.DataLoader(traindataset, batch_size=training_batchsize, sampler=train_sampler, num_workers=num_workers) dataiter = iter(train_loader) images, labels = dataiter.next() print(images.shape) print(images[1].shape) print(labels[1])
code
16144430/cell_47
[ "text_plain_output_1.png" ]
from torchvision import models import torch.nn as nn model_ft = models.resnet50(pretrained=True) model_ft.fc.in_features from collections import OrderedDict fc = nn.Sequential(nn.Linear(model_ft.fc.in_features, 720), nn.ReLU(), nn.Dropout(0.5), nn.Linear(720, 256), nn.ReLU(), nn.Dropout(0.4), nn.Linear(256, 64), nn.ReLU(), nn.Dropout(0.3), nn.Linear(64, 5), nn.Softmax(dim=1)) model_ft.fc = fc print(model_ft)
code
16144430/cell_43
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from torchvision import datasets, transforms import numpy as np import os import pandas as pd import random import torch transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') from torchvision import models import torch.optim as optim num_classes = 5 num_classes
code
16144430/cell_31
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from sklearn.model_selection import train_test_split from torch.utils.data.sampler import SubsetRandomSampler from torchvision import datasets, transforms import numpy as np import os import pandas as pd import random import torch transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') tr, val = train_test_split(train_data.category, stratify=train_data.category, test_size=0.15, random_state=10) training_batchsize = 16 num_workers = 8 train_sampler = SubsetRandomSampler(list(tr.index)) valid_sampler = SubsetRandomSampler(list(val.index)) len(list(val.index))
code
16144430/cell_24
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image from torchvision import datasets, transforms import numpy as np import os import pandas as pd import random import torch transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) from torchvision import models import torch.optim as optim num_classes = 5
code
16144430/cell_22
[ "image_output_1.png" ]
from PIL import Image from PIL import Image from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import random import torch import torchvision transform_ship = transforms.Compose([transforms.ToTensor()]) SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') map_img_class_dict = {k: v for k, v in zip(train_data.image, train_data.category)} test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') from PIL import Image class ShipDataLoader(torch.utils.data.DataLoader): def __init__(self, CSVfolder, process='train', transform=transforms.Compose([transforms.Resize(size=(224, 224)), transforms.ToTensor()]), imgFolder='../input/train/images/', labelsDict={}, y_labels=list(train_data.category)): self.process = process self.imgFolder = imgFolder self.CSVfolder = CSVfolder self.y = y_labels self.FileList = pd.read_csv(self.CSVfolder)['image'].tolist() self.transform = transform self.labelsDict = labelsDict if self.process == 'train': self.labels = [labelsDict[i] for i in self.FileList] else: self.labels = [0 for i in range(len(self.FileList))] def __len__(self): return len(self.FileList) def __getitem__(self, idx): file_name = self.FileList[idx] image_data = self.pil_loader(self.imgFolder + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.process == 'train': label = self.y[idx] else: label = file_name return (image_data, label) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') training_batchsize = 5 full_data = ShipDataLoader(base_dir + '/train/train.csv', process='train', imgFolder=base_dir + '/train/images', labelsDict=map_img_class_dict) trainfull_loader = torch.utils.data.DataLoader(full_data, batch_size=training_batchsize, shuffle=True) ship = {1: 'Cargo', 2: 'Military', 3: 'Carrier', 4: 'Cruise', 5: 'Tankers'} def imshow(img, title): npimg = img.numpy() plt.axis('off') def show_batch_images(dataloader): images, labels = next(iter(dataloader)) img = torchvision.utils.make_grid(images) show_batch_images(trainfull_loader)
code
16144430/cell_10
[ "text_html_output_1.png" ]
import numpy as np import os import pandas as pd import random import torch SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') train_data.head()
code
16144430/cell_12
[ "text_html_output_1.png" ]
import numpy as np import os import pandas as pd import random import torch SEED = 200 base_dir = '../input/' def seed_everything(seed=SEED): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_everything(SEED) train_data = pd.read_csv(base_dir + '/train/train.csv') test_data = pd.read_csv(base_dir + '/test_ApKoW4T.csv') test_data.head()
code
128000719/cell_42
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a test = a[11] test
code
128000719/cell_21
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[5]
code
128000719/cell_13
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[3]
code
128000719/cell_25
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG
code
128000719/cell_34
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a RR = a[9] RR['Team'] = 'RR' RR.rename(columns={'2022 Squad RR': 'Players'}, inplace=True) RR
code
128000719/cell_23
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final
code
128000719/cell_30
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[8]
code
128000719/cell_33
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[9]
code
128000719/cell_20
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final
code
128000719/cell_6
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[0]
code
128000719/cell_29
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final
code
128000719/cell_39
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[11]
code
128000719/cell_26
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final
code
128000719/cell_48
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a test = a[11] test.rename(columns={'Base Price IN ₹ (CR.)': 'Base Price'}, inplace=True) test.rename(columns={'Player': 'Players'}, inplace=True) test.drop('Base Price IN $ (000)', axis=1, inplace=True) test = test[['Players', 'Base Price', 'TYPE', 'COST IN ₹ (CR.)', 'Cost IN $ (000)', '2021 Squad', 'Team']] test
code
128000719/cell_19
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR
code
128000719/cell_50
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB final = final.append(RCB, ignore_index=True) final RR = a[9] RR['Team'] = 'RR' RR.rename(columns={'2022 Squad RR': 'Players'}, inplace=True) RR final = final.append(RR, ignore_index=True) final SRH = a[10] SRH['Team'] = 'SRH' SRH.rename(columns={'2022 Squad SRH': 'Players'}, inplace=True) SRH final = final.append(SRH, ignore_index=True) final test = a[11] test.rename(columns={'Base Price IN ₹ (CR.)': 'Base Price'}, inplace=True) test.rename(columns={'Player': 'Players'}, inplace=True) test.drop('Base Price IN $ (000)', axis=1, inplace=True) test = test[['Players', 'Base Price', 'TYPE', 'COST IN ₹ (CR.)', 'Cost IN $ (000)', '2021 Squad', 'Team']] final = final.append(test, ignore_index=True) final final.info()
code
128000719/cell_7
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[1]
code
128000719/cell_45
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a test = a[11] test.rename(columns={'Base Price IN ₹ (CR.)': 'Base Price'}, inplace=True) test.rename(columns={'Player': 'Players'}, inplace=True) test.drop('Base Price IN $ (000)', axis=1, inplace=True) test
code
128000719/cell_49
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB final = final.append(RCB, ignore_index=True) final RR = a[9] RR['Team'] = 'RR' RR.rename(columns={'2022 Squad RR': 'Players'}, inplace=True) RR final = final.append(RR, ignore_index=True) final SRH = a[10] SRH['Team'] = 'SRH' SRH.rename(columns={'2022 Squad SRH': 'Players'}, inplace=True) SRH final = final.append(SRH, ignore_index=True) final test = a[11] test.rename(columns={'Base Price IN ₹ (CR.)': 'Base Price'}, inplace=True) test.rename(columns={'Player': 'Players'}, inplace=True) test.drop('Base Price IN $ (000)', axis=1, inplace=True) test = test[['Players', 'Base Price', 'TYPE', 'COST IN ₹ (CR.)', 'Cost IN $ (000)', '2021 Squad', 'Team']] final = final.append(test, ignore_index=True) final
code
128000719/cell_32
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB final = final.append(RCB, ignore_index=True) final
code
128000719/cell_28
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI
code
128000719/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT
code
128000719/cell_15
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC
code
128000719/cell_16
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final
code
128000719/cell_38
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB final = final.append(RCB, ignore_index=True) final RR = a[9] RR['Team'] = 'RR' RR.rename(columns={'2022 Squad RR': 'Players'}, inplace=True) RR final = final.append(RR, ignore_index=True) final SRH = a[10] SRH['Team'] = 'SRH' SRH.rename(columns={'2022 Squad SRH': 'Players'}, inplace=True) SRH final = final.append(SRH, ignore_index=True) final
code
128000719/cell_3
[ "text_html_output_1.png" ]
!pip install openpyxl
code
128000719/cell_17
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[4]
code
128000719/cell_35
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final DC = a[3] DC['Team'] = 'DC' DC.rename(columns={'2022 Squad DC': 'Players'}, inplace=True) DC final = final.append(DC, ignore_index=True) final KKR = a[4] KKR['Team'] = 'KKR' KKR.rename(columns={'2022 Squad KKR': 'Players'}, inplace=True) KKR final = final.append(KKR, ignore_index=True) final PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK final = final.append(PBK, ignore_index=True) final LSG = a[6] LSG['Team'] = 'LSG' LSG.rename(columns={'2022 Squad LSG': 'Players'}, inplace=True) LSG final = final.append(LSG, ignore_index=True) final MI = a[7] MI['Team'] = 'MI' MI.rename(columns={'2022 Squad MI': 'Players'}, inplace=True) MI final = final.append(MI, ignore_index=True) final RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB final = final.append(RCB, ignore_index=True) final RR = a[9] RR['Team'] = 'RR' RR.rename(columns={'2022 Squad RR': 'Players'}, inplace=True) RR final = final.append(RR, ignore_index=True) final
code
128000719/cell_31
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a RCB = a[8] RCB['Team'] = 'RCB' RCB.rename(columns={'2022 Squad RCB': 'Players'}, inplace=True) RCB
code
128000719/cell_24
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[6]
code
128000719/cell_22
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a PBK = a[5] PBK['Team'] = 'PBK' PBK.rename(columns={'2022 Squad PBKS': 'Players'}, inplace=True) PBK
code
128000719/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK
code
128000719/cell_27
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[7]
code
128000719/cell_37
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a SRH = a[10] SRH['Team'] = 'SRH' SRH.rename(columns={'2022 Squad SRH': 'Players'}, inplace=True) SRH
code
128000719/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a GT = a[1] GT['Team'] = 'GT' GT.rename(columns={'2022 Squad GT': 'Players'}, inplace=True) GT CSK = a[2] CSK['Team'] = 'CSK' CSK.rename(columns={'2022 Squad CSK': 'Players'}, inplace=True) CSK final = GT.append(CSK, ignore_index=True) final
code
128000719/cell_5
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a
code
128000719/cell_36
[ "text_html_output_1.png" ]
import pandas as pd url = 'https://www.news18.com/cricketnext/ipl-auction-2022/' a = pd.read_html(url) a a[10]
code
17132420/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df = df[df['BuildingArea'] != 0] df = df[df['YearBuilt'] > 1835] df.isnull().sum() df.dropna(inplace=True) # Build Histogram to visualise price distribution num_bins = 50 n, bins, patches = plt.hist(df.Price, num_bins, color='b', alpha=0.5, histtype = 'bar', ec = 'black') plt.ylabel ('Frequency') plt.xlabel ('Price ($)') plt.xlim([0, 6000000]) plt.title ('Histogram House Prices') plt.show() plt.savefig('Histogram.png') df.select_dtypes(['float64', 'int64']).columns pair_plot = sns.pairplot(df[['Rooms', 'Price', 'Distance', 'Bathroom', 'Car', 'Landsize', 'BuildingArea', 'Propertycount', 'YearBuilt', 'Type']], hue='Type') pair_plot.savefig('Pairplot.png')
code
17132420/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df = df[df['BuildingArea'] != 0] df = df[df['YearBuilt'] > 1835] df.isnull().sum() df.dropna(inplace=True) # Build Histogram to visualise price distribution num_bins = 50 n, bins, patches = plt.hist(df.Price, num_bins, color='b', alpha=0.5, histtype = 'bar', ec = 'black') plt.ylabel ('Frequency') plt.xlabel ('Price ($)') plt.xlim([0, 6000000]) plt.title ('Histogram House Prices') plt.show() plt.savefig('Histogram.png') # Determine Numerical Values df.select_dtypes(['float64', 'int64']).columns # Pairplot variables to visualise inter-variable relationships pair_plot = sns.pairplot(df[['Rooms', 'Price', 'Distance', 'Bathroom', 'Car', 'Landsize','BuildingArea', 'Propertycount', 'YearBuilt', 'Type']], hue = 'Type') pair_plot.savefig('Pairplot.png') df.info()
code
17132420/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df = df[df['BuildingArea'] != 0] df = df[df['YearBuilt'] > 1835] df.isnull().sum() df.dropna(inplace=True) # Build Histogram to visualise price distribution num_bins = 50 n, bins, patches = plt.hist(df.Price, num_bins, color='b', alpha=0.5, histtype = 'bar', ec = 'black') plt.ylabel ('Frequency') plt.xlabel ('Price ($)') plt.xlim([0, 6000000]) plt.title ('Histogram House Prices') plt.show() plt.savefig('Histogram.png') # Determine Numerical Values df.select_dtypes(['float64', 'int64']).columns # Pairplot variables to visualise inter-variable relationships pair_plot = sns.pairplot(df[['Rooms', 'Price', 'Distance', 'Bathroom', 'Car', 'Landsize','BuildingArea', 'Propertycount', 'YearBuilt', 'Type']], hue = 'Type') pair_plot.savefig('Pairplot.png') fig, ax = plt.subplots(figsize=(15, 15)) heat_map = sns.heatmap(df[df['Type'] == 'h'].corr(), cmap='jet', annot=True) plt.savefig('Heatmap.png')
code
17132420/cell_33
[ "image_output_1.png" ]
from scipy import stats from sklearn import metrics from sklearn.ensemble import GradientBoostingRegressor import numpy as np max_r2 = 0 for i in np.linspace(0.1, 1, 50): gbr = GradientBoostingRegressor(learning_rate=i) gbr.fit(x_train, y_train) y_pred = gbr.predict(x_test) print('For learning rate i: %0.2f' % i) print('Gradient Boosting Regression MAE: %0.5f' % metrics.mean_absolute_error(y_test, y_pred)) print('Gradient Boosting MSE:%0.5f' % metrics.mean_squared_error(y_test, y_pred)) print('Gradient Boosting RMSE:%0.5f' % np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('Gradient Boosting R^2: %0.5f' % metrics.explained_variance_score(y_test, y_pred)) print('---------------------------------') if metrics.explained_variance_score(y_test, y_pred) > max_r2: max_r2 = metrics.explained_variance_score(y_test, y_pred) max_i = i y_pred_gbr = y_pred se_gbr = stats.sem(y_pred_gbr) print('Max R^2 is: %0.5f' % max_r2, 'with learning rate: %0.2f' % max_i)
code
17132420/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df.info()
code
17132420/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df.describe().transpose()
code
17132420/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df = df[df['BuildingArea'] != 0] df = df[df['YearBuilt'] > 1835] df.isnull().sum() df.dropna(inplace=True) num_bins = 50 n, bins, patches = plt.hist(df.Price, num_bins, color='b', alpha=0.5, histtype='bar', ec='black') plt.ylabel('Frequency') plt.xlabel('Price ($)') plt.xlim([0, 6000000]) plt.title('Histogram House Prices') plt.show() plt.savefig('Histogram.png')
code
17132420/cell_8
[ "image_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df.head(100)
code
17132420/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') change_objects = ['Suburb', 'Address', 'Type', 'Method', 'SellerG', 'CouncilArea', 'Regionname'] for colname in change_objects: df[colname] = df[colname].astype('category') change_numeric = ['Postcode'] for colname in change_numeric: df[colname] = df[colname].astype('category') df['Date'] = pd.to_datetime(df['Date']) df['Rooms v Bedroom2'] = df['Rooms'] - df['Bedroom2'] df = df.drop(['Bedroom2', 'Rooms v Bedroom2'], 1) df = df[df['BuildingArea'] != 0] df = df[df['YearBuilt'] > 1835] df.isnull().sum()
code
17132420/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') df.info()
code
17132420/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import re import math import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from scipy import stats from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LassoCV from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import GradientBoostingRegressor df = pd.read_csv('../input/Melbourne_housing_FULL.csv') df.info()
code
130008558/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() dataset = df.astype('float32') scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(dataset) print(scaled[:10])
code
130008558/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() len(df[df['Passengers'] == 0])
code
130008558/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() print(df[df.isnull().any(axis=1)][null_columns].head())
code
130008558/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) print('Total rows: {}'.format(len(df))) df.head()
code
130008558/cell_23
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() dataset = df.astype('float32') scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(dataset) train_size = int(len(scaled) * 0.7) test_size = len(scaled - train_size) train, test = (scaled[0:train_size, :], scaled[train_size:len(scaled), :]) print('train: {}\ntest: {}'.format(len(train), len(test)))
code
130008558/cell_20
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() dataset = df.astype('float32') scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(dataset) print('Min', np.min(scaled)) print('Max', np.max(scaled))
code
130008558/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.plot()
code
130008558/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') print(df.head()) df.plot()
code
130008558/cell_11
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum()
code
130008558/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
from matplotlib import pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import GRU, Dense from keras.layers import LSTM from keras import callbacks from keras import optimizers import pandas as pd import tensorflow as tf import numpy as np
code
130008558/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum()
code
130008558/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum()
code