path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
130015002/cell_33
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') test_df.shape test_df['Total Rooms'] = test_df['AveRooms'].apply(lambda x: int(x)) test_df = test_df.drop(['AveRooms'], axis=1) test_df['HouseAge'] = test_df['HouseAge'].apply(lambda x: int(x)) test_df['Bed Rooms'] = test_df['AveBedrms'].apply(lambda x: int(x)) test_df = test_df.drop(['AveBedrms'], axis=1) test_df['AveOccup'] = test_df['AveOccup'].apply(lambda x: int(x)) test_df.head(2)
code
130015002/cell_29
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') test_df.shape
code
130015002/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(random_state=1) reg.fit(X_train, y_train) pred = reg.predict(X_val) from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_val, pred) print('mae : ', mae)
code
130015002/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df = train_df.drop(['AveRooms'], axis=1) train_df = train_df.drop(['AveBedrms'], axis=1) plt.figure(figsize=(12, 10)) sns.heatmap(train_df.corr(), annot=True, cmap='Greens')
code
130015002/cell_41
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') test_df.shape test_df['Total Rooms'] = test_df['AveRooms'].apply(lambda x: int(x)) test_df = test_df.drop(['AveRooms'], axis=1) test_df['HouseAge'] = test_df['HouseAge'].apply(lambda x: int(x)) test_df['Bed Rooms'] = test_df['AveBedrms'].apply(lambda x: int(x)) test_df = test_df.drop(['AveBedrms'], axis=1) test_df['AveOccup'] = test_df['AveOccup'].apply(lambda x: int(x)) from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(random_state=1) reg.fit(X_train, y_train) pred = reg.predict(X_val) prediction = reg.predict(test_df) submission = pd.DataFrame({'id': test_df.id, 'MedHouseVal': prediction}) submission.head()
code
130015002/cell_11
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum()
code
130015002/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.head()
code
130015002/cell_28
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') test_df.head()
code
130015002/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape
code
130015002/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df = train_df.drop(['AveRooms'], axis=1) train_df = train_df.drop(['AveBedrms'], axis=1) plt.figure(figsize=(12, 6)) sns.pairplot(train_df, x_vars=['Total Rooms'], y_vars=['MedHouseVal'], size=7, kind='scatter', hue='AveOccup', palette='Greens_r') plt.xlabel('Total Rooms') plt.ylabel('House Value')
code
130015002/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df.describe()
code
130015002/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df = train_df.drop(['AveRooms'], axis=1) train_df = train_df.drop(['AveBedrms'], axis=1) train_df.head(2)
code
130015002/cell_37
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(random_state=1) reg.fit(X_train, y_train)
code
50227915/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) questions
code
50227915/cell_2
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) print(data.shape) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) data.head()
code
50227915/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.patches as mpatches import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 gender = data[data.columns[2]].value_counts() man = gender['Man'] woman = gender['Woman'] diff_p = (man - woman) / woman * 100 Male = data[data[questions[2]] == 'Man'] Female = data[data[questions[2]] == 'Woman'] fig, ax = plt.subplots() m_age_groups = Male[Male.columns[1]].value_counts().sort_index() sns.barplot(m_age_groups,m_age_groups.index,color="cyan") f_age_groups = Female[Female.columns[1]].value_counts().sort_index() sns.barplot(-1 * f_age_groups,f_age_groups.index,color="salmon") ticks = ax.get_xticks() plt.tight_layout() ax.set_xticklabels([int(abs(tick)) for tick in ticks]) red_patch = mpatches.Patch(color='salmon', label='Female') black_patch = mpatches.Patch(color='cyan', label='Male') plt.legend(handles=[red_patch, black_patch]) plt.show() plt.rcParams['figure.figsize'] = (10, 10) country = data[data.columns[3]].value_counts() perce = country['India'] / country.sum() * 100 ITEM = data[data.columns[4]].value_counts() perc = (ITEM.iloc[0] + ITEM.iloc[0]) / ITEM.sum() * 100 plt.rcParams['figure.figsize'] = (10, 6) prog_lang = data.filter(regex='What programming languages do you use on a regular basis?') desc = prog_lang.describe() prog_count = desc.iloc[0].values prog_names = desc.iloc[2].values prog_df = pd.DataFrame({'Language': prog_names, 'Count': prog_count}) prog_df = prog_df.set_index('Language') prog_df.sort_values(inplace=True, by='Count', ascending=False) sns.barplot(prog_df.Count, prog_df.index) plt.title('What programming languages do you use on a regular basis?') plt.show()
code
50227915/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 gender = data[data.columns[2]].value_counts() sns.barplot(gender, gender.index) man = gender['Man'] woman = gender['Woman'] diff_p = (man - woman) / woman * 100 print(f'Men are more than women in this field by {diff_p}%') plt.show()
code
50227915/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.patches as mpatches import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 gender = data[data.columns[2]].value_counts() man = gender['Man'] woman = gender['Woman'] diff_p = (man - woman) / woman * 100 Male = data[data[questions[2]] == 'Man'] Female = data[data[questions[2]] == 'Woman'] fig, ax = plt.subplots() m_age_groups = Male[Male.columns[1]].value_counts().sort_index() sns.barplot(m_age_groups,m_age_groups.index,color="cyan") f_age_groups = Female[Female.columns[1]].value_counts().sort_index() sns.barplot(-1 * f_age_groups,f_age_groups.index,color="salmon") ticks = ax.get_xticks() plt.tight_layout() ax.set_xticklabels([int(abs(tick)) for tick in ticks]) red_patch = mpatches.Patch(color='salmon', label='Female') black_patch = mpatches.Patch(color='cyan', label='Male') plt.legend(handles=[red_patch, black_patch]) plt.show() plt.rcParams['figure.figsize'] = (10, 10) country = data[data.columns[3]].value_counts() perce = country['India'] / country.sum() * 100 ITEM = data[data.columns[4]].value_counts() perc = (ITEM.iloc[0] + ITEM.iloc[0]) / ITEM.sum() * 100 print(f'Masters and Bachelor graduates constitute {perc}% of the total demographic.') sns.barplot(ITEM, ITEM.index) plt.show()
code
50227915/cell_3
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) print(questions[:15])
code
50227915/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.patches as mpatches import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 gender = data[data.columns[2]].value_counts() man = gender['Man'] woman = gender['Woman'] diff_p = (man - woman) / woman * 100 Male = data[data[questions[2]] == 'Man'] Female = data[data[questions[2]] == 'Woman'] fig, ax = plt.subplots() m_age_groups = Male[Male.columns[1]].value_counts().sort_index() sns.barplot(m_age_groups,m_age_groups.index,color="cyan") f_age_groups = Female[Female.columns[1]].value_counts().sort_index() sns.barplot(-1 * f_age_groups,f_age_groups.index,color="salmon") ticks = ax.get_xticks() plt.tight_layout() ax.set_xticklabels([int(abs(tick)) for tick in ticks]) red_patch = mpatches.Patch(color='salmon', label='Female') black_patch = mpatches.Patch(color='cyan', label='Male') plt.legend(handles=[red_patch, black_patch]) plt.show() plt.rcParams['figure.figsize'] = (10, 10) country = data[data.columns[3]].value_counts() perce = country['India'] / country.sum() * 100 print(f'The percentage of Indians in the DS Community {perce}') sns.barplot(country, country.index) plt.show()
code
50227915/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.patches as mpatches import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 gender = data[data.columns[2]].value_counts() man = gender['Man'] woman = gender['Woman'] diff_p = (man - woman) / woman * 100 Male = data[data[questions[2]] == 'Man'] Female = data[data[questions[2]] == 'Woman'] fig, ax = plt.subplots() m_age_groups = Male[Male.columns[1]].value_counts().sort_index() sns.barplot(m_age_groups, m_age_groups.index, color='cyan') f_age_groups = Female[Female.columns[1]].value_counts().sort_index() sns.barplot(-1 * f_age_groups, f_age_groups.index, color='salmon') ticks = ax.get_xticks() plt.tight_layout() ax.set_xticklabels([int(abs(tick)) for tick in ticks]) red_patch = mpatches.Patch(color='salmon', label='Female') black_patch = mpatches.Patch(color='cyan', label='Male') plt.legend(handles=[red_patch, black_patch]) plt.show()
code
50227915/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import matplotlib.patches as mpatches sns.set_style(style='whitegrid') data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv', low_memory=False) data.columns = data.iloc[0] data.drop(data.index[0], inplace=True) questions = list(data.columns) question_df = pd.DataFrame(data.columns, columns=['questions']) age_groups = data[data.columns[1]].value_counts().sort_index() sns.barplot(age_groups, age_groups.index) mill = age_groups['22-24'] + age_groups['25-29'] mill_percentage = mill / age_groups.sum() * 100 print(f'Millennials in the DS community : {mill}') print(f'% of Millennials in the DS community : {mill_percentage}') plt.show()
code
90155131/cell_13
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras import Model, Sequential from tensorflow.keras.datasets import cifar10 from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.metrics import SparseCategoricalAccuracy from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.regularizers import l2 from tensorflow.keras.utils import plot_model import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation from tensorflow.keras import Model, Sequential from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.optimizers import Adam, SGD from tensorflow import GradientTape from tensorflow.keras.metrics import SparseCategoricalAccuracy from tensorflow.keras.datasets import cifar10 from tensorflow.keras.utils import plot_model import matplotlib.pyplot as plt import numpy as np (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = (x_train / 255.0, x_test / 255.0) data_augmentation = Sequential([RandomFlip('horizontal'), RandomTranslation(height_factor=(-0.1, 0.1), width_factor=(-0.1, 0.1), fill_mode='constant')]) train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32).map(lambda x, y: (data_augmentation(x), y)) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) def show_image(image): plt.colorbar() imagenum = np.random.randint(len(x_train)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.regularizers import l2 from tensorflow.keras import backend as K def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True): """2D Convolution-Batch Normalization-Activation stack builder # Arguments inputs (tensor): input tensor from input image or previous layer num_filters (int): Conv2D number of filters kernel_size (int): Conv2D square kernel dimensions strides (int): Conv2D square stride dimensions activation (string): activation name batch_normalization (bool): whether to include batch normalization conv_first (bool): conv-bn-activation (True) or bn-activation-conv (False) # Returns x (tensor): tensor as input to the next layer """ conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(0.0001)) x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x def resnet_v1(input_shape, depth, num_classes=10): """ResNet Version 1 Model builder [a] Stacks of 2 x (3 x 3) Conv2D-BN-ReLU Last ReLU is after the shortcut connection. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filters is doubled. Within each stage, the layers have the same number filters and the same number of filters. Features maps sizes: stage 0: 32x32, 16 stage 1: 16x16, 32 stage 2: 8x8, 64 The Number of parameters is approx the same as Table 6 of [a]: ResNet20 0.27M ResNet32 0.46M ResNet44 0.66M ResNet56 0.85M ResNet110 1.7M # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 6 != 0: raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])') num_filters = 16 num_res_blocks = int((depth - 2) / 6) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs) for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides) y = resnet_layer(inputs=y, num_filters=num_filters, activation=None) if stack > 0 and res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) x = Activation('relu')(x) num_filters *= 2 x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model def resnet_v2(input_shape, depth, num_classes=10): """ResNet Version 2 Model builder [b] Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as bottleneck layer First shortcut connection per layer is 1 x 1 Conv2D. Second and onwards shortcut connection is identity. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filter maps is doubled. Within each stage, the layers have the same number filters and the same filter map sizes. Features maps sizes: conv1 : 32x32, 16 stage 0: 32x32, 64 stage 1: 16x16, 128 stage 2: 8x8, 256 # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 9 != 0: raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])') num_filters_in = 16 num_res_blocks = int((depth - 2) / 9) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True) for stage in range(3): for res_block in range(num_res_blocks): activation = 'relu' batch_normalization = True strides = 1 if stage == 0: num_filters_out = num_filters_in * 4 if res_block == 0: activation = None batch_normalization = False else: num_filters_out = num_filters_in * 2 if res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters_in, kernel_size=1, strides=strides, activation=activation, batch_normalization=batch_normalization, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_out, kernel_size=1, conv_first=False) if res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters_out, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) num_filters_in = num_filters_out x = BatchNormalization()(x) x = Activation('relu')(x) x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model model = resnet_v1(input_shape=(32, 32, 3), depth=20) def plot_metrics(metric_name, title, append='val_'): plt.xticks(list(range(len(history.history[metric_name])))) model = resnet_v1(input_shape=(32, 32, 3), depth=20) optimizer = SGD(learning_rate=0.01) loss_object = SparseCategoricalCrossentropy(from_logits=False, reduction='sum') accuracy_object = SparseCategoricalAccuracy() model.compile(optimizer=optimizer, loss=loss_object, metrics=[accuracy_object]) with open('template1.txt', 'w') as f: history = model.fit(train_ds, validation_data=test_ds, epochs=10) print(history.history, file=f)
code
90155131/cell_9
[ "image_output_2.png", "image_output_1.png" ]
from tensorflow.keras import Model, Sequential from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.regularizers import l2 from tensorflow.keras.utils import plot_model from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.regularizers import l2 from tensorflow.keras import backend as K def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True): """2D Convolution-Batch Normalization-Activation stack builder # Arguments inputs (tensor): input tensor from input image or previous layer num_filters (int): Conv2D number of filters kernel_size (int): Conv2D square kernel dimensions strides (int): Conv2D square stride dimensions activation (string): activation name batch_normalization (bool): whether to include batch normalization conv_first (bool): conv-bn-activation (True) or bn-activation-conv (False) # Returns x (tensor): tensor as input to the next layer """ conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(0.0001)) x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x def resnet_v1(input_shape, depth, num_classes=10): """ResNet Version 1 Model builder [a] Stacks of 2 x (3 x 3) Conv2D-BN-ReLU Last ReLU is after the shortcut connection. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filters is doubled. Within each stage, the layers have the same number filters and the same number of filters. Features maps sizes: stage 0: 32x32, 16 stage 1: 16x16, 32 stage 2: 8x8, 64 The Number of parameters is approx the same as Table 6 of [a]: ResNet20 0.27M ResNet32 0.46M ResNet44 0.66M ResNet56 0.85M ResNet110 1.7M # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 6 != 0: raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])') num_filters = 16 num_res_blocks = int((depth - 2) / 6) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs) for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides) y = resnet_layer(inputs=y, num_filters=num_filters, activation=None) if stack > 0 and res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) x = Activation('relu')(x) num_filters *= 2 x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model def resnet_v2(input_shape, depth, num_classes=10): """ResNet Version 2 Model builder [b] Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as bottleneck layer First shortcut connection per layer is 1 x 1 Conv2D. Second and onwards shortcut connection is identity. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filter maps is doubled. Within each stage, the layers have the same number filters and the same filter map sizes. Features maps sizes: conv1 : 32x32, 16 stage 0: 32x32, 64 stage 1: 16x16, 128 stage 2: 8x8, 256 # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 9 != 0: raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])') num_filters_in = 16 num_res_blocks = int((depth - 2) / 9) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True) for stage in range(3): for res_block in range(num_res_blocks): activation = 'relu' batch_normalization = True strides = 1 if stage == 0: num_filters_out = num_filters_in * 4 if res_block == 0: activation = None batch_normalization = False else: num_filters_out = num_filters_in * 2 if res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters_in, kernel_size=1, strides=strides, activation=activation, batch_normalization=batch_normalization, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_out, kernel_size=1, conv_first=False) if res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters_out, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) num_filters_in = num_filters_out x = BatchNormalization()(x) x = Activation('relu')(x) x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model model = resnet_v1(input_shape=(32, 32, 3), depth=20) plot_model(model)
code
90155131/cell_18
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np def show_image(image): plt.colorbar() imagenum = np.random.randint(len(x_train)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def plot_metrics(metric_name, title, append='val_'): plt.xticks(list(range(len(history.history[metric_name])))) with plt.xkcd(): plot_metrics(metric_name='loss', title='Plot of Model Loss against number of Epochs', append='test_') plot_metrics(metric_name='acc', title='Plot of Model Accuracy against number of Epochs', append='test_')
code
90155131/cell_16
[ "image_output_1.png" ]
from tensorflow import GradientTape from tensorflow.keras import Model, Sequential from tensorflow.keras.datasets import cifar10 from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.metrics import SparseCategoricalAccuracy from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.regularizers import l2 from tensorflow.keras.utils import plot_model from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation from tensorflow.keras import Model, Sequential from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.optimizers import Adam, SGD from tensorflow import GradientTape from tensorflow.keras.metrics import SparseCategoricalAccuracy from tensorflow.keras.datasets import cifar10 from tensorflow.keras.utils import plot_model import matplotlib.pyplot as plt import numpy as np (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = (x_train / 255.0, x_test / 255.0) data_augmentation = Sequential([RandomFlip('horizontal'), RandomTranslation(height_factor=(-0.1, 0.1), width_factor=(-0.1, 0.1), fill_mode='constant')]) train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32).map(lambda x, y: (data_augmentation(x), y)) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) def show_image(image): plt.colorbar() imagenum = np.random.randint(len(x_train)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] from tensorflow.keras.layers import Add, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, Input, Activation, Dense, Flatten from tensorflow.keras.regularizers import l2 from tensorflow.keras import backend as K def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True): """2D Convolution-Batch Normalization-Activation stack builder # Arguments inputs (tensor): input tensor from input image or previous layer num_filters (int): Conv2D number of filters kernel_size (int): Conv2D square kernel dimensions strides (int): Conv2D square stride dimensions activation (string): activation name batch_normalization (bool): whether to include batch normalization conv_first (bool): conv-bn-activation (True) or bn-activation-conv (False) # Returns x (tensor): tensor as input to the next layer """ conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(0.0001)) x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x def resnet_v1(input_shape, depth, num_classes=10): """ResNet Version 1 Model builder [a] Stacks of 2 x (3 x 3) Conv2D-BN-ReLU Last ReLU is after the shortcut connection. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filters is doubled. Within each stage, the layers have the same number filters and the same number of filters. Features maps sizes: stage 0: 32x32, 16 stage 1: 16x16, 32 stage 2: 8x8, 64 The Number of parameters is approx the same as Table 6 of [a]: ResNet20 0.27M ResNet32 0.46M ResNet44 0.66M ResNet56 0.85M ResNet110 1.7M # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 6 != 0: raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])') num_filters = 16 num_res_blocks = int((depth - 2) / 6) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs) for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides) y = resnet_layer(inputs=y, num_filters=num_filters, activation=None) if stack > 0 and res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) x = Activation('relu')(x) num_filters *= 2 x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model def resnet_v2(input_shape, depth, num_classes=10): """ResNet Version 2 Model builder [b] Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as bottleneck layer First shortcut connection per layer is 1 x 1 Conv2D. Second and onwards shortcut connection is identity. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filter maps is doubled. Within each stage, the layers have the same number filters and the same filter map sizes. Features maps sizes: conv1 : 32x32, 16 stage 0: 32x32, 64 stage 1: 16x16, 128 stage 2: 8x8, 256 # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 9 != 0: raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])') num_filters_in = 16 num_res_blocks = int((depth - 2) / 9) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True) for stage in range(3): for res_block in range(num_res_blocks): activation = 'relu' batch_normalization = True strides = 1 if stage == 0: num_filters_out = num_filters_in * 4 if res_block == 0: activation = None batch_normalization = False else: num_filters_out = num_filters_in * 2 if res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters_in, kernel_size=1, strides=strides, activation=activation, batch_normalization=batch_normalization, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_out, kernel_size=1, conv_first=False) if res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters_out, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = Add()([x, y]) num_filters_in = num_filters_out x = BatchNormalization()(x) x = Activation('relu')(x) x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) model = Model(inputs=inputs, outputs=outputs) return model model = resnet_v1(input_shape=(32, 32, 3), depth=20) def plot_metrics(metric_name, title, append='val_'): plt.xticks(list(range(len(history.history[metric_name])))) model = resnet_v1(input_shape=(32, 32, 3), depth=20) optimizer = SGD(learning_rate=0.01) loss_object = SparseCategoricalCrossentropy(from_logits=False, reduction='sum') accuracy_object = SparseCategoricalAccuracy() model.compile(optimizer=optimizer, loss=loss_object, metrics=[accuracy_object]) with open('template1.txt', 'w') as f: history = model.fit(train_ds, validation_data=test_ds, epochs=10) from tqdm import tqdm class History: def __init__(self, metrics): self.history = {x: [] for x in metrics} model = resnet_v1(input_shape=(32, 32, 3), depth=20) optimizer = SGD(learning_rate=0.01) loss_object = SparseCategoricalCrossentropy(from_logits=False, reduction='sum') accuracy_object = SparseCategoricalAccuracy() metrics = ['acc', 'loss', 'test_acc', 'test_loss'] history = History(metrics) for epoch in range(10): losses = [] accuracy_object.reset_states() pbar = tqdm(train_ds) for train_images, train_labels in pbar: with GradientTape() as tape: predictions = model(train_images, training=True) loss = loss_object(train_labels, predictions) losses.append(loss.numpy()) accuracy_object.update_state(train_labels, predictions) pbar.set_description(f'Epoch: {epoch + 1}, Train Loss: {np.mean(losses):.3f}, Train Acc: {accuracy_object.result().numpy():.3f}') gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) acc = accuracy_object.result().numpy() loss = np.mean(losses) pbar.close() losses = [] accuracy_object.reset_states() pbar = tqdm(test_ds) for test_images, test_labels in pbar: with GradientTape() as tape: predictions = model(test_images, training=False) loss = loss_object(test_labels, predictions) losses.append(loss.numpy()) accuracy_object.update_state(test_labels, predictions) pbar.set_description(f'Epoch: {epoch + 1}, Test Loss: {np.mean(losses):.3f}, Test Acc: {accuracy_object.result().numpy():.3f}') test_acc = accuracy_object.result().numpy() test_loss = np.mean(losses) pbar.write(f'Epoch {epoch + 1}, Train Loss: {loss}, Train Acc: {acc}, Test Loss: {test_loss}, Test Acc: {test_acc}') pbar.close() with open('template2.txt', 'w') as f: for metric in metrics: history.history[metric].append(vars()[metric]) print(history.history, file=f)
code
90155131/cell_3
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "text_plain_output_20.png", "text_plain_output_4.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_18.png", "application_vnd.jupyter.stderr_output_19.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_16.png", "application_vnd.jupyter.stderr_output_15.png", "text_plain_output_8.png", "application_vnd.jupyter.stderr_output_17.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "text_plain_output_12.png", "application_vnd.jupyter.stderr_output_21.png" ]
from tensorflow.keras import Model, Sequential from tensorflow.keras.datasets import cifar10 from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation import tensorflow as tf import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, Concatenate, Add from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation, RandomZoom, RandomTranslation from tensorflow.keras import Model, Sequential from tensorflow.keras.losses import SparseCategoricalCrossentropy from tensorflow.keras.optimizers import Adam, SGD from tensorflow import GradientTape from tensorflow.keras.metrics import SparseCategoricalAccuracy from tensorflow.keras.datasets import cifar10 from tensorflow.keras.utils import plot_model import matplotlib.pyplot as plt import numpy as np (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train, x_test = (x_train / 255.0, x_test / 255.0) data_augmentation = Sequential([RandomFlip('horizontal'), RandomTranslation(height_factor=(-0.1, 0.1), width_factor=(-0.1, 0.1), fill_mode='constant')]) train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32).map(lambda x, y: (data_augmentation(x), y)) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
code
90155131/cell_17
[ "text_plain_output_4.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np def show_image(image): plt.colorbar() imagenum = np.random.randint(len(x_train)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def plot_metrics(metric_name, title, append='val_'): plt.xticks(list(range(len(history.history[metric_name])))) plot_metrics(metric_name='loss', title='Plot of Model Loss against number of Epochs', append='test_') plot_metrics(metric_name='acc', title='Plot of Model Accuracy against number of Epochs', append='test_')
code
90155131/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np def show_image(image): plt.colorbar() imagenum = np.random.randint(len(x_train)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def plot_metrics(metric_name, title, append='val_'): plt.xticks(list(range(len(history.history[metric_name])))) plot_metrics(metric_name='loss', title='Plot of Model Loss against number of Epochs', append='val_') plot_metrics(metric_name='sparse_categorical_accuracy', title='Plot of Model Accuracy against number of Epochs', append='val_')
code
90155131/cell_5
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np def show_image(image): plt.figure() plt.imshow(image) plt.colorbar() plt.grid(False) plt.show() imagenum = np.random.randint(len(x_train)) show_image(x_train[imagenum].reshape(32, 32, 3)) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] print('Class:', classes[int(y_train[imagenum])])
code
90136679/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import spacy f = open('/kaggle/input/harry-potter-sorcerers-stone/Harry-potter-sorcerers-stone.txt', 'r') hp_book = '' lines = [] for line in f: stripped_line = line.rstrip() + ' ' hp_book += stripped_line lines.append(line) f.close() nlp = spacy.load('en_core_web_lg') doc = nlp(hp_book)
code
128003024/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) print('age vs chol_serum') sns.scatterplot(data=df, x='age', y='chol_serum', hue='bloodsugar_fast') plt.show()
code
128003024/cell_13
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) Q1 = np.quantile(df['bloodpress_med'], 0.25) Q3 = np.quantile(df['bloodpress_med'], 0.75) IQR = Q3 - Q1 min_IQR = Q1 - 1.5 * IQR max_IQR = Q3 + 1.5 * IQR low_out = [] high_out = [] for i in df['bloodpress_med']: if i < min_IQR: low_out.append(i) if i > max_IQR: high_out.append(i) print('High outlier : ', high_out) print('upper limit : ', min(high_out))
code
128003024/cell_25
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) print('bloodpress_med vs chol_serum') sns.scatterplot(data=df, x='bloodpress_med', y='chol_serum', hue='bloodsugar_fast') plt.show()
code
128003024/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128003024/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) print('age vs bloodpess_med') sns.scatterplot(data=df, x='age', y='bloodpress_med', hue='bloodsugar_fast') plt.show()
code
128003024/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True)
code
128003024/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') df.head()
code
128003024/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) corr_matrix = df.corr(numeric_only=True) plt.figure(figsize=(20, 5)) sns.heatmap(corr_matrix, cmap='YlGnBu', annot=True) plt.show()
code
128003024/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df)
code
128003024/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') df.info()
code
128003024/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True)
code
128003024/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df)
code
128003024/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.hist(bins=15, figsize=(30, 15)) plt.show()
code
128003024/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (8, 5) plt.style.use('fivethirtyeight') import seaborn as sns import plotly.express as p from plotly.offline import iplot import os import glob from sklearn.cluster import KMeans
code
128003024/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.describe(include='all')
code
128003024/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) print('age vs max_heartrate') sns.scatterplot(data=df, x='age', y='max_heartrate', hue='thal') plt.show()
code
128003024/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) Q1 = np.quantile(df['bloodpress_med'], 0.25) Q3 = np.quantile(df['bloodpress_med'], 0.75) IQR = Q3 - Q1 min_IQR = Q1 - 1.5 * IQR max_IQR = Q3 + 1.5 * IQR low_out = [] high_out = [] for i in df['bloodpress_med']: if i < min_IQR: low_out.append(i) if i > max_IQR: high_out.append(i) print(np.unique(df[['sex', 'chest_pain_type', 'bloodsugar_fast', 'rest_ecg', 'exc_angina', 'slope', 'major_vessels', 'thal']].values))
code
128003024/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.cov(numeric_only=True) df.corr(numeric_only=True) print('age vs oldpeak') sns.scatterplot(data=df, x='age', y='oldpeak', hue='exc_angina') plt.show()
code
128003024/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/hearts/heart.csv') np.shape(df) df.rename(columns={'cp': 'chest_pain_type', 'trestbps': 'bloodpress_med', 'chol': 'chol_serum', 'fbs': 'bloodsugar_fast', 'restecg': 'rest_ecg', 'thalach': 'max_heartrate', 'exang': 'exc_angina', 'ca': 'major_vessels'}, inplace=True) df = df.drop_duplicates() np.shape(df) df.boxplot(figsize=(15, 5), rot=45, fontsize=15, grid=True)
code
90108118/cell_13
[ "text_plain_output_1.png" ]
from absl import flags from gezi import tqdm import gezi import glob import os from IPython.display import display import tensorflow as tf import torch from absl import flags FLAGS = flags.FLAGS from transformers import AutoTokenizer from datasets import Dataset from src import config from src.util import * from src.get_preds import * from src.eval import * import melt as mt import numpy as np import glob import gc from numba import cuda from gezi import tqdm import gezi import husky import lele gezi.init_flags() model_root = '../input' model_dirs = [x for x in glob.glob(f'{model_root}/feedback-model*') if os.path.isdir(x)] model_dirs = [f'../input/feedback-model{i}' for i in range(len(model_dirs))] model_dir = model_dirs[0] tf_models = [] first_models = [] ic(first_models) model_dirs = gezi.unique_list([*tf_models, *first_models, *model_dirs]) m = model_dirs used_model_indexes = list(range(len(model_dirs))) used_model_indexes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17] used_model_indexes = [23] model_dirs = [m[i] for i in used_model_indexes] used_tf_models = [x for x in model_dirs if x in tf_models] num_tf_models = len(used_tf_models) mns = [] for i, model_dir in tqdm(enumerate(model_dirs), total=len(model_dirs)): gezi.restore_configs(model_dir) mns.append(os.path.basename(FLAGS.model_dir)) assert 'online' in FLAGS.model_dir mns MIN_WEIGHT = 1 weights_dict = {} weights_dict = {'bart.start.run2': 9, 'roberta.start.nwemb-0': 9, 'deberta.start': 8, 'deberta-xlarge.start': 9, 'deberta-xlarge.end': 9, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1536': 7, 'deberta-v3.start.len1024.rnn_bi': 8, 'deberta-v3.end.len1024.seq_encoder-0': 10, 'deberta-v3.mid.len1024': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 7, 'deberta-v3.start.nwemb-0.mark_end-0': 10, 'deberta-v3.se': 10, 'deberta-v3.se2': 10, 'longformer.start.len1536': 6, 'longformer.start.len1600': 6, 'funnel.start.len1536.bs-8': 6, 'deberta-v3.start.len1024.stride-512': 4, 'electra.start.nwemb-0.run2': 7} weights_dict0 = {'bart.start.run2': 6, 'deberta-v3.end.len1024.seq_encoder-0': 6, 'deberta-v3.mid.len1024': 4, 'deberta-v3.se': 6, 'deberta-v3.se2': 1, 'deberta-v3.start.len1024.rnn_bi': 5, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1536': 4, 'deberta-v3.start.nwemb-0.mark_end-0': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 9, 'deberta-xlarge.end': 0, 'deberta-xlarge.start': 6, 'deberta.start': 6, 'longformer.start.len1536': 9, 'roberta.start.nwemb-0': 6} weights_dict1 = {'bart.start.run2': 7, 'deberta-v3.end.len1024.seq_encoder-0': 10, 'deberta-v3.mid.len1024': 6, 'deberta-v3.se': 2, 'deberta-v3.se2': 7, 'deberta-v3.start.len1024.rnn_bi': 8, 'deberta-v3.start.len1024.stride-256': 10, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 7, 'deberta-v3.start.len1536': 8, 'deberta-v3.start.nwemb-0.mark_end-0': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 7, 'deberta-xlarge.end': 7, 'deberta-xlarge.start': 10, 'deberta.start': 6, 'longformer.start.len1536': 8, 'roberta.start.nwemb-0': 5} weights_dict2 = {'bart.start.run2': 6, 'deberta-v3.end.len1024.seq_encoder-0': 7, 'deberta-v3.mid.len1024': 5, 'deberta-v3.se': 9, 'deberta-v3.se2': 5, 'deberta-v3.start.len1024.rnn_bi': 9, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1536': 6, 'deberta-v3.start.nwemb-0.mark_end-0': 0, 'deberta-v3.start.stride-256.seq_encoder-0': 5, 'deberta-xlarge.end': 8, 'deberta-xlarge.start': 4, 'deberta.start': 8, 'longformer.start.len1536': 9, 'roberta.start.nwemb-0': 6} weights_dicts = [weights_dict0, weights_dict1, weights_dict2] ic(gezi.sort_byval(weights_dict)) len(weights_dict)
code
90108118/cell_9
[ "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "text_html_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import gezi import glob import os gezi.init_flags() model_root = '../input' model_dirs = [x for x in glob.glob(f'{model_root}/feedback-model*') if os.path.isdir(x)] model_dirs = [f'../input/feedback-model{i}' for i in range(len(model_dirs))] model_dir = model_dirs[0] tf_models = [] first_models = [] ic(first_models) model_dirs = gezi.unique_list([*tf_models, *first_models, *model_dirs]) m = model_dirs used_model_indexes = list(range(len(model_dirs))) used_model_indexes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17] used_model_indexes = [23] model_dirs = [m[i] for i in used_model_indexes] used_tf_models = [x for x in model_dirs if x in tf_models] num_tf_models = len(used_tf_models)
code
90108118/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
!pip install -q icecream --no-index --find-links=file:///kaggle/input/icecream/
code
90108118/cell_1
[ "text_plain_output_1.png" ]
import sys import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import traceback !ln -s ../input/feedback ./src if os.path.exists('/kaggle'): sys.path.append('/kaggle/input/pikachu/utils') sys.path.append('/kaggle/input/pikachu/third') sys.path.append('.') !ls ../input
code
90108118/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
num_test_ids = 1000 folds = pd.read_csv('../input/feedback/folds.csv') test_ids = folds[folds.kfold == 0].id.values test_ids.sort() test_ids = test_ids[:num_test_ids] len(test_ids)
code
90108118/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
ic(P)
code
90108118/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
!pip install -q pymp-pypi --no-index --find-links=file:///kaggle/input/pymp-pypi/pymp-pypi-0.4.5/dist
code
90108118/cell_14
[ "text_plain_output_1.png" ]
from absl import flags from gezi import tqdm import gezi import glob import os from IPython.display import display import tensorflow as tf import torch from absl import flags FLAGS = flags.FLAGS from transformers import AutoTokenizer from datasets import Dataset from src import config from src.util import * from src.get_preds import * from src.eval import * import melt as mt import numpy as np import glob import gc from numba import cuda from gezi import tqdm import gezi import husky import lele gezi.init_flags() model_root = '../input' model_dirs = [x for x in glob.glob(f'{model_root}/feedback-model*') if os.path.isdir(x)] model_dirs = [f'../input/feedback-model{i}' for i in range(len(model_dirs))] model_dir = model_dirs[0] tf_models = [] first_models = [] ic(first_models) model_dirs = gezi.unique_list([*tf_models, *first_models, *model_dirs]) m = model_dirs used_model_indexes = list(range(len(model_dirs))) used_model_indexes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17] used_model_indexes = [23] model_dirs = [m[i] for i in used_model_indexes] used_tf_models = [x for x in model_dirs if x in tf_models] num_tf_models = len(used_tf_models) mns = [] for i, model_dir in tqdm(enumerate(model_dirs), total=len(model_dirs)): gezi.restore_configs(model_dir) mns.append(os.path.basename(FLAGS.model_dir)) assert 'online' in FLAGS.model_dir mns MIN_WEIGHT = 1 weights_dict = {} weights_dict = {'bart.start.run2': 9, 'roberta.start.nwemb-0': 9, 'deberta.start': 8, 'deberta-xlarge.start': 9, 'deberta-xlarge.end': 9, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1536': 7, 'deberta-v3.start.len1024.rnn_bi': 8, 'deberta-v3.end.len1024.seq_encoder-0': 10, 'deberta-v3.mid.len1024': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 7, 'deberta-v3.start.nwemb-0.mark_end-0': 10, 'deberta-v3.se': 10, 'deberta-v3.se2': 10, 'longformer.start.len1536': 6, 'longformer.start.len1600': 6, 'funnel.start.len1536.bs-8': 6, 'deberta-v3.start.len1024.stride-512': 4, 'electra.start.nwemb-0.run2': 7} weights_dict0 = {'bart.start.run2': 6, 'deberta-v3.end.len1024.seq_encoder-0': 6, 'deberta-v3.mid.len1024': 4, 'deberta-v3.se': 6, 'deberta-v3.se2': 1, 'deberta-v3.start.len1024.rnn_bi': 5, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1536': 4, 'deberta-v3.start.nwemb-0.mark_end-0': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 9, 'deberta-xlarge.end': 0, 'deberta-xlarge.start': 6, 'deberta.start': 6, 'longformer.start.len1536': 9, 'roberta.start.nwemb-0': 6} weights_dict1 = {'bart.start.run2': 7, 'deberta-v3.end.len1024.seq_encoder-0': 10, 'deberta-v3.mid.len1024': 6, 'deberta-v3.se': 2, 'deberta-v3.se2': 7, 'deberta-v3.start.len1024.rnn_bi': 8, 'deberta-v3.start.len1024.stride-256': 10, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 7, 'deberta-v3.start.len1536': 8, 'deberta-v3.start.nwemb-0.mark_end-0': 8, 'deberta-v3.start.stride-256.seq_encoder-0': 7, 'deberta-xlarge.end': 7, 'deberta-xlarge.start': 10, 'deberta.start': 6, 'longformer.start.len1536': 8, 'roberta.start.nwemb-0': 5} weights_dict2 = {'bart.start.run2': 6, 'deberta-v3.end.len1024.seq_encoder-0': 7, 'deberta-v3.mid.len1024': 5, 'deberta-v3.se': 9, 'deberta-v3.se2': 5, 'deberta-v3.start.len1024.rnn_bi': 9, 'deberta-v3.start.len1024.stride-256': 6, 'deberta-v3.start.len1024.stride-256.seq_encoder-0': 10, 'deberta-v3.start.len1536': 6, 'deberta-v3.start.nwemb-0.mark_end-0': 0, 'deberta-v3.start.stride-256.seq_encoder-0': 5, 'deberta-xlarge.end': 8, 'deberta-xlarge.start': 4, 'deberta.start': 8, 'longformer.start.len1536': 9, 'roberta.start.nwemb-0': 6} weights_dicts = [weights_dict0, weights_dict1, weights_dict2] ic(gezi.sort_byval(weights_dict)) len(weights_dict) def get_weight(x, idx=0): weight = 1 if x in weights_dict: return weights_dicts[idx][x] return max(weight, 1) weights = [get_weight(x) for x in mns] weights2 = [get_weight(x, 1) for x in mns] weights3 = [get_weight(x, 2) for x in mns] ic(list(zip(range(len(model_dirs)), model_dirs, mns, weights)), len(model_dirs))
code
90108118/cell_12
[ "text_plain_output_1.png" ]
from absl import flags from gezi import tqdm import gezi import glob import os from IPython.display import display import tensorflow as tf import torch from absl import flags FLAGS = flags.FLAGS from transformers import AutoTokenizer from datasets import Dataset from src import config from src.util import * from src.get_preds import * from src.eval import * import melt as mt import numpy as np import glob import gc from numba import cuda from gezi import tqdm import gezi import husky import lele gezi.init_flags() model_root = '../input' model_dirs = [x for x in glob.glob(f'{model_root}/feedback-model*') if os.path.isdir(x)] model_dirs = [f'../input/feedback-model{i}' for i in range(len(model_dirs))] model_dir = model_dirs[0] tf_models = [] first_models = [] ic(first_models) model_dirs = gezi.unique_list([*tf_models, *first_models, *model_dirs]) m = model_dirs used_model_indexes = list(range(len(model_dirs))) used_model_indexes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17] used_model_indexes = [23] model_dirs = [m[i] for i in used_model_indexes] used_tf_models = [x for x in model_dirs if x in tf_models] num_tf_models = len(used_tf_models) mns = [] for i, model_dir in tqdm(enumerate(model_dirs), total=len(model_dirs)): gezi.restore_configs(model_dir) mns.append(os.path.basename(FLAGS.model_dir)) assert 'online' in FLAGS.model_dir mns
code
32062709/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.head()
code
32062709/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.head()
code
32062709/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5]
code
32062709/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5] economics.groupby('Region')[['2019 Score', 'GDP Growth Rate (%)']].mean() economics.groupby('Region')['2019 Score'].idxmin() economics.groupby('Region')['2019 Score'].std() economics.groupby('Region').size()
code
32062709/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32062709/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics[economics['GDP Growth Rate (%)'] >= 8.0].index.to_list()
code
32062709/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5] economics.groupby('Region')[['2019 Score', 'GDP Growth Rate (%)']].mean() economics.groupby('Region')['2019 Score'].idxmin() economics.groupby('Region')['2019 Score'].std() economics.groupby('Region').size() economics.groupby('Region')['2019 Score'].mean().sort_values().plot.barh()
code
32062709/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list()
code
32062709/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)']
code
32062709/cell_24
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5] economics.groupby('Region')[['2019 Score', 'GDP Growth Rate (%)']].mean() economics.groupby('Region')['2019 Score'].idxmin()
code
32062709/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5] economics.groupby('Region')[['2019 Score', 'GDP Growth Rate (%)']].mean()
code
32062709/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape
code
32062709/cell_27
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) economics = pd.read_csv('/kaggle/input/the-economic-freedom-index/economic_freedom_index2019_data.csv', index_col='Country', encoding='ISO-8859-1') economics.columns.to_list() economics.shape economics = economics[['Region', 'World Rank', 'Region Rank', '2019 Score', 'Population (Millions)', 'GDP Growth Rate (%)', 'Unemployment (%)', 'Inflation (%)']] economics.loc['Brazil', 'Unemployment (%)'] economics.sort_values('2019 Score', ascending=False).iloc[:5] economics.groupby('Region')[['2019 Score', 'GDP Growth Rate (%)']].mean() economics.groupby('Region')['2019 Score'].idxmin() economics.groupby('Region')['2019 Score'].std()
code
106208845/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=goalkeeper_scores[:10], x='Team', y='Gk score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 GOALKEEPER SCORE'); defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=defence_scores[:10], x='Team', y='Df score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 STRONGEST DEFENCE'); offence_score = [] for x in fifa2022_teams: of_score = np.round((df[df['home_team'] == x]['home_team_mean_offense_score'].mean() + df[df['away_team'] == x]['away_team_mean_offense_score'].mean()) / 2, 2) offence_score.append(of_score) offence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Of score': offence_score}).sort_values('Of score', ascending=False).reset_index(drop=True) offence_scores.index += 1 offence_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=offence_scores[:10], x='Team', y='Of score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 OFFENCE SCORE'); midfield_score = [] for x in fifa2022_teams: md_score = np.round((df[df['home_team'] == x]['home_team_mean_midfield_score'].mean() + df[df['away_team'] == x]['away_team_mean_midfield_score'].mean()) / 2, 2) midfield_score.append(md_score) midfield_scores = pd.DataFrame({'Team': fifa2022_teams, 'Md score': midfield_score}).sort_values('Md score', ascending=False).reset_index(drop=True) midfield_scores.index += 1 midfield_scores plt.figure(figsize=(11, 7), dpi=90) ax = sns.barplot(data=midfield_scores[:10], x='Team', y='Md score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 MIDFIELD SCORE')
code
106208845/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks print('\nTop 10 team ranking:\n') team_ranks[:10]
code
106208845/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') df
code
106208845/cell_20
[ "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores offence_score = [] for x in fifa2022_teams: of_score = np.round((df[df['home_team'] == x]['home_team_mean_offense_score'].mean() + df[df['away_team'] == x]['away_team_mean_offense_score'].mean()) / 2, 2) offence_score.append(of_score) offence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Of score': offence_score}).sort_values('Of score', ascending=False).reset_index(drop=True) offence_scores.index += 1 offence_scores midfield_score = [] for x in fifa2022_teams: md_score = np.round((df[df['home_team'] == x]['home_team_mean_midfield_score'].mean() + df[df['away_team'] == x]['away_team_mean_midfield_score'].mean()) / 2, 2) midfield_score.append(md_score) midfield_scores = pd.DataFrame({'Team': fifa2022_teams, 'Md score': midfield_score}).sort_values('Md score', ascending=False).reset_index(drop=True) midfield_scores.index += 1 midfield_scores
code
106208845/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') df.describe().T
code
106208845/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=goalkeeper_scores[:10], x='Team', y='Gk score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 GOALKEEPER SCORE'); defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=defence_scores[:10], x='Team', y='Df score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 STRONGEST DEFENCE'); offence_score = [] for x in fifa2022_teams: of_score = np.round((df[df['home_team'] == x]['home_team_mean_offense_score'].mean() + df[df['away_team'] == x]['away_team_mean_offense_score'].mean()) / 2, 2) offence_score.append(of_score) offence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Of score': offence_score}).sort_values('Of score', ascending=False).reset_index(drop=True) offence_scores.index += 1 offence_scores plt.figure(figsize=(11, 7), dpi=90) ax = sns.barplot(data=offence_scores[:10], x='Team', y='Of score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 OFFENCE SCORE')
code
106208845/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) print(f'Numerical columns: \n\n{num_cols}\n\nCategorical columns: \n\n{cat_cols}')
code
106208845/cell_18
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores offence_score = [] for x in fifa2022_teams: of_score = np.round((df[df['home_team'] == x]['home_team_mean_offense_score'].mean() + df[df['away_team'] == x]['away_team_mean_offense_score'].mean()) / 2, 2) offence_score.append(of_score) offence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Of score': offence_score}).sort_values('Of score', ascending=False).reset_index(drop=True) offence_scores.index += 1 offence_scores
code
106208845/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] print(f"Columns contain 'null' values: \n\n{columns_contains_null}")
code
106208845/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores plt.figure(figsize=(11, 7), dpi=90) ax = sns.barplot(data=goalkeeper_scores[:10], x='Team', y='Gk score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 GOALKEEPER SCORE')
code
106208845/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores
code
106208845/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores plt.figure(figsize=(11,7), dpi=90) ax = sns.barplot(data=goalkeeper_scores[:10], x='Team', y='Gk score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 GOALKEEPER SCORE'); defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores plt.figure(figsize=(11, 7), dpi=90) ax = sns.barplot(data=defence_scores[:10], x='Team', y='Df score') ax.bar_label(ax.containers[0]) plt.xlabel('TEAM') plt.ylabel('SCORE') plt.title('TOP 10 STRONGEST DEFENCE')
code
106208845/cell_14
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores
code
106208845/cell_22
[ "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks goalkeeper_score = [] for x in fifa2022_teams: gk_score = np.round((df[df['home_team'] == x]['home_team_goalkeeper_score'].mean() + df[df['away_team'] == x]['away_team_goalkeeper_score'].mean()) / 2, 2) goalkeeper_score.append(gk_score) goalkeeper_scores = pd.DataFrame({'Team': fifa2022_teams, 'Gk score': goalkeeper_score}).sort_values('Gk score', ascending=False).reset_index(drop=True) goalkeeper_scores.index += 1 goalkeeper_scores defence_score = [] for x in fifa2022_teams: df_score = np.round((df[df['home_team'] == x]['home_team_mean_defense_score'].mean() + df[df['away_team'] == x]['away_team_mean_defense_score'].mean()) / 2, 2) defence_score.append(df_score) defence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Df score': defence_score}).sort_values('Df score', ascending=False).reset_index(drop=True) defence_scores.index += 1 defence_scores offence_score = [] for x in fifa2022_teams: of_score = np.round((df[df['home_team'] == x]['home_team_mean_offense_score'].mean() + df[df['away_team'] == x]['away_team_mean_offense_score'].mean()) / 2, 2) offence_score.append(of_score) offence_scores = pd.DataFrame({'Team': fifa2022_teams, 'Of score': offence_score}).sort_values('Of score', ascending=False).reset_index(drop=True) offence_scores.index += 1 offence_scores midfield_score = [] for x in fifa2022_teams: md_score = np.round((df[df['home_team'] == x]['home_team_mean_midfield_score'].mean() + df[df['away_team'] == x]['away_team_mean_midfield_score'].mean()) / 2, 2) midfield_score.append(md_score) midfield_scores = pd.DataFrame({'Team': fifa2022_teams, 'Md score': midfield_score}).sort_values('Md score', ascending=False).reset_index(drop=True) midfield_scores.index += 1 midfield_scores hwins, hdraws, hloses = ([], [], []) awins, adraws, aloses = ([], [], []) for team in fifa2022_teams: home_win = df[df['home_team'] == team][df['home_team_result'] == 'Win'].shape[0] home_draw = df[df['home_team'] == team][df['home_team_result'] == 'Draw'].shape[0] home_lose = df[df['home_team'] == team][df['home_team_result'] == 'Lose'].shape[0] away_win = df[df['away_team'] == team][df['home_team_result'] == 'Lose'].shape[0] away_draw = df[df['away_team'] == team][df['home_team_result'] == 'Draw'].shape[0] away_lose = df[df['away_team'] == team][df['home_team_result'] == 'Win'].shape[0] hwins.append(home_win) hdraws.append(home_draw) hloses.append(home_lose) awins.append(away_win) adraws.append(away_draw) aloses.append(away_lose) wins = np.add(hwins, awins) draws = np.add(hdraws, adraws) loses = np.add(hloses, aloses) win_draw_lose = pd.DataFrame({'Team': fifa2022_teams, 'Win': wins, 'Draw': draws, 'Lose': loses, 'Home win': hwins, 'Home draw': hdraws, 'Home lose': hloses, 'Away win': awins, 'Away draw': adraws, 'Away lose': aloses}) win_draw_lose.insert(1, 'Total', win_draw_lose['Win'] + win_draw_lose['Draw'] + win_draw_lose['Lose']) win_draw_lose.insert(8, 'Total Home', win_draw_lose['Home win'] + win_draw_lose['Home draw'] + win_draw_lose['Home lose']) win_draw_lose.insert(12, 'Total Away', win_draw_lose['Away win'] + win_draw_lose['Away draw'] + win_draw_lose['Away lose']) win_draw_lose['Win %'] = np.around(100 * win_draw_lose['Win'] / win_draw_lose['Total'], 2) win_draw_lose['Draw %'] = np.round(100 * win_draw_lose['Draw'] / win_draw_lose['Total'], 2) win_draw_lose['Lose %'] = np.round(100 * win_draw_lose['Lose'] / win_draw_lose['Total'], 2) win_draw_lose['Home Win %'] = np.round(100 * win_draw_lose['Home win'] / win_draw_lose['Total Home'], 2) win_draw_lose['Home Draw %'] = np.round(100 * win_draw_lose['Home draw'] / win_draw_lose['Total Home'], 2) win_draw_lose['Home Lose %'] = np.round(100 * win_draw_lose['Home lose'] / win_draw_lose['Total Home'], 2) win_draw_lose['Away Win %'] = np.round(100 * win_draw_lose['Away win'] / win_draw_lose['Total Away'], 2) win_draw_lose['Away Draw %'] = np.round(100 * win_draw_lose['Away draw'] / win_draw_lose['Total Away'], 2) win_draw_lose['Away Lose %'] = np.round(100 * win_draw_lose['Away lose'] / win_draw_lose['Total Away'], 2) win_draw_lose = win_draw_lose.sort_values('Win %', ascending=False).reset_index(drop=True) win_draw_lose.index += 1 win_draw_lose.style.set_properties(**{'background-color': 'gray', 'color': 'yellow'}, subset=['Home win', 'Home Win %', 'Win %'])
code
106208845/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') pd.set_option('display.max_columns', None) df.describe().T num_cols = list(df.select_dtypes(include=['int64', 'float64']).columns) cat_cols = list(df.select_dtypes(include=['object']).columns) columns_contains_null = [col for col in df.columns if df[col].isnull().any()] fifa2022_teams = ['Qatar', 'Ecuador', 'Senegal', 'Netherlands', 'England', 'IR Iran', 'USA', 'Wales', 'Argentina', 'Saudi Arabia', 'Mexico', 'Poland', 'France', 'Australia', 'Denmark', 'Tunisia', 'Spain', 'Costa Rica', 'Germany', 'Japan', 'Belgium', 'Canada', 'Morocco', 'Croatia', 'Brazil', 'Serbia', 'Switzerland', 'Cameroon', 'Portugal', 'Ghana', 'Uruguay', 'Korea Republic'] ranks = [] for x in fifa2022_teams: rank_df = df[(df['home_team'] == x) | (df['away_team'] == x)].sort_values(['date', 'home_team_fifa_rank', 'away_team_fifa_rank'], ascending=[False, True, True]).iloc[0] if rank_df['home_team'] == x: rank = rank_df['home_team_fifa_rank'] else: rank = rank_df['away_team_fifa_rank'] ranks.append(rank) team_ranks = pd.DataFrame({'Team': fifa2022_teams, 'Rank': ranks}).sort_values('Rank').reset_index(drop=True) team_ranks.index += 1 team_ranks
code
106208845/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa-world-cup-2022/international_matches.csv') df.info()
code
18159050/cell_9
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True) def get_generator(path): return train_datagen.flow_from_directory(path, target_size=(40, 96), batch_size=32, class_mode='categorical', color_mode='grayscale') train_generator = get_generator('../input/transmittancy/train/') test_generator = get_generator('../input/transmittancy/test/') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=2, activation='relu', strides=(2, 2), input_shape=(40, 96, 1))) model.add(Conv2D(64, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Conv2D(32, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=test_generator, validation_steps=30) import matplotlib.pyplot as plt def plot_batch(batch): fig, axes = plt.subplots(4, 8, sharex=True, sharey=True, figsize=(16, 4)) for ind, ax in enumerate(axes.flatten()): ax.imshow(batch[ind].reshape(40, 96), vmin=0, vmax=1, interpolation=None, cmap='gray') fig.tight_layout() plt.show() batch, _ = train_generator.next() plot_batch(batch)
code
18159050/cell_6
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True) def get_generator(path): return train_datagen.flow_from_directory(path, target_size=(40, 96), batch_size=32, class_mode='categorical', color_mode='grayscale') train_generator = get_generator('../input/transmittancy/train/') test_generator = get_generator('../input/transmittancy/test/') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=2, activation='relu', strides=(2, 2), input_shape=(40, 96, 1))) model.add(Conv2D(64, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Conv2D(32, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=test_generator, validation_steps=30)
code
18159050/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator
code
18159050/cell_7
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True) def get_generator(path): return train_datagen.flow_from_directory(path, target_size=(40, 96), batch_size=32, class_mode='categorical', color_mode='grayscale') train_generator = get_generator('../input/transmittancy/train/') test_generator = get_generator('../input/transmittancy/test/') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=2, activation='relu', strides=(2, 2), input_shape=(40, 96, 1))) model.add(Conv2D(64, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Conv2D(32, kernel_size=2, activation='relu', strides=(2, 2))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=test_generator, validation_steps=30) import matplotlib.pyplot as plt plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show()
code
18159050/cell_3
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True) def get_generator(path): return train_datagen.flow_from_directory(path, target_size=(40, 96), batch_size=32, class_mode='categorical', color_mode='grayscale') train_generator = get_generator('../input/transmittancy/train/') test_generator = get_generator('../input/transmittancy/test/')
code
72062410/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_drop_unrated = ramen_drop_unrated[ramen_drop_unrated['Stars'] != 'Unrated'] ramen_drop_unrated.groupby('Style')['rating'].mean() ramen_drop_unrated.groupby('Country')['rating'].mean().sort_values()
code
72062410/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen['Stars'].value_counts()
code
72062410/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen[ramen['Country'] == 'Japan']
code
72062410/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_drop_unrated = ramen_drop_unrated[ramen_drop_unrated['Stars'] != 'Unrated'] ramen_drop_unrated.groupby('Style')['rating'].mean() ramen_drop_unrated.groupby('Country')['rating'].mean().sort_values() ramen_drop_unrated.groupby('Brand')['rating'].count().sort_values(ascending=False)[:25] ramen_drop_unrated.groupby('Brand').agg({'rating': ['mean', 'count']}).sort_values([('rating', 'mean')], ascending=False)[:25]
code
72062410/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen_drop_unrated = ramen.copy() ramen_convert_unrated = ramen.copy() ramen_convert_unrated.groupby('Style')['rating'].mean()
code
72062410/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ramen = pd.read_csv('../input/ramen-ratings/ramen-ratings.csv') ramen.head()
code
72062410/cell_2
[ "text_plain_output_1.png" ]
farbe = 'grün' print(farbe)
code