path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72062410/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen.info()
code
72062410/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_drop_unrated = ramen_drop_unrated[ramen_drop_unrated['Stars'] != 'Unrated'] ramen_drop_unrated.groupby('Style')['rating'].mean()
code
72062410/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72062410/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen['Stars']
code
72062410/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_drop_unrated = ramen_drop_unrated[ramen_drop_unrated['Stars'] != 'Unrated'] ramen_drop_unrated['rating'].max()
code
72062410/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen[['Stars']]
code
72062410/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_drop_unrated = ramen_drop_unrated[ramen_drop_unrated['Stars'] != 'Unrated'] ramen_drop_unrated.groupby('Style')['rating'].mean() ramen_drop_unrated.groupby('Country')['rating'].mean().sort_values() ramen_drop_unrated.groupby('Brand')['rating'].count().sort_values(ascending=False)[:25]
code
72062410/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen['Style'].unique()
code
72062410/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') import seaborn as sns sns.countplot(x='Style', data=ramen)
code
72062410/cell_5
[ "text_plain_output_1.png" ]
farbe = 'grün' farbe = 'blau' print(farbe)
code
130014142/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') target = data.pop('income') data = data.drop('relationship', axis=1) data.hist(figsize=(10, 10))
code
130014142/cell_23
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler,OneHotEncoder import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') target = data.pop('income') data = data.drop('relationship', axis=1) one_hot = OneHotEncoder() ss = StandardScaler() def trans_one_hot(column): trans = one_hot.fit_transform(data[column].values.reshape(-1, 1)) array_name = trans.toarray().astype(int) return array_name def trans_normalize(column): trans = ss.fit_transform(data[column].values.reshape(-1, 1)) return trans txt_arr = np.concatenate((trans_one_hot('workclass'), trans_one_hot('education'), trans_one_hot('marital.status'), trans_one_hot('occupation'), trans_one_hot('relationship_change'), trans_one_hot('race'), trans_one_hot('sex'), trans_one_hot('native.country')), axis=1) num_arr = np.concatenate((trans_normalize('age'), trans_normalize('fnlwgt'), trans_normalize('education.num'), trans_normalize('capital.gain'), trans_normalize('capital.loss'), trans_normalize('hours.per.week')), axis=1) pred_data = np.concatenate((txt_arr, num_arr), axis=1) pred_pd = pd.DataFrame(pred_data) pred_pd
code
130014142/cell_30
[ "text_html_output_1.png" ]
from sklearn.metrics import confusion_matrix,precision_score,recall_score,f1_score,accuracy_score from sklearn.svm import SVC import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') def performance(y_test, pred, model_name): precision = precision_score(y_test, pred, pos_label='<=50K') recall = recall_score(y_test, pred, pos_label='<=50K') F1 = f1_score(y_test, pred, pos_label='<=50K') CM = confusion_matrix(y_test, pred) accuracy = accuracy_score(y_test, pred) svm = SVC() svm.fit(x_train, y_train) pred_svm = svm.predict(x_test) performance(y_test, pred_svm, 'svm')
code
130014142/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler,OneHotEncoder import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') target = data.pop('income') data = data.drop('relationship', axis=1) one_hot = OneHotEncoder() ss = StandardScaler() def trans_one_hot(column): trans = one_hot.fit_transform(data[column].values.reshape(-1, 1)) array_name = trans.toarray().astype(int) return array_name def trans_normalize(column): trans = ss.fit_transform(data[column].values.reshape(-1, 1)) return trans txt_arr = np.concatenate((trans_one_hot('workclass'), trans_one_hot('education'), trans_one_hot('marital.status'), trans_one_hot('occupation'), trans_one_hot('relationship_change'), trans_one_hot('race'), trans_one_hot('sex'), trans_one_hot('native.country')), axis=1) num_arr = np.concatenate((trans_normalize('age'), trans_normalize('fnlwgt'), trans_normalize('education.num'), trans_normalize('capital.gain'), trans_normalize('capital.loss'), trans_normalize('hours.per.week')), axis=1)
code
130014142/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns
code
130014142/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix,precision_score,recall_score,f1_score,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') def performance(y_test, pred, model_name): precision = precision_score(y_test, pred, pos_label='<=50K') recall = recall_score(y_test, pred, pos_label='<=50K') F1 = f1_score(y_test, pred, pos_label='<=50K') CM = confusion_matrix(y_test, pred) accuracy = accuracy_score(y_test, pred) rf = RandomForestClassifier() rf.fit(x_train, y_train) pred_rf = rf.predict(x_test) performance(y_test, pred_rf, 'rf')
code
130014142/cell_28
[ "text_plain_output_1.png" ]
from sklearn.svm import SVC svm = SVC() svm.fit(x_train, y_train)
code
130014142/cell_16
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
txt_col = ['workclass', 'education', 'marital.status', 'occupation', 'relationship_change', 'race', 'sex', 'native.country'] from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder num_col = ['age', 'fnlwgt', 'education.num', 'capital.gain', 'capital.loss', 'hours.per.week'] (num_col, txt_col)
code
130014142/cell_3
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') data
code
130014142/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') sns.heatmap(data.corr(), cmap='Blues', annot=True)
code
90108440/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90108440/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt plt.imshow(num[0], cmap='inferno')
code
324025/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import xgboost as xgb dtrain = xgb.DMatrix(X_train, y_train) dvalid = xgb.DMatrix(X_test, y_test) watchlist = [(dtrain, 'train'), (dvalid, 'eval')] params = {'objective': 'reg:linear', 'eval_metric': 'rmse', 'eta': 0.01, 'max_depth': 6, 'silent': 1, 'nthread': 1} num_boost_round = 100 gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, verbose_eval=True) y_pred = gbm.predict(dvalid) np.sqrt(np.mean((y_pred - y_test) ** 2))
code
324025/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
324025/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import xgboost as xgb from sklearn import datasets from sklearn.cross_validation import train_test_split
code
324025/cell_5
[ "text_plain_output_1.png" ]
import xgboost as xgb dtrain = xgb.DMatrix(X_train, y_train) dvalid = xgb.DMatrix(X_test, y_test) watchlist = [(dtrain, 'train'), (dvalid, 'eval')] params = {'objective': 'reg:linear', 'eval_metric': 'rmse', 'eta': 0.01, 'max_depth': 6, 'silent': 1, 'nthread': 1} num_boost_round = 100 gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, verbose_eval=True) y_pred = gbm.predict(dvalid)
code
128035508/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor tree_regressor = DecisionTreeRegressor(random_state=0) tree_regressor.fit(X_train, Y_train)
code
128035508/cell_6
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression Logistic_R = LogisticRegression() Logistic_R.fit(X_train, Y_train)
code
128035508/cell_7
[ "text_html_output_1.png" ]
from sklearn.svm import SVR svr_regressor = SVR(kernel='rbf', gamma='auto') svr_regressor.fit(X_train, Y_train)
code
128035508/cell_18
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor import pickle knn = KNeighborsRegressor(n_neighbors=2) knn.fit(X_train, Y_train) Logistic_R = LogisticRegression() Logistic_R.fit(X_train, Y_train) svr_regressor = SVR(kernel='rbf', gamma='auto') svr_regressor.fit(X_train, Y_train) lr = LinearRegression() lr.fit(X_train, Y_train) tree_regressor = DecisionTreeRegressor(random_state=0) tree_regressor.fit(X_train, Y_train) forest_regressor = RandomForestRegressor(n_estimators=300, random_state=0) forest_regressor.fit(X_train, Y_train) knn_sav = pickle.dumps(knn) knn_mod = pickle.loads(knn_sav) lr_sav = pickle.dumps(lr) lr_mod = pickle.loads(lr_sav) Logistic_R_sav = pickle.dumps(Logistic_R) log_mod = pickle.loads(Logistic_R_sav) svr_sav = pickle.dumps(svr_regressor) svr_mod = pickle.loads(svr_sav) tree_regressor_sav = pickle.dumps(tree_regressor) tree_mod = pickle.loads(tree_regressor_sav) forest_regressor_sav = pickle.dumps(forest_regressor) fr_mod = pickle.loads(forest_regressor_sav) from tkinter import * def predict(choice): try: a = float(int1.get()) b = float(int2.get()) if choice.get() == 1: pred = lr_mod.predict([[a, b]]) if choice.get() == 2: pred = log_mod.predict([[a, b]]) if choice.get() == 3: pred = svr_mod.predict([[a, b]]) if choice.get() == 4: pred = knn_mod.predict([[a, b]]) if choice.get() == 5: pred = tree_mod.predict([[a, b]]) if choice.get() == 6: pred = fr_mod.predict([[a, b]]) res = str(pred[0]) T.insert(END, bool(res)) except: if choice.get() <= 0: res = 'Choose the regression algorithm' else: res = 'INVALID INPUT' T.insert(END, res) root = Tk() root.geometry('400x250') frame = Frame(root) frame.pack() fr = Frame(root) fr.pack() int1 = StringVar() int2 = StringVar() choice = IntVar() label1 = Label(frame, text='CGPA:').grid(row=0) label2 = Label(frame, text='Placement Exam Marks:').grid(row=1) e1 = Entry(frame, textvariable=int1) e2 = Entry(frame, textvariable=int2) e1.grid(row=0, column=1) e2.grid(row=1, column=1) r1 = Radiobutton(fr, text='LR', variable=choice, value=1) r1.grid(row=0, column=0) r2 = Radiobutton(fr, text='LOG', variable=choice, value=2) r2.grid(row=0, column=1) r3 = Radiobutton(fr, text='SVM', variable=choice, value=3) r3.grid(row=0, column=2) r4 = Radiobutton(fr, text='KNN', variable=choice, value=4) r4.grid(row=1, column=0) r5 = Radiobutton(fr, text='DTR', variable=choice, value=5) r5.grid(row=1, column=1) r6 = Radiobutton(fr, text='RFR', variable=choice, value=6) r6.grid(row=1, column=2) Button = Button(root, text='IS Placed', command=lambda: predict(choice), activebackground='red') Button.pack() T = Text(root, height=2, width=32) T.pack() root.mainloop()
code
128035508/cell_8
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression lr = LinearRegression() lr.fit(X_train, Y_train)
code
128035508/cell_10
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor forest_regressor = RandomForestRegressor(n_estimators=300, random_state=0) forest_regressor.fit(X_train, Y_train)
code
128035508/cell_5
[ "text_html_output_1.png" ]
from sklearn.neighbors import KNeighborsRegressor knn = KNeighborsRegressor(n_neighbors=2) knn.fit(X_train, Y_train)
code
90129425/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.head()
code
90129425/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] numerical_features = [] categorical_features = [] for col in data: if (data[col].dtype == int) | (data[col].dtype == float): numerical_features.append(col) else: categorical_features.append(col) categorical_numerical_features = [] for feature in categorical_numerical_features: numerical_features.remove(feature) catergorical_features.append(feature) print(f'Numerical features:\n {numerical_features}\n') print(f'Categorical features\n {categorical_features}')
code
90129425/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] numerical_features = [] categorical_features = [] for col in data: if (data[col].dtype == int) | (data[col].dtype == float): numerical_features.append(col) else: categorical_features.append(col) print(f'Numerical features: {numerical_features}') print(f'Categorical features {categorical_features}')
code
90129425/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] data.corr()[data.corr()['SalePrice'] > 0][['SalePrice']].sort_values(by='SalePrice', ascending=False)
code
90129425/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] plt.figure(figsize=(24, 12)) sns.heatmap(test_data.isnull(), cmap='mako')
code
90129425/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: print(f'{col}: {data[data[col].notnull()][col].count() / len(data) * 100:.4f}%') if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col)
code
90129425/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] numerical_features = [] categorical_features = [] for col in data: if (data[col].dtype == int) | (data[col].dtype == float): numerical_features.append(col) else: categorical_features.append(col) for feature in categorical_features: print(f"{feature}: (Unique Count = {len(data[feature].unique())})\n\n{data[feature].unique()}\n\n{'*' * 75}")
code
90129425/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] plt.figure(figsize=(24, 12)) sns.heatmap(test_data[[col for col in columns_to_model if col != 'SalePrice']].isnull(), cmap='mako')
code
90129425/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T plt.figure(figsize=(24, 12)) sns.heatmap(data.isnull(), cmap='mako')
code
90129425/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] plt.figure(figsize=(24, 12)) sns.heatmap(data.corr(), cmap='coolwarm', annot=True)
code
90129425/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics import itertools
code
90129425/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] data
code
90129425/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] plt.figure(figsize=(24, 12)) sns.heatmap(data.isnull(), cmap='mako')
code
90129425/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.info()
code
90129425/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T columns_to_drop = [] columns_to_model = [] non_sparse_column_percentage = 90 for col in data.columns: if data[data[col].notnull()][col].count() / len(data) * 100 != 100: if data[data[col].notnull()][col].count() / len(data) * 100 < non_sparse_column_percentage: columns_to_drop.append(col) else: columns_to_model.append(col) else: columns_to_model.append(col) data = data[columns_to_model] for col in columns_to_model: data = data[data[col].notnull()] for col in test_data.columns: if test_data[test_data[col].notnull()][col].count() / len(test_data) * 100 != 100: print(f'{col}: {test_data[test_data[col].notnull()][col].count() / len(test_data) * 100:.4f}%')
code
90129425/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') data.describe().T
code
74051961/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique()
code
74051961/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape
code
74051961/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] treatment.shape[0]
code
74051961/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) print('Day 1 retention rate for the control group is {} and for the treatment group is {}'.format(contr_d1, trtm_d1))
code
74051961/cell_44
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns sns.set_style('white') plt.rc('axes', titlesize=13) plt.rc('axes', labelsize=12) plt.rc('xtick', labelsize=11) plt.rc('ytick', labelsize=11) plt.rc('legend', fontsize=11) plt.rc('font', size=10) path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) contr_d7 = '{0:.2f}%'.format(control.retention_7.mean() * 100) trtm_d7 = '{0:.2f}%'.format(treatment.retention_7.mean() * 100) retention_1_30 = control.retention_1.mean() retention_1_40 = treatment.retention_1.mean() obs_diff_1 = retention_1_40 - retention_1_30 diffs_1 = [] for i in range(10000): boot_sample = df.sample(df.shape[0], replace=True) gate30_df_1 = boot_sample.query('version == "gate_30"')['retention_1'].mean() gate40_df_1 = boot_sample.query('version == "gate_40"')['retention_1'].mean() diffs_1.append(gate40_df_1 - gate30_df_1) #plot the histogram of difference in 1 day retention plt.figure(figsize=(16,5), tight_layout=True) ax = sns.histplot(diffs_1, kde = True, kde_kws = {'bw_method':0.4}) ax.lines[0].set_color('black') plt.ylim(0,600); plt.title('Sampling Distribution for difference between control group\'s Day 1 Retention and treatment group\'s Day 1 Retention') plt.ylabel('Frequency') plt.xlabel('Difference'); null_vals_1 = np.random.normal(0, np.std(diffs_1), len(diffs_1)) p_val_1 = (null_vals_1 > obs_diff_1).mean() p_form_1 = '{0:.2f}%'.format(p_val_1 * 100) plt.figure(figsize=(16, 5), tight_layout=True) ax = sns.histplot(null_vals_1, kde=True, kde_kws={'bw_method': 0.4}) ax.lines[0].set_color('black') plt.axvline(obs_diff_1, color='r') plt.text(0.008, 500, 'P-value = {}'.format(p_form_1), color='black', size=15) plt.ylim(0, 600) plt.title('Simulated Distribution under the Null Hypothesis') plt.ylabel('Frequency')
code
74051961/cell_40
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set_style('white') plt.rc('axes', titlesize=13) plt.rc('axes', labelsize=12) plt.rc('xtick', labelsize=11) plt.rc('ytick', labelsize=11) plt.rc('legend', fontsize=11) plt.rc('font', size=10) path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() diffs_1 = [] for i in range(10000): boot_sample = df.sample(df.shape[0], replace=True) gate30_df_1 = boot_sample.query('version == "gate_30"')['retention_1'].mean() gate40_df_1 = boot_sample.query('version == "gate_40"')['retention_1'].mean() diffs_1.append(gate40_df_1 - gate30_df_1) plt.figure(figsize=(16, 5), tight_layout=True) ax = sns.histplot(diffs_1, kde=True, kde_kws={'bw_method': 0.4}) ax.lines[0].set_color('black') plt.ylim(0, 600) plt.title("Sampling Distribution for difference between control group's Day 1 Retention and treatment group's Day 1 Retention") plt.ylabel('Frequency') plt.xlabel('Difference')
code
74051961/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() control = df[df['version'] == 'gate_30'] control.shape[0]
code
74051961/cell_48
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) contr_d7 = '{0:.2f}%'.format(control.retention_7.mean() * 100) trtm_d7 = '{0:.2f}%'.format(treatment.retention_7.mean() * 100) retention_1_30 = control.retention_1.mean() retention_1_40 = treatment.retention_1.mean() obs_diff_1 = retention_1_40 - retention_1_30 retention_7_30 = control.retention_7.mean() retention_7_40 = treatment.retention_7.mean() obs_diff_7 = retention_7_40 - retention_7_30 print('Day 7 Retention rate in the control group is {}'.format(retention_7_30)) print('Day 7 Retention rate in the treatment group is {}'.format(retention_7_40)) print("The difference between control group's Day 7 Retention rate and treatment group's Day 7 retention is {}".format(obs_diff_7))
code
74051961/cell_19
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.describe()
code
74051961/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes
code
74051961/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.info()
code
74051961/cell_43
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) contr_d7 = '{0:.2f}%'.format(control.retention_7.mean() * 100) trtm_d7 = '{0:.2f}%'.format(treatment.retention_7.mean() * 100) retention_1_30 = control.retention_1.mean() retention_1_40 = treatment.retention_1.mean() obs_diff_1 = retention_1_40 - retention_1_30 diffs_1 = [] for i in range(10000): boot_sample = df.sample(df.shape[0], replace=True) gate30_df_1 = boot_sample.query('version == "gate_30"')['retention_1'].mean() gate40_df_1 = boot_sample.query('version == "gate_40"')['retention_1'].mean() diffs_1.append(gate40_df_1 - gate30_df_1) null_vals_1 = np.random.normal(0, np.std(diffs_1), len(diffs_1)) p_val_1 = (null_vals_1 > obs_diff_1).mean() p_form_1 = '{0:.2f}%'.format(p_val_1 * 100) print('P-value is equal to {}'.format(p_form_1))
code
74051961/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) contr_d7 = '{0:.2f}%'.format(control.retention_7.mean() * 100) trtm_d7 = '{0:.2f}%'.format(treatment.retention_7.mean() * 100) print('Day 7 retention rate for the control group is {} and for the treatment group is {}'.format(contr_d7, trtm_d7))
code
74051961/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape if df.userid.nunique() == df.shape[0]: print('There are no duplicated user ids in the dataset') else: print('There are some duplicated user ids in the dataset')
code
74051961/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.shape df.userid = df.userid.astype(str) df.userid.dtypes df.version.unique() treatment = df[df['version'] == 'gate_40'] control = df[df['version'] == 'gate_30'] treatment.shape[0] control.shape[0] contr_d1 = '{0:.2f}%'.format(control.retention_1.mean() * 100) trtm_d1 = '{0:.2f}%'.format(treatment.retention_1.mean() * 100) contr_d7 = '{0:.2f}%'.format(control.retention_7.mean() * 100) trtm_d7 = '{0:.2f}%'.format(treatment.retention_7.mean() * 100) retention_1_30 = control.retention_1.mean() retention_1_40 = treatment.retention_1.mean() obs_diff_1 = retention_1_40 - retention_1_30 print('Day 1 Retention rate in the control group is {}'.format(retention_1_30)) print('Day 1 Retention rate in the treatment group is {}'.format(retention_1_40)) print('The difference in Day 1 Retention rate between control and treatment group is {}'.format(obs_diff_1))
code
74051961/cell_12
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/mobile-games-ab-testing/cookie_cats.csv' df = pd.read_csv(path) df.head()
code
122245085/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape px.box(df['count']) px.box(df, x='workingday', y='count')
code
122245085/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape df.head()
code
122245085/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.head()
code
122245085/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape round(df.corr(), 2) sns.heatmap(df.corr(), linewidths=0.5)
code
122245085/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.describe()
code
122245085/cell_1
[ "text_plain_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode, download_plotlyjs, plot import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from plotly import tools from plotly.subplots import make_subplots from plotly.offline import iplot, init_notebook_mode, download_plotlyjs, plot init_notebook_mode(connected=True)
code
122245085/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape
code
122245085/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape px.box(df['count']) px.box(df, x='workingday', y='count') Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape px.box(df['count'])
code
122245085/cell_28
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape sns.heatmap(df.isnull())
code
122245085/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape px.box(df['count'])
code
122245085/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape
code
122245085/cell_31
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape round(df.corr(), 2)
code
122245085/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR print('Interquartile range is', IQR) print('upper fence is', upper_fence) print('lower fence is', lower_fence)
code
122245085/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.info()
code
122245085/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns df = pd.read_csv('/kaggle/input/yulu-bike-sharing-data/yulu_bike_sharing_dataset.csv') df.shape px.box(df['count']) px.box(df, x='workingday', y='count') Q1 = df['count'].quantile(0.25) Q3 = df['count'].quantile(0.75) IQR = Q3 - Q1 upper_fence = Q3 + 1.5 * IQR lower_fence = Q1 - 1.5 * IQR df = df[(df['count'] > lower_fence) & (df['count'] < upper_fence)] df.shape px.box(df['count']) round(df.corr(), 2) px.pie(df['season'])
code
2014823/cell_9
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data['Title'] = all_data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0] stat_min = 10 title_names = all_data['Title'].value_counts() < stat_min all_data['Title'] = all_data['Title'].apply(lambda x: 'Misc' if title_names.loc[x] == True else x) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) train_cleared = all_data[:train.shape[0]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(train_cleared, train.Survived, random_state=0, test_size=0.1) X_val = all_data[train.shape[0]:] from sklearn import tree from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(random_state=0, max_depth=5) model.fit(X_train, y_train) print('Train score: {:.3f}'.format(model.score(X_train, y_train))) print('Test score: {:.3f}'.format(model.score(X_test, y_test))) decision_tree_predicts = model.predict(X_val)
code
2014823/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.info()
code
2014823/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data['Title'] = all_data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0] stat_min = 10 title_names = all_data['Title'].value_counts() < stat_min all_data['Title'] = all_data['Title'].apply(lambda x: 'Misc' if title_names.loc[x] == True else x) print(all_data['Title'].value_counts()) all_data = all_data.drop(['Name'], axis=1) all_data.info()
code
2014823/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data['Title'] = all_data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0] stat_min = 10 title_names = all_data['Title'].value_counts() < stat_min all_data['Title'] = all_data['Title'].apply(lambda x: 'Misc' if title_names.loc[x] == True else x) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) train_cleared = all_data[:train.shape[0]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(train_cleared, train.Survived, random_state=0, test_size=0.1) X_val = all_data[train.shape[0]:] from sklearn import tree from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(random_state=0, max_depth=5) model.fit(X_train, y_train) decision_tree_predicts = model.predict(X_val) result = pd.DataFrame({'PassengerId': test.PassengerId, 'Survived': decision_tree_predicts}) result.to_csv('DecisionTree.csv', index=False) result.info()
code
2014823/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data['Title'] = all_data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0] stat_min = 10 title_names = all_data['Title'].value_counts() < stat_min all_data['Title'] = all_data['Title'].apply(lambda x: 'Misc' if title_names.loc[x] == True else x) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) all_data.head()
code
2014823/cell_10
[ "text_plain_output_1.png" ]
from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import graphviz import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data['Title'] = all_data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0] stat_min = 10 title_names = all_data['Title'].value_counts() < stat_min all_data['Title'] = all_data['Title'].apply(lambda x: 'Misc' if title_names.loc[x] == True else x) all_data = all_data.drop(['Name'], axis=1) all_data = pd.get_dummies(all_data) train_cleared = all_data[:train.shape[0]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(train_cleared, train.Survived, random_state=0, test_size=0.1) X_val = all_data[train.shape[0]:] from sklearn import tree from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(random_state=0, max_depth=5) model.fit(X_train, y_train) decision_tree_predicts = model.predict(X_val) import graphviz dot_data = tree.export_graphviz(model, out_file=None, feature_names=list(train_cleared), filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph
code
2014823/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) all_data.Age = all_data.Age.fillna(all_data.Age.median()) all_data.Fare = all_data.Fare.fillna(all_data.Fare.median()) all_data.Embarked = all_data.Embarked.fillna(all_data.Embarked.mode()[0]) all_data.info()
code
72073997/cell_42
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) target_pred_for = for_reg.predict(X_test_scaled) target_pred_for
code
72073997/cell_9
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub
code
72073997/cell_25
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) print('RMSE for Linear Regression Model: ', np.sqrt(mse(y_val, y_preds_lr)))
code
72073997/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.head()
code
72073997/cell_23
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) print('X_train data shape: ', X_train_scaled.shape) print('X_val data shape: ', X_val_scaled.shape) print('y_train shape: ', y_train.shape) print('y_val shape: ', y_val.shape)
code
72073997/cell_33
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) target_pred_ridge = ridge.predict(X_test_scaled) target_pred_ridge
code
72073997/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') test.head()
code
72073997/cell_29
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) target_pred_lr = lr.predict(X_test_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_lr['target'] = target_pred_lr sub_lr.to_csv('sub_lr.csv', index=False) sub_lr.head()
code
72073997/cell_48
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) xgb_reg = xgb.XGBRegressor(gpu_id=0, tree_method='gpu_hist') xgb_reg.fit(X_train_scaled, y_train) y_preds_xgb = xgb_reg.predict(X_val_scaled) target_pred_xgb = xgb_reg.predict(X_test_scaled) target_pred_xgb
code
72073997/cell_41
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) print('RMSE for Random Forest Regressor: ', np.sqrt(mse(y_val, y_preds_for)))
code
72073997/cell_19
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_test.info()
code
72073997/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') test.info()
code
72073997/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_test.head()
code