path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
130008558/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() print('Min', np.min(df)) print('Max', np.max(df))
code
130008558/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() dataset = df.astype('float32') scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(dataset) def create_dataset(dataset, look_back=1): dataX, dataY = ([], []) for i in range(len(dataset) - look_back - 1): a = dataset[i:i + look_back, 0] dataset[i + look_back, 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return (np.array(dataX), np.array(dataY)) look_back = 1 X_train, y_train = create_dataset(train, look_back) X_test, y_test = create_dataset(test, look_back)
code
130008558/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.isnull().sum() null_columns = df.columns[df.isnull().any()] df[null_columns].isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.hist(bins=10)
code
130008558/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/international-airline-passengers/international-airline-passengers.csv', index_col='Month') columns_to_keep = ['Passengers'] df = df[columns_to_keep] df['Passengers'] = df['Passengers'].apply(lambda x: x * 1000) df.index.names = ['Month'] df.sort_index(inplace=True) df.describe()
code
18127716/cell_25
[ "text_html_output_1.png" ]
import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns cal.dtypes cal.drop(['day'], axis=1) cal.dtypes import seaborn as sns import seaborn as sns sns.countplot(x='month', data=cal, hue='Reason', palette='viridis')
code
18127716/cell_4
[ "text_plain_output_1.png" ]
cal['twp'].value_counts().head(5)
code
18127716/cell_23
[ "text_plain_output_1.png" ]
import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns cal.dtypes cal.drop(['day'], axis=1) cal.dtypes import seaborn as sns sns.countplot(x='Day of Week', data=cal, hue='Reason', palette='viridis')
code
18127716/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns cal.dtypes cal.drop(['day'], axis=1) cal.dtypes import seaborn as sns import seaborn as sns byMonth = cal.groupby('month').count() t = cal['timeStamp'].iloc[0] t.date() cal['date'] = cal['timeStamp'].apply(lambda t: t.date()) x = cal.groupby('date').count().head() hr = cal.groupby(by=['Day of Week', 'hour']).count()['Reason'].unstack() sns.heatmap(hr, cmap='viridis')
code
18127716/cell_20
[ "text_plain_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes
code
18127716/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
cal['title']
code
18127716/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() t = cal['timeStamp'].iloc[0] t.date() cal['date'] = cal['timeStamp'].apply(lambda t: t.date()) cal.head()
code
18127716/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() byMonth.head()
code
18127716/cell_2
[ "text_html_output_1.png" ]
cal.head(3)
code
18127716/cell_11
[ "text_plain_output_1.png" ]
cal.head(2)
code
18127716/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns cal = pd.read_csv('../input/911.csv') cal.info()
code
18127716/cell_7
[ "text_plain_output_1.png" ]
def ref_string(code): if 'Fire' in code: return 'Fire' elif 'EMS' in code: return 'EMS' elif 'Traffic' in code: return 'Traffic' else: return False cal['Reason'] = cal['title'].apply(lambda x: ref_string(x)) cal['Reason']
code
18127716/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1)
code
18127716/cell_32
[ "text_html_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() t = cal['timeStamp'].iloc[0] t.date() cal['date'] = cal['timeStamp'].apply(lambda t: t.date()) x = cal.groupby('date').count().head() hr = cal.groupby(by=['Day of Week', 'hour']).count()['Reason'].unstack() print(hr)
code
18127716/cell_28
[ "text_plain_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() t = cal['timeStamp'].iloc[0] t.date()
code
18127716/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
cal['Reason'].max()
code
18127716/cell_15
[ "text_plain_output_1.png" ]
cal.dtypes time = cal['timeStamp'].iloc[0] time.dayofweek
code
18127716/cell_16
[ "text_plain_output_1.png" ]
cal.dtypes time = cal['timeStamp'].iloc[0] time.dayofweek cal['hour'] = cal['timeStamp'].apply(lambda time: time.hour) cal['month'] = cal['timeStamp'].apply(lambda time: time.month) cal['Day of Week'] = cal['timeStamp'].apply(lambda time: time.dayofweek) cal['month'] cal['hour'] cal['Day of Week']
code
18127716/cell_3
[ "text_plain_output_1.png" ]
cal['zip'].value_counts().head(5)
code
18127716/cell_17
[ "text_plain_output_1.png" ]
cal.dtypes cal.head(2)
code
18127716/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() t = cal['timeStamp'].iloc[0] t.date() cal['date'] = cal['timeStamp'].apply(lambda t: t.date()) x = cal.groupby('date').count().head() x['lat'].plot()
code
18127716/cell_24
[ "text_plain_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes cal['month']
code
18127716/cell_14
[ "text_plain_output_1.png" ]
cal.dtypes cal.info()
code
18127716/cell_22
[ "text_plain_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes cal['Day of Week']
code
18127716/cell_10
[ "text_html_output_1.png" ]
import seaborn as sns import seaborn as sns import seaborn as sns sns.countplot(x='Reason', data=cal)
code
18127716/cell_27
[ "text_plain_output_1.png" ]
cal.dtypes cal.drop(['day'], axis=1) cal.dtypes byMonth = cal.groupby('month').count() byMonth['lat'].plot()
code
18127716/cell_12
[ "text_plain_output_1.png" ]
cal.dtypes
code
18127716/cell_5
[ "text_html_output_1.png" ]
cal['title'].nunique()
code
128005859/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) svm = SVC() svm.fit(X_train, y_train) y_train_pred = svm.predict(X_train) y_test_pred = svm.predict(X_test) train_acc_svm = accuracy_score(y_train, y_train_pred) test_acc_svm = accuracy_score(y_test, y_test_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_train_pred = lr.predict(X_train) y_test_pred = lr.predict(X_test) train_acc_lr = accuracy_score(y_train, y_train_pred) test_acc_lr = accuracy_score(y_test, y_test_pred) print('Potential of overfitting for KNN: ', train_acc_knn - test_acc_knn) print('Potential of overfitting for Decision Tree: ', train_acc_dt - test_acc_dt) print('Potential of overfitting for SVM: ', train_acc_svm - test_acc_svm) print('Potential of overfitting for Logistic Regression: ', train_acc_lr - test_acc_lr)
code
128005859/cell_13
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) data
code
128005859/cell_23
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) svm = SVC() svm.fit(X_train, y_train) y_train_pred = svm.predict(X_train) y_test_pred = svm.predict(X_test) train_acc_svm = accuracy_score(y_train, y_train_pred) test_acc_svm = accuracy_score(y_test, y_test_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_train_pred = lr.predict(X_train) y_test_pred = lr.predict(X_test) train_acc_lr = accuracy_score(y_train, y_train_pred) test_acc_lr = accuracy_score(y_test, y_test_pred) from sklearn.metrics import confusion_matrix knn_cm = confusion_matrix(y_test, y_test_pred) print('KNN confusion matrix:\n', knn_cm) dt_cm = confusion_matrix(y_test, y_test_pred) print('Decision Tree confusion matrix:\n', dt_cm) svm_cm = confusion_matrix(y_test, y_test_pred) print('SVM confusion matrix:\n', svm_cm) lr_cm = confusion_matrix(y_test, y_test_pred) print('Logistic Regression confusion matrix:\n', lr_cm)
code
128005859/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape data
code
128005859/cell_19
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) svm = SVC() svm.fit(X_train, y_train) y_train_pred = svm.predict(X_train) y_test_pred = svm.predict(X_test) train_acc_svm = accuracy_score(y_train, y_train_pred) test_acc_svm = accuracy_score(y_test, y_test_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_train_pred = lr.predict(X_train) y_test_pred = lr.predict(X_test) train_acc_lr = accuracy_score(y_train, y_train_pred) test_acc_lr = accuracy_score(y_test, y_test_pred) print('Training accuracy of Logistic Regression: ', train_acc_lr) print('Testing accuracy of Logistic Regression: ', test_acc_lr)
code
128005859/cell_18
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) svm = SVC() svm.fit(X_train, y_train) y_train_pred = svm.predict(X_train) y_test_pred = svm.predict(X_test) train_acc_svm = accuracy_score(y_train, y_train_pred) test_acc_svm = accuracy_score(y_test, y_test_pred) print('Training accuracy of SVM: ', train_acc_svm) print('Testing accuracy of SVM: ', test_acc_svm)
code
128005859/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape
code
128005859/cell_16
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) print('Training accuracy of KNN: ', train_acc_knn) print('Testing accuracy of KNN: ', test_acc_knn)
code
128005859/cell_17
[ "text_html_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) print('Training accuracy of Decision Tree: ', train_acc_dt) print('Testing accuracy of Decision Tree: ', test_acc_dt)
code
128005859/cell_24
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_train_pred = knn.predict(X_train) y_test_pred = knn.predict(X_test) train_acc_knn = accuracy_score(y_train, y_train_pred) test_acc_knn = accuracy_score(y_test, y_test_pred) dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_train_pred = dt.predict(X_train) y_test_pred = dt.predict(X_test) train_acc_dt = accuracy_score(y_train, y_train_pred) test_acc_dt = accuracy_score(y_test, y_test_pred) svm = SVC() svm.fit(X_train, y_train) y_train_pred = svm.predict(X_train) y_test_pred = svm.predict(X_test) train_acc_svm = accuracy_score(y_train, y_train_pred) test_acc_svm = accuracy_score(y_test, y_test_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_train_pred = lr.predict(X_train) y_test_pred = lr.predict(X_test) train_acc_lr = accuracy_score(y_train, y_train_pred) test_acc_lr = accuracy_score(y_test, y_test_pred) from sklearn.metrics import recall_score knn_recall = recall_score(y_test, y_test_pred) print('KNN recall score:', knn_recall) dt_recall = recall_score(y_test, y_test_pred) print('Decision Tree recall score:', dt_recall) svm_recall = recall_score(y_test, y_test_pred) print('SVM recall score:', svm_recall) lr_recall = recall_score(y_test, y_test_pred) print('Logistic Regression recall score:', lr_recall)
code
128005859/cell_27
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape le = LabelEncoder() data['Gender'] = le.fit_transform(data['Gender']) data['Married'] = le.fit_transform(data['Married']) data['Dependents'] = le.fit_transform(data['Dependents']) data['Education'] = le.fit_transform(data['Education']) data['Self_Employed'] = le.fit_transform(data['Self_Employed']) data['Property_Area'] = le.fit_transform(data['Property_Area']) data['Loan_Status'] = le.fit_transform(data['Loan_Status']) new_data = pd.read_csv('/path/to/new/data.csv') new_data.drop('Loan_ID', axis=1, inplace=True) new_data['Gender'] = le.transform(new_data['Gender']) new_data['Married'] = le.transform(new_data['Married']) new_data['Education'] = le.transform(new_data['Education']) new_data['Self_Employed'] = le.transform(new_data['Self_Employed']) new_data['Property_Area'] = le.transform(new_data['Property_Area'])
code
128005859/cell_12
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape data = data.dropna() data.shape X = data.drop('Loan_Status', axis=1) y = data['Loan_Status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print('Training set shape:', X_train.shape) print('Testing set shape:', X_test.shape)
code
128005859/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/loan-data-set/loan_data_set.csv') data.drop('Loan_ID', axis=1, inplace=True) data.shape
code
105177694/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv') data.head()
code
105177694/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105177694/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/hr-analytics-job-change-of-data-scientists/aug_train.csv') import seaborn as sns plt.figure(figsize=(10, 10)) sns.heatmap(data.isna())
code
104115351/cell_4
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import datasets from sklearn.multiclass import OutputCodeClassifier from sklearn.svm import LinearSVC from sklearn import datasets from sklearn.multiclass import OutputCodeClassifier from sklearn.svm import LinearSVC X, y = datasets.load_iris(return_X_y=True) clf = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) clf.fit(X, y).predict(X)
code
104115351/cell_7
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from skmultilearn.problem_transform import BinaryRelevance from skmultilearn.problem_transform import BinaryRelevance from sklearn.naive_bayes import GaussianNB classifier = BinaryRelevance(GaussianNB()) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) classifier.fit(X_train, y_train) predictions = classifier.predict(X_test) predictions
code
2010421/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.describe(include='all')
code
2010421/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import tensorflow as tf
code
2010421/cell_8
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['Cabin', 'Ticket'], axis=1) test = test.drop(['Cabin', 'Ticket'], axis=1) train.head()
code
2010421/cell_3
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
2010421/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['Cabin', 'Ticket'], axis=1) test = test.drop(['Cabin', 'Ticket'], axis=1) train['Name'] = train.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) test['Name'] = test.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) train.head()
code
2010421/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.describe(include='all')
code
89132121/cell_42
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Day_of_week')
code
89132121/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert RTA_Data.hist()
code
89132121/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') plt.figure(figsize=(10, 10)) sns.heatmap(RTA_Data.isnull(), cmap='binary')
code
89132121/cell_57
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Driving_experience')
code
89132121/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() def fetchtime(x): return int(x.split(':')[0]) RTA_EDA['Time'] = RTA_EDA['Time'].apply(fetchtime) RTA_EDA
code
89132121/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing sns.distplot(RTA_Data['Number_of_casualties'])
code
89132121/cell_30
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() RTA_EDA['Time'].isnull().sum()
code
89132121/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') RTA_Data.head(10)
code
89132121/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
"""for col in RTA_Data.columns: if RTA_Data[col].dtype == 'object': sns.countplot(y=col,data=RTA_Data) plt.show()"""
code
89132121/cell_65
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Service_year_of_vehicle')
code
89132121/cell_48
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Sex_of_driver')
code
89132121/cell_73
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Road_allignment')
code
89132121/cell_54
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Vehicle_driver_relation')
code
89132121/cell_67
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Defect_of_vehicle')
code
89132121/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert
code
89132121/cell_60
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Type_of_vehicle')
code
89132121/cell_69
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Area_accident_occured')
code
89132121/cell_1
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89132121/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') RTA_Data.info()
code
89132121/cell_45
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Age_band_of_driver')
code
89132121/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert RTA_Data.describe(include='object')
code
89132121/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.figure(figsize=(30, 30)) sns.countplot(RTA_EDA['Time']) plt.xticks(rotation=90)
code
89132121/cell_51
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Educational_level')
code
89132121/cell_62
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Owner_of_vehicle')
code
89132121/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert RTA_Data.describe()
code
89132121/cell_75
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Types_of_Junction')
code
89132121/cell_35
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() def fetchtime(x): return int(x.split(':')[0]) RTA_EDA['Time'] = RTA_EDA['Time'].apply(fetchtime) RTA_EDA def categorizetime(x): if x >= 6 and x < 18: return 'Day' elif x < 6 or x >= 18: return 'Night' RTA_EDA['Time'] = RTA_EDA['Time'].apply(categorizetime) RTA_EDA
code
89132121/cell_77
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Road_surface_type')
code
89132121/cell_31
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() RTA_EDA['Time'].unique()
code
89132121/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert mask = df_null_pert['Percentage'] >= 20 df_null_pert[mask]
code
89132121/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert sns.distplot(RTA_Data['Number_of_vehicles_involved']) num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing
code
89132121/cell_37
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) plt.figure(figsize=(10, 10)) sns.countplot(x=RTA_EDA['Time'])
code
89132121/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert miss_val_col
code
89132121/cell_71
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() plt.xticks(rotation=90) RTA_Data_time = RTA_EDA.copy() def catDistribution(col_name): plt.xticks(rotation=90) catDistribution('Lanes_or_Medians')
code
89132121/cell_36
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', None) RTA_Data = pd.read_csv('../input/road-traffic-accidents/RTA Dataset.csv') cols = [] per = [] miss_val_col = [] for col in RTA_Data.columns: cols.append(col) pert = RTA_Data[col].isnull().sum() / RTA_Data.shape[0] * 100 per.append(pert) if RTA_Data[col].isnull().sum() > 0: miss_val_col.append(col) df_null_pert = pd.DataFrame({'columns': cols, 'Percentage': per}) df_null_pert num_missing = (RTA_Data.iloc[:, 0:31] == 0).sum() num_missing oginal_data = RTA_Data.copy() RTA_EDA = oginal_data.copy() RTA_EDA['Time'].unique()
code
104127064/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2)
code
104127064/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df
code
104127064/cell_33
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data x = shuffle_data.drop('Survived', axis=1) y = shuffle_data['Survived'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lo = LogisticRegression() lo.fit(x_train, y_train)
code
104127064/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data x = shuffle_data.drop('Survived', axis=1) y = shuffle_data['Survived'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lo = LogisticRegression() lo.fit(x_train, y_train) y_pred = lo.predict(x_test) metrics.accuracy_score(y_test, y_pred)
code
104127064/cell_26
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) data
code
104127064/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2)
code
104127064/cell_19
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col df
code
104127064/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104127064/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col
code