path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2017333/cell_17
[ "text_html_output_1.png" ]
from sklearn import svm import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Sex'] = train['Sex'].apply(lambda x: 1 if x == 'male' else 0) train['Age'] = train['Age'].fillna(np.mean(train['Age'])) train['Fare'] = train['Fare'].fillna(np.mean(train['Fare'])) from sklearn import svm clf = svm.SVC() clf.fit(X_train, Y_train) clf.score(X_train, Y_train) clf.fit(X_test, Y_test) clf.score(X_test, Y_test) test['Sex'] = test['Sex'].apply(lambda x: 1 if x == 'male' else 0) test['Age'] = test['Age'].fillna(np.mean(test['Age'])) test['Fare'] = test['Fare'].fillna(np.mean(test['Fare'])) test = test[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']] results = clf.predict(test) results
code
2017333/cell_14
[ "text_html_output_1.png" ]
from sklearn import svm from sklearn import svm clf = svm.SVC() clf.fit(X_train, Y_train) clf.score(X_train, Y_train) clf.fit(X_test, Y_test)
code
2017333/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') train['Sex'] = train['Sex'].apply(lambda x: 1 if x == 'male' else 0) train = train[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']] X = train.drop('Survived', axis=1) Y = train['Survived'] from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.8, random_state=0)
code
2017333/cell_12
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn import svm clf = svm.SVC() clf.fit(X_train, Y_train)
code
2017333/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') train['Sex'] = train['Sex'].apply(lambda x: 1 if x == 'male' else 0) train.head()
code
2017393/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') cols = ['store_id', 'visit_datetime', 'reserve_datetime', 'reserve_visitors'] air_reserve.columns = cols hpg_reserve.columns = cols reserves = pd.DataFrame(columns=cols) reserves = pd.concat([air_reserve, hpg_reserve]) sns.set(color_codes=True) visitors = reserves['reserve_visitors'] sns.set(color_codes=True) visitors = visits['visitors'] sns.distplot(visitors, color='y')
code
2017393/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') cols = ['store_id', 'visit_datetime', 'reserve_datetime', 'reserve_visitors'] air_reserve.columns = cols hpg_reserve.columns = cols reserves = pd.DataFrame(columns=cols) reserves = pd.concat([air_reserve, hpg_reserve]) reserves.info() reserves.describe()
code
2017393/cell_25
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Number of unique areas = ', str(len(air_store_info['air_area_name'].unique())))
code
2017393/cell_4
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import missingno as msno # check for missing values import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') msno.matrix(air_reserve) msno.matrix(hpg_reserve) msno.matrix(visits) msno.matrix(air_store_info) msno.matrix(hpg_store_info)
code
2017393/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') air_store_info.info() air_store_info.head()
code
2017393/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Number of unique areas = ', str(len(hpg_store_info['hpg_area_name'].unique())))
code
2017393/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Number of Air restaurants = ', str(len(air_store_info))) print('Number of hpg restaurants = ', str(len(hpg_store_info)))
code
2017393/cell_29
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Genres:') hpg_store_info['hpg_genre_name'].unique()
code
2017393/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') air_store_info['air_area_name'].unique()
code
2017393/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') cols = ['store_id', 'visit_datetime', 'reserve_datetime', 'reserve_visitors'] air_reserve.columns = cols hpg_reserve.columns = cols reserves = pd.DataFrame(columns=cols) reserves = pd.concat([air_reserve, hpg_reserve]) sns.set(color_codes=True) visitors = reserves['reserve_visitors'] sns.distplot(visitors)
code
2017393/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') air_reserve.head()
code
2017393/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') dates.head()
code
2017393/cell_28
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') hpg_store_info.info() hpg_store_info.head()
code
2017393/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') hpg_reserve.head()
code
2017393/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Number of Air restaurants = ', str(len(visits['air_store_id'].unique())))
code
2017393/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') relation.info()
code
2017393/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') hpg_store_info['hpg_area_name'].unique()
code
2017393/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') print('Genres:') air_store_info['air_genre_name'].unique()
code
2017393/cell_14
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') visits.info() visits.describe()
code
2017393/cell_10
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno air_reserve = pd.read_csv('../input/air_reserve.csv') hpg_reserve = pd.read_csv('../input/hpg_reserve.csv') visits = pd.read_csv('../input/air_visit_data.csv') dates = pd.read_csv('../input/date_info.csv') relation = pd.read_csv('../input/store_id_relation.csv') air_store_info = pd.read_csv('../input/air_store_info.csv') hpg_store_info = pd.read_csv('../input/hpg_store_info.csv') cols = ['store_id', 'visit_datetime', 'reserve_datetime', 'reserve_visitors'] air_reserve.columns = cols hpg_reserve.columns = cols reserves = pd.DataFrame(columns=cols) reserves = pd.concat([air_reserve, hpg_reserve]) print('Number of restaurants with reservations from AirREGI = ', str(len(air_reserve['store_id'].unique()))) print('Number of restaurants with reservations from hpg = ', str(len(hpg_reserve['store_id'].unique())))
code
74054476/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt plt.scatter(X_train.iloc[:20], y_train.iloc[:20], color='Red') plt.title('Training Data') plt.xlabel('x') plt.ylabel('y') plt.show()
code
74054476/cell_19
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) plt.scatter(X_test, y_test, color='Red') plt.plot(X_test, y_pred, color='Blue') plt.title('Hypothesis over testing dataset') plt.xlabel('X') plt.ylabel('y') plt.show()
code
74054476/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74054476/cell_16
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) plt.scatter(X_train, y_train, color='Red') plt.plot(X_train, regressor.predict(X_train), color='Blue') plt.title('Hypothesis over training data') plt.xlabel('X') plt.ylabel('y') plt.show()
code
74054476/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') df_test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') df_train.head()
code
74054476/cell_12
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train)
code
74054476/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') df_test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') print(df_train.isnull().sum()) print(df_test.isnull().sum()) df_train.dropna(inplace=True) df_test.dropna(inplace=True)
code
49122760/cell_21
[ "text_plain_output_1.png" ]
from keras import layers from keras import models from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf proj_dir = '../input/cassava-leaf-disease-classification/train_images/' train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train.loc[:, 'label'] = train.loc[:, 'label'].astype('str') BATCH_SIZE = 64 SPLIT = 0.2 import tensorflow as tf conv_base = tf.keras.models.load_model('../input/pretrained-models/vgg16') conv_base.summary() train_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True) test_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen_v2.flow_from_dataframe(train, directory=proj_dir, x_col='image_id', y_col='label', target_size=(448, 448), batch_size=BATCH_SIZE, class_mode='categorical') test_dir = '../input/cassava-leaf-disease-classification/test_images/' test = pd.DataFrame() test['image_id'] = os.listdir('../input/cassava-leaf-disease-classification/test_images/') test_generator = test_datagen_v2.flow_from_dataframe(test, directory=test_dir, x_col='image_id', target_size=(448, 448), batch_size=1, class_mode=None, shuffle=False) train_generator.class_indices with tf.device('/GPU:0'): model = models.Sequential() model.add(conv_base) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(1024, activation='relu')) model.add(layers.Dense(256, activation='relu')) model.add(layers.Dense(5, activation='softmax')) conv_base.trainable = True set_trainable = False for layer in conv_base.layers: if layer.name == 'block5_conv1': set_trainable = True if set_trainable: layer.trainable = True else: layer.trainable = False from keras import optimizers model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.2), optimizer='Adamax', metrics=['acc']) history = model.fit_generator(train_generator, epochs=15, steps_per_epoch=len(train) / BATCH_SIZE) test_generator.reset() pred = model.predict_generator(test_generator, verbose=1, steps=len(test)) predicted_class_indices = np.argmax(pred, axis=1) labels = train_generator.class_indices labels = dict(((v, k) for k, v in labels.items())) predictions = [labels[k] for k in predicted_class_indices] filenames = test_generator.filenames results = pd.DataFrame({'image_id': filenames, 'label': predictions})
code
49122760/cell_20
[ "text_plain_output_1.png" ]
from keras import layers from keras import models from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf proj_dir = '../input/cassava-leaf-disease-classification/train_images/' train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train.loc[:, 'label'] = train.loc[:, 'label'].astype('str') BATCH_SIZE = 64 SPLIT = 0.2 import tensorflow as tf conv_base = tf.keras.models.load_model('../input/pretrained-models/vgg16') conv_base.summary() train_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True) test_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen_v2.flow_from_dataframe(train, directory=proj_dir, x_col='image_id', y_col='label', target_size=(448, 448), batch_size=BATCH_SIZE, class_mode='categorical') test_dir = '../input/cassava-leaf-disease-classification/test_images/' test = pd.DataFrame() test['image_id'] = os.listdir('../input/cassava-leaf-disease-classification/test_images/') test_generator = test_datagen_v2.flow_from_dataframe(test, directory=test_dir, x_col='image_id', target_size=(448, 448), batch_size=1, class_mode=None, shuffle=False) train_generator.class_indices with tf.device('/GPU:0'): model = models.Sequential() model.add(conv_base) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(1024, activation='relu')) model.add(layers.Dense(256, activation='relu')) model.add(layers.Dense(5, activation='softmax')) conv_base.trainable = True set_trainable = False for layer in conv_base.layers: if layer.name == 'block5_conv1': set_trainable = True if set_trainable: layer.trainable = True else: layer.trainable = False from keras import optimizers model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.2), optimizer='Adamax', metrics=['acc']) history = model.fit_generator(train_generator, epochs=15, steps_per_epoch=len(train) / BATCH_SIZE)
code
49122760/cell_19
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) proj_dir = '../input/cassava-leaf-disease-classification/train_images/' train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train.loc[:, 'label'] = train.loc[:, 'label'].astype('str') BATCH_SIZE = 64 SPLIT = 0.2 train_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True) test_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen_v2.flow_from_dataframe(train, directory=proj_dir, x_col='image_id', y_col='label', target_size=(448, 448), batch_size=BATCH_SIZE, class_mode='categorical') test_dir = '../input/cassava-leaf-disease-classification/test_images/' test = pd.DataFrame() test['image_id'] = os.listdir('../input/cassava-leaf-disease-classification/test_images/') test_generator = test_datagen_v2.flow_from_dataframe(test, directory=test_dir, x_col='image_id', target_size=(448, 448), batch_size=1, class_mode=None, shuffle=False) train_generator.class_indices
code
49122760/cell_18
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) proj_dir = '../input/cassava-leaf-disease-classification/train_images/' train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train.loc[:, 'label'] = train.loc[:, 'label'].astype('str') BATCH_SIZE = 64 SPLIT = 0.2 train_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True) test_datagen_v2 = ImageDataGenerator(rescale=1.0 / 255) train_generator = train_datagen_v2.flow_from_dataframe(train, directory=proj_dir, x_col='image_id', y_col='label', target_size=(448, 448), batch_size=BATCH_SIZE, class_mode='categorical') test_dir = '../input/cassava-leaf-disease-classification/test_images/' test = pd.DataFrame() test['image_id'] = os.listdir('../input/cassava-leaf-disease-classification/test_images/') test_generator = test_datagen_v2.flow_from_dataframe(test, directory=test_dir, x_col='image_id', target_size=(448, 448), batch_size=1, class_mode=None, shuffle=False)
code
49122760/cell_5
[ "text_plain_output_1.png" ]
import tensorflow as tf import tensorflow as tf conv_base = tf.keras.models.load_model('../input/pretrained-models/vgg16') conv_base.summary()
code
33122543/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import datetime from sklearn import preprocessing from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) name = 'Raghu' from datetime import datetime started_at = datetime.now().strftime('%H:%M:%S') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') def massage_data(data): data['Honorific'] = data['Name'] titles = data['Name'].str.split(',') for indx, title in enumerate(titles): data['Honorific'][indx] = title[1].split('.')[0] data['HonorificEnc'] = data['Honorific'] for indx, hon in enumerate(train_data.Honorific.value_counts().index): data.HonorificEnc.replace(hon, indx, inplace=True) data['CoPassengers'] = data['SibSp'] + data['Parch'] data.Sex.replace('male', 0, inplace=True) data.Sex.replace('female', 1, inplace=True) most_likely_fare = data['Fare'].mean() data['Fare'] = data['Fare'].fillna(most_likely_fare) most_likely_age = data['Age'].mean() data['Age'] = data['Age'].fillna(most_likely_age) most_likely_embarkation = data['Embarked'].mode() data['Embarked'] = data['Embarked'].fillna(most_likely_embarkation) data['EmbarkedEnc'] = data['Embarked'] data.EmbarkedEnc.replace('S', 0, inplace=True) data.EmbarkedEnc.replace('C', 1, inplace=True) data.EmbarkedEnc.replace('Q', 2, inplace=True) return data test_data = massage_data(test_data) train_data = massage_data(train_data) columns_for_fitting = ['Sex', 'CoPassengers', 'Pclass', 'Fare', 'Age', 'EmbarkedEnc'] data = [train_data, test_data] X = train_data[columns_for_fitting] y = train_data['Survived'] X1 = test_data[columns_for_fitting] from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2, random_state=21) from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn import preprocessing k = 4 while k < 5: k = k + 1 X_train = preprocessing.StandardScaler().fit(X_train).transform(X_train.astype(float)) model = KNeighborsClassifier(n_neighbors=k).fit(X_train, Y_train) X_test = preprocessing.StandardScaler().fit(X_test).transform(X_test.astype(float)) predictions = model.predict(X_test) print('K and Accuracy are', k, accuracy_score(Y_test, predictions))
code
33122543/cell_6
[ "text_plain_output_1.png" ]
from datetime import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) name = 'Raghu' from datetime import datetime started_at = datetime.now().strftime('%H:%M:%S') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') def massage_data(data): data['Honorific'] = data['Name'] titles = data['Name'].str.split(',') for indx, title in enumerate(titles): data['Honorific'][indx] = title[1].split('.')[0] data['HonorificEnc'] = data['Honorific'] for indx, hon in enumerate(train_data.Honorific.value_counts().index): data.HonorificEnc.replace(hon, indx, inplace=True) data['CoPassengers'] = data['SibSp'] + data['Parch'] data.Sex.replace('male', 0, inplace=True) data.Sex.replace('female', 1, inplace=True) most_likely_fare = data['Fare'].mean() data['Fare'] = data['Fare'].fillna(most_likely_fare) most_likely_age = data['Age'].mean() data['Age'] = data['Age'].fillna(most_likely_age) most_likely_embarkation = data['Embarked'].mode() data['Embarked'] = data['Embarked'].fillna(most_likely_embarkation) data['EmbarkedEnc'] = data['Embarked'] data.EmbarkedEnc.replace('S', 0, inplace=True) data.EmbarkedEnc.replace('C', 1, inplace=True) data.EmbarkedEnc.replace('Q', 2, inplace=True) return data test_data = massage_data(test_data) train_data = massage_data(train_data) columns_for_fitting = ['Sex', 'CoPassengers', 'Pclass', 'Fare', 'Age', 'EmbarkedEnc'] data = [train_data, test_data] for c in columns_for_fitting: print(c) for d in data: print(d[c].value_counts()) print('-----')
code
33122543/cell_2
[ "text_plain_output_1.png" ]
from datetime import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) name = 'Raghu' from datetime import datetime started_at = datetime.now().strftime('%H:%M:%S') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') print(train_data.head()) print(train_data.columns)
code
33122543/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33122543/cell_8
[ "text_plain_output_1.png" ]
from datetime import datetime from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) name = 'Raghu' from datetime import datetime started_at = datetime.now().strftime('%H:%M:%S') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') def massage_data(data): data['Honorific'] = data['Name'] titles = data['Name'].str.split(',') for indx, title in enumerate(titles): data['Honorific'][indx] = title[1].split('.')[0] data['HonorificEnc'] = data['Honorific'] for indx, hon in enumerate(train_data.Honorific.value_counts().index): data.HonorificEnc.replace(hon, indx, inplace=True) data['CoPassengers'] = data['SibSp'] + data['Parch'] data.Sex.replace('male', 0, inplace=True) data.Sex.replace('female', 1, inplace=True) most_likely_fare = data['Fare'].mean() data['Fare'] = data['Fare'].fillna(most_likely_fare) most_likely_age = data['Age'].mean() data['Age'] = data['Age'].fillna(most_likely_age) most_likely_embarkation = data['Embarked'].mode() data['Embarked'] = data['Embarked'].fillna(most_likely_embarkation) data['EmbarkedEnc'] = data['Embarked'] data.EmbarkedEnc.replace('S', 0, inplace=True) data.EmbarkedEnc.replace('C', 1, inplace=True) data.EmbarkedEnc.replace('Q', 2, inplace=True) return data test_data = massage_data(test_data) train_data = massage_data(train_data) columns_for_fitting = ['Sex', 'CoPassengers', 'Pclass', 'Fare', 'Age', 'EmbarkedEnc'] data = [train_data, test_data] X = train_data[columns_for_fitting] y = train_data['Survived'] X1 = test_data[columns_for_fitting] from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2, random_state=21) print('Train set:', X_train.shape, Y_train.shape) print('Test set:', X_test.shape, Y_test.shape)
code
33122543/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from datetime import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) name = 'Raghu' from datetime import datetime started_at = datetime.now().strftime('%H:%M:%S') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') def massage_data(data): data['Honorific'] = data['Name'] titles = data['Name'].str.split(',') for indx, title in enumerate(titles): data['Honorific'][indx] = title[1].split('.')[0] data['HonorificEnc'] = data['Honorific'] for indx, hon in enumerate(train_data.Honorific.value_counts().index): data.HonorificEnc.replace(hon, indx, inplace=True) data['CoPassengers'] = data['SibSp'] + data['Parch'] data.Sex.replace('male', 0, inplace=True) data.Sex.replace('female', 1, inplace=True) most_likely_fare = data['Fare'].mean() data['Fare'] = data['Fare'].fillna(most_likely_fare) most_likely_age = data['Age'].mean() data['Age'] = data['Age'].fillna(most_likely_age) most_likely_embarkation = data['Embarked'].mode() data['Embarked'] = data['Embarked'].fillna(most_likely_embarkation) data['EmbarkedEnc'] = data['Embarked'] data.EmbarkedEnc.replace('S', 0, inplace=True) data.EmbarkedEnc.replace('C', 1, inplace=True) data.EmbarkedEnc.replace('Q', 2, inplace=True) return data test_data = massage_data(test_data) train_data = massage_data(train_data) print(train_data.head())
code
122263777/cell_6
[ "text_html_output_1.png" ]
!pip install recipe-scrapers # Insalling scraping lib
code
122263777/cell_19
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup from recipe_scrapers import scrape_me import pandas as pd import re URLs = ['https://www.allrecipes.com/recipes/721/world-cuisine/european/french/', 'https://www.allrecipes.com/recipes/16126/world-cuisine/european/french/french-bread/', 'https://www.allrecipes.com/recipes/17138/world-cuisine/european/french/main-dishes/', 'https://www.allrecipes.com/recipes/1857/world-cuisine/european/french/main-dishes/pork/', 'https://www.allrecipes.com/recipes/1858/world-cuisine/european/french/main-dishes/chicken/', 'https://www.allrecipes.com/recipes/1828/world-cuisine/european/french/desserts/', 'https://www.allrecipes.com/recipes/1829/world-cuisine/european/french/soups-and-stews/', 'https://www.allrecipes.com/recipes/1848/world-cuisine/european/french/appetizers/'] recipes_urls = {} for u in URLs: lst_var = [] url = u res = requests.get(url).text soup = BeautifulSoup(res, 'html.parser') name_ = soup.find_all('h1', class_='comp mntl-taxonomysc-heading mntl-text-block') try: for i in range(len(soup.find_all('a', class_='comp card--image-top mntl-card-list-items mntl-document-card mntl-card card card--no-image'))): url = soup.find_all('a', class_='comp card--image-top mntl-card-list-items mntl-document-card mntl-card card card--no-image')[i]['href'] lst_var.append(url) except: pass for i in range(len(soup.find_all('a', class_='comp mntl-card-list-items mntl-document-card mntl-card card card--no-image'))): url = soup.find_all('a', class_='comp mntl-card-list-items mntl-document-card mntl-card card card--no-image')[i]['href'] lst_var.append(url) recipes_urls[name_[0].text[1:]] = lst_var len(recipes_urls) recipes = {} i = 0 for name,url_list in recipes_urls.items(): temp_dict = {} for url in url_list: recipe = {} scraper = scrape_me(url) recipe["Contient"] = "Europe" recipe["Country_State"] = "France" try: recipe["cuisine"] = name except: recipe["cuisine"] = float("nan") try: recipe["title"] = scraper.title() except: recipe["title"] = float("nan") try: recipe["URL"] = url except: recipe["URL"] = float("nan") try: recipe["rating"] = scraper.ratings() except: recipe["rating"] = float("nan") try: recipe["total_time"]= scraper.total_time() except: recipe["total_time"] = float("nan") try: recipe["prep_time"] = scraper.prep_time() except: recipe["prep_time"] = float("nan") try: recipe["cook_time"] = scraper.cook_time() except: recipe["cook_time"] = float("nan") try: recipe["description"] = scraper.description() except: recipe["description"] = float("nan") try: recipe["ingredients"] = scraper.ingredients() except: recipe["ingredients"] = float("nan") try: recipe["instructions"] = scraper.instructions_list() except: recipe["instructions"] = float("nan") try: recipe["nutrients"] = scraper.nutrients() except: recipe["nutrients"] = float("nan") try: recipe["serves"] = scraper.yields() except: recipe["serves"] = float("nan") try: res = requests.get(url).text soup = BeautifulSoup(res,"html.parser") rate = soup.find("div",class_ = "comp type--squirrel mntl-recipe-review-bar__rating-count mntl-text-block") pattern = r'[0-9,]+' s = rate.text match = re.search(pattern, s) if match: number = int(match.group().replace(',', '')) recipe["rating_count"] = number except: recipe["rating_count"] = 0 time.sleep(1) recipes[f"{i}"] = recipe i+=1 df_France = pd.DataFrame() for data in recipes.keys(): df_France = df_France.append(recipes.get(data), ignore_index=True) df_France.head(5)
code
122263777/cell_12
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup URLs = ['https://www.allrecipes.com/recipes/721/world-cuisine/european/french/', 'https://www.allrecipes.com/recipes/16126/world-cuisine/european/french/french-bread/', 'https://www.allrecipes.com/recipes/17138/world-cuisine/european/french/main-dishes/', 'https://www.allrecipes.com/recipes/1857/world-cuisine/european/french/main-dishes/pork/', 'https://www.allrecipes.com/recipes/1858/world-cuisine/european/french/main-dishes/chicken/', 'https://www.allrecipes.com/recipes/1828/world-cuisine/european/french/desserts/', 'https://www.allrecipes.com/recipes/1829/world-cuisine/european/french/soups-and-stews/', 'https://www.allrecipes.com/recipes/1848/world-cuisine/european/french/appetizers/'] recipes_urls = {} for u in URLs: lst_var = [] url = u res = requests.get(url).text soup = BeautifulSoup(res, 'html.parser') name_ = soup.find_all('h1', class_='comp mntl-taxonomysc-heading mntl-text-block') try: for i in range(len(soup.find_all('a', class_='comp card--image-top mntl-card-list-items mntl-document-card mntl-card card card--no-image'))): url = soup.find_all('a', class_='comp card--image-top mntl-card-list-items mntl-document-card mntl-card card card--no-image')[i]['href'] lst_var.append(url) except: pass for i in range(len(soup.find_all('a', class_='comp mntl-card-list-items mntl-document-card mntl-card card card--no-image'))): url = soup.find_all('a', class_='comp mntl-card-list-items mntl-document-card mntl-card card card--no-image')[i]['href'] lst_var.append(url) recipes_urls[name_[0].text[1:]] = lst_var len(recipes_urls)
code
72081028/cell_13
[ "text_plain_output_1.png" ]
from numpy import array, argmax, random, take import matplotlib.pyplot as plt import pandas as pd def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] eng_l = [] deu_l = [] for i in deu_eng[:, 0]: eng_l.append(len(i.split())) for i in deu_eng[:, 1]: deu_l.append(len(i.split())) length_df = pd.DataFrame({'eng': eng_l, 'deu': deu_l}) length_df.hist(bins=30) plt.show
code
72081028/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from numpy import array, argmax, random, take def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] deu_eng
code
72081028/cell_34
[ "image_output_1.png" ]
from numpy import array, argmax, random, take from keras import optimizers from keras.callbacks import ModelCheckpoint from keras.layers import Dense, LSTM, Embedding, Bidirectional, RepeatVector, TimeDistributed from keras.models import Sequential from keras.models import load_model from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] def tokenization(lines): tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer eng_tokenizer = tokenization(deu_eng[:, 0]) eng_vocab_size = len(eng_tokenizer.word_index) + 1 eng_length = 8 deu_tokenizer = tokenization(deu_eng[:, 1]) deu_vocab_size = len(deu_tokenizer.word_index) + 1 deu_length = 8 def encode_sequences(tokenizer, length, lines): seq = tokenizer.texts_to_sequences(lines) seq = pad_sequences(seq, maxlen=length, padding='post') return seq trainX = encode_sequences(deu_tokenizer, deu_length, train[:, 1]) trainY = encode_sequences(eng_tokenizer, eng_length, train[:, 0]) testX = encode_sequences(deu_tokenizer, deu_length, train[:, 1]) testY = encode_sequences(eng_tokenizer, eng_length, train[:, 0]) def build_model(in_vocab, out_vocab, in_timesteps, out_timesteps, units): model = Sequential() model.add(Embedding(in_vocab, units, input_length=in_timesteps, mask_zero=True)) model.add(LSTM(units)) model.add(RepeatVector(out_timesteps)) model.add(LSTM(units, return_sequences=True)) model.add(Dense(out_vocab, activation='softmax')) return model model = build_model(deu_vocab_size, eng_vocab_size, deu_length, eng_length, 512) rms = optimizers.RMSprop(lr=0.001) model.compile(optimizer=rms, loss='sparse_categorical_crossentropy') filename = 'model.h1.24_manish' checkpoint = ModelCheckpoint(filename, monitor='val_loss', verbose=1, save_best_only=True, mode='min') history = model.fit(trainX, trainY.reshape(trainY.shape[0], trainY.shape[1], 1), epochs=5, batch_size=512, validation_split=0.2, callbacks=[checkpoint], verbose=1) model = load_model('model.h1.24_manish') preds = model.predict_classes(testX.reshape((testX.shape[0], testX.shape[1])))
code
72081028/cell_30
[ "text_plain_output_1.png" ]
from numpy import array, argmax, random, take from keras import optimizers from keras.callbacks import ModelCheckpoint from keras.layers import Dense, LSTM, Embedding, Bidirectional, RepeatVector, TimeDistributed from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] def tokenization(lines): tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer eng_tokenizer = tokenization(deu_eng[:, 0]) eng_vocab_size = len(eng_tokenizer.word_index) + 1 eng_length = 8 deu_tokenizer = tokenization(deu_eng[:, 1]) deu_vocab_size = len(deu_tokenizer.word_index) + 1 deu_length = 8 def encode_sequences(tokenizer, length, lines): seq = tokenizer.texts_to_sequences(lines) seq = pad_sequences(seq, maxlen=length, padding='post') return seq trainX = encode_sequences(deu_tokenizer, deu_length, train[:, 1]) trainY = encode_sequences(eng_tokenizer, eng_length, train[:, 0]) def build_model(in_vocab, out_vocab, in_timesteps, out_timesteps, units): model = Sequential() model.add(Embedding(in_vocab, units, input_length=in_timesteps, mask_zero=True)) model.add(LSTM(units)) model.add(RepeatVector(out_timesteps)) model.add(LSTM(units, return_sequences=True)) model.add(Dense(out_vocab, activation='softmax')) return model model = build_model(deu_vocab_size, eng_vocab_size, deu_length, eng_length, 512) rms = optimizers.RMSprop(lr=0.001) model.compile(optimizer=rms, loss='sparse_categorical_crossentropy') filename = 'model.h1.24_manish' checkpoint = ModelCheckpoint(filename, monitor='val_loss', verbose=1, save_best_only=True, mode='min') history = model.fit(trainX, trainY.reshape(trainY.shape[0], trainY.shape[1], 1), epochs=5, batch_size=512, validation_split=0.2, callbacks=[checkpoint], verbose=1)
code
72081028/cell_32
[ "text_plain_output_1.png" ]
from numpy import array, argmax, random, take from keras import optimizers from keras.callbacks import ModelCheckpoint from keras.layers import Dense, LSTM, Embedding, Bidirectional, RepeatVector, TimeDistributed from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer import matplotlib.pyplot as plt import pandas as pd def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] eng_l = [] deu_l = [] for i in deu_eng[:, 0]: eng_l.append(len(i.split())) for i in deu_eng[:, 1]: deu_l.append(len(i.split())) length_df = pd.DataFrame({'eng': eng_l, 'deu': deu_l}) plt.show def tokenization(lines): tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer eng_tokenizer = tokenization(deu_eng[:, 0]) eng_vocab_size = len(eng_tokenizer.word_index) + 1 eng_length = 8 deu_tokenizer = tokenization(deu_eng[:, 1]) deu_vocab_size = len(deu_tokenizer.word_index) + 1 deu_length = 8 def encode_sequences(tokenizer, length, lines): seq = tokenizer.texts_to_sequences(lines) seq = pad_sequences(seq, maxlen=length, padding='post') return seq trainX = encode_sequences(deu_tokenizer, deu_length, train[:, 1]) trainY = encode_sequences(eng_tokenizer, eng_length, train[:, 0]) def build_model(in_vocab, out_vocab, in_timesteps, out_timesteps, units): model = Sequential() model.add(Embedding(in_vocab, units, input_length=in_timesteps, mask_zero=True)) model.add(LSTM(units)) model.add(RepeatVector(out_timesteps)) model.add(LSTM(units, return_sequences=True)) model.add(Dense(out_vocab, activation='softmax')) return model model = build_model(deu_vocab_size, eng_vocab_size, deu_length, eng_length, 512) rms = optimizers.RMSprop(lr=0.001) model.compile(optimizer=rms, loss='sparse_categorical_crossentropy') filename = 'model.h1.24_manish' checkpoint = ModelCheckpoint(filename, monitor='val_loss', verbose=1, save_best_only=True, mode='min') history = model.fit(trainX, trainY.reshape(trainY.shape[0], trainY.shape[1], 1), epochs=5, batch_size=512, validation_split=0.2, callbacks=[checkpoint], verbose=1) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['train', 'validation']) plt.show()
code
72081028/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from numpy import array, argmax, random, take from keras.preprocessing.text import Tokenizer def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] def tokenization(lines): tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer eng_tokenizer = tokenization(deu_eng[:, 0]) eng_vocab_size = len(eng_tokenizer.word_index) + 1 eng_length = 8 print('English Vocabulary Size: %d' % eng_vocab_size)
code
72081028/cell_17
[ "text_plain_output_1.png" ]
from numpy import array, argmax, random, take from keras.preprocessing.text import Tokenizer def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents data = read_text('../input/german-to-english/deu.txt') deu_eng = to_lines(data) deu_eng = array(deu_eng) deu_eng = deu_eng[:50000, :] def tokenization(lines): tokenizer = Tokenizer() tokenizer.fit_on_texts(lines) return tokenizer deu_tokenizer = tokenization(deu_eng[:, 1]) deu_vocab_size = len(deu_tokenizer.word_index) + 1 deu_length = 8 print('Deutch Vocabulary Size: %d' % deu_vocab_size)
code
2002850/cell_9
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.sparse as sparse books = pd.read_csv('../input/Books.csv', encoding='ISO 8859-1') users = pd.read_csv('../input/Users.csv', encoding='ISO 8859-1') book_ratings = pd.read_csv('../input/BookRatings.csv', encoding='ISO 8859-1', low_memory=False) book_ratings['UserID'] = book_ratings.UserID.astype(int) grouped_cleaned = book_ratings.groupby(['UserID', 'ISBN']).sum().reset_index() grouped_cleaned = grouped_cleaned.query('BookRating > 0') grouped_cleaned.shape import scipy.sparse as sparse from scipy.sparse.linalg import spsolve users = list(np.sort(grouped_cleaned.UserID.unique())) books = list(grouped_cleaned.ISBN.unique()) ratings = list(grouped_cleaned.BookRating) rows = grouped_cleaned.UserID.astype('category', categories=users).cat.codes cols = grouped_cleaned.ISBN.astype('category', categories=books).cat.codes ratings_sparse = sparse.csr_matrix((ratings, (rows, cols)), shape=(len(users), len(books))) matrix_size = ratings_sparse.shape[0] * ratings_sparse.shape[1] num_ratings = len(ratings_sparse.nonzero()[0]) sparsity = 100 * (1 - num_ratings / matrix_size) sparsity
code
2002850/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) books = pd.read_csv('../input/Books.csv', encoding='ISO 8859-1') users = pd.read_csv('../input/Users.csv', encoding='ISO 8859-1') book_ratings = pd.read_csv('../input/BookRatings.csv', encoding='ISO 8859-1', low_memory=False) book_ratings['UserID'] = book_ratings.UserID.astype(int) grouped_cleaned = book_ratings.groupby(['UserID', 'ISBN']).sum().reset_index() grouped_cleaned = grouped_cleaned.query('BookRating > 0') grouped_cleaned.shape
code
2002850/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2002850/cell_7
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.sparse as sparse books = pd.read_csv('../input/Books.csv', encoding='ISO 8859-1') users = pd.read_csv('../input/Users.csv', encoding='ISO 8859-1') book_ratings = pd.read_csv('../input/BookRatings.csv', encoding='ISO 8859-1', low_memory=False) book_ratings['UserID'] = book_ratings.UserID.astype(int) grouped_cleaned = book_ratings.groupby(['UserID', 'ISBN']).sum().reset_index() grouped_cleaned = grouped_cleaned.query('BookRating > 0') grouped_cleaned.shape import scipy.sparse as sparse from scipy.sparse.linalg import spsolve users = list(np.sort(grouped_cleaned.UserID.unique())) books = list(grouped_cleaned.ISBN.unique()) ratings = list(grouped_cleaned.BookRating) rows = grouped_cleaned.UserID.astype('category', categories=users).cat.codes cols = grouped_cleaned.ISBN.astype('category', categories=books).cat.codes ratings_sparse = sparse.csr_matrix((ratings, (rows, cols)), shape=(len(users), len(books))) ratings_sparse
code
88100945/cell_4
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd TRAIN_PATH = '../input/tabular-playground-series-feb-2022/train.csv' TEST_PATH = '../input/tabular-playground-series-feb-2022/test.csv' PSEUDO_PATH = '../input/automl-tps-02-22-flaml-prediction/submission.csv' ID = 'row_id' TARGET = 'target' train = pd.read_csv(TRAIN_PATH) print('train size = ', len(train)) train.head()
code
88100945/cell_6
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd TRAIN_PATH = '../input/tabular-playground-series-feb-2022/train.csv' TEST_PATH = '../input/tabular-playground-series-feb-2022/test.csv' PSEUDO_PATH = '../input/automl-tps-02-22-flaml-prediction/submission.csv' ID = 'row_id' TARGET = 'target' train = pd.read_csv(TRAIN_PATH) test = pd.read_csv(TEST_PATH) pseudo = pd.read_csv(PSEUDO_PATH) pseudo = pseudo.drop([ID], axis=1) pseudo_train = pd.concat([test, pseudo], axis=1) pseudo_train.reset_index(inplace=True, drop=True) print('pseudo_train size = ', len(pseudo_train)) pseudo_train.head()
code
88100945/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd TRAIN_PATH = '../input/tabular-playground-series-feb-2022/train.csv' TEST_PATH = '../input/tabular-playground-series-feb-2022/test.csv' PSEUDO_PATH = '../input/automl-tps-02-22-flaml-prediction/submission.csv' ID = 'row_id' TARGET = 'target' train = pd.read_csv(TRAIN_PATH) test = pd.read_csv(TEST_PATH) pseudo = pd.read_csv(PSEUDO_PATH) pseudo = pseudo.drop([ID], axis=1) pseudo_train = pd.concat([test, pseudo], axis=1) pseudo_train.reset_index(inplace=True, drop=True) new_train = pd.concat([train, pseudo_train], axis=0, ignore_index=True) print('new_train size = ', len(new_train)) new_train.head()
code
18161210/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des.head()
code
18161210/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') print('train:', train.shape, 'test:', test.shape, sep='\n')
code
18161210/cell_20
[ "text_html_output_1.png" ]
from sklearn.model_selection import cross_val_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xgboost train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des = pd.get_dummies(des) X_train = des.iloc[0:32967, :] X_test = des.iloc[32967:41188, :] classifier = xgboost.XGBClassifier() classifier = xgboost.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.3, gamma=0.4, learning_rate=0.1, max_delta_step=0, max_depth=8, min_child_weight=3, missing=None, n_estimators=10, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1) from sklearn.model_selection import cross_val_score score = cross_val_score(classifier, X_train, y_train, cv=5) score.mean()
code
18161210/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des = pd.get_dummies(des) X_train = des.iloc[0:32967, :] X_test = des.iloc[32967:41188, :] X_train.head()
code
18161210/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18161210/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xgboost train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des = pd.get_dummies(des) X_train = des.iloc[0:32967, :] X_test = des.iloc[32967:41188, :] params = {'learning_rate': [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], 'max_depth': [3, 4, 5, 6, 8, 10, 12, 15], 'n_estimators': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'min_child_weight': [1, 3, 5, 7], 'gamma': [0.0, 0.1, 0.2, 0.3, 0.4], 'colsample_bytree': [0.3, 0.4, 0.5, 0.7]} classifier = xgboost.XGBClassifier() random_search = RandomizedSearchCV(classifier, param_distributions=params, n_iter=20, scoring='roc_auc', n_jobs=-1, cv=5, verbose=3) random_search.fit(X_train, y_train)
code
18161210/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
18161210/cell_17
[ "text_html_output_1.png" ]
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xgboost train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des = pd.get_dummies(des) X_train = des.iloc[0:32967, :] X_test = des.iloc[32967:41188, :] params = {'learning_rate': [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], 'max_depth': [3, 4, 5, 6, 8, 10, 12, 15], 'n_estimators': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'min_child_weight': [1, 3, 5, 7], 'gamma': [0.0, 0.1, 0.2, 0.3, 0.4], 'colsample_bytree': [0.3, 0.4, 0.5, 0.7]} classifier = xgboost.XGBClassifier() random_search = RandomizedSearchCV(classifier, param_distributions=params, n_iter=20, scoring='roc_auc', n_jobs=-1, cv=5, verbose=3) random_search.fit(X_train, y_train) random_search.best_estimator_
code
18161210/cell_22
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xgboost train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.y train = train.iloc[:, 1:15] test = test.iloc[:, 1:15] des = pd.concat((train, test)) des = pd.get_dummies(des) X_train = des.iloc[0:32967, :] X_test = des.iloc[32967:41188, :] classifier = xgboost.XGBClassifier() classifier = xgboost.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.3, gamma=0.4, learning_rate=0.1, max_delta_step=0, max_depth=8, min_child_weight=3, missing=None, n_estimators=10, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1) classifier.fit(X_train, y_train)
code
88101554/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape
code
88101554/cell_25
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) nusers = tempdf.user_id.nunique() nrests = tempdf.business_id.nunique() (nusers, nrests) print('The total number of unique Users :', nusers) print('The total number of unique Businesses :', nrests)
code
88101554/cell_20
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) tempdf.head(3)
code
88101554/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.head(2)
code
88101554/cell_29
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) nusers = tempdf.user_id.nunique() nrests = tempdf.business_id.nunique() (nusers, nrests) tempdf.shape
code
88101554/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.layers import Activation from tensorflow.keras import backend as K from sklearn.model_selection import train_test_split import tensorflow.keras as keras import tensorflow as tf print(tf.__version__) from tensorflow.keras.layers import Input, Embedding, Add, Dot, Flatten from tensorflow.keras import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam import pydot from tensorflow.keras.utils import model_to_dot from IPython.display import SVG from operator import itemgetter from sklearn.decomposition import PCA
code
88101554/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts))
code
88101554/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape
code
88101554/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.head()
code
88101554/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.head(3)
code
88101554/cell_16
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) restdf = restdf.drop('business_id', axis=1).set_index('id') restdf.head()
code
88101554/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.head()
code
88101554/cell_31
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) nusers = tempdf.user_id.nunique() nrests = tempdf.business_id.nunique() (nusers, nrests) tempdf.shape train_indices, test_indices = train_test_split(range(tempdf.shape[0]), train_size=0.7) trdf = tempdf.iloc[train_indices] testdf = tempdf.iloc[test_indices] (trdf.shape, testdf.shape)
code
88101554/cell_24
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) nusers = tempdf.user_id.nunique() nrests = tempdf.business_id.nunique() (nusers, nrests)
code
88101554/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) restdf.head()
code
88101554/cell_22
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) restdf.shape tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx)) tempdf1 = tempdf.copy() restdf1 = restdf.copy() tempdf['business_id'] = tempdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf['user_id'] = tempdf.user_id.apply(lambda x: userid2idx[x]) restdf = restdf[restdf.business_id.isin(restraunts)] restdf['id'] = restdf.business_id.apply(lambda x: restrauntid2idx[x]) tempdf.reset_index(inplace=True) tempdf.drop(labels=['index', 'review_id'], axis=1, inplace=True) tempdf.head()
code
88101554/cell_12
[ "text_html_output_1.png" ]
import pandas as pd restdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/restdf.pkl') restdf = restdf.drop(columns=['address', 'city', 'state', 'postal_code', 'latitude', 'longitude', 'review_count', 'is_open', 'attributes', 'hours']) tempdf = pd.read_pickle('../input/recommendationsyetemforrestraunts/tempdf.pkl') tempdf = tempdf.drop(columns=['useful', 'funny', 'cool']) tempdf.shape users = tempdf.user_id.unique() restraunts = tempdf.business_id.unique() (len(users), len(restraunts)) userid2idx = {o: i for i, o in enumerate(users)} restrauntid2idx = {o: i for i, o in enumerate(restraunts)} (len(userid2idx), len(restrauntid2idx))
code
89143029/cell_4
[ "text_html_output_1.png" ]
from pandas import read_csv from pandas import read_csv train = read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv') test = read_csv('/kaggle/input/tabular-playground-series-mar-2022/test.csv') sample = read_csv('/kaggle/input/tabular-playground-series-mar-2022/sample_submission.csv') train.memory_usage().sum() / 1000000 test.memory_usage().sum() / 1000000 sample.memory_usage().sum() / 1000000 train
code
89143029/cell_3
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from pandas import read_csv from pandas import read_csv train = read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv') test = read_csv('/kaggle/input/tabular-playground-series-mar-2022/test.csv') sample = read_csv('/kaggle/input/tabular-playground-series-mar-2022/sample_submission.csv') train.memory_usage().sum() / 1000000 test.memory_usage().sum() / 1000000 sample.memory_usage().sum() / 1000000
code
89143029/cell_5
[ "text_html_output_1.png" ]
from pandas import read_csv from pandas import read_csv train = read_csv('/kaggle/input/tabular-playground-series-mar-2022/train.csv') test = read_csv('/kaggle/input/tabular-playground-series-mar-2022/test.csv') sample = read_csv('/kaggle/input/tabular-playground-series-mar-2022/sample_submission.csv') train.memory_usage().sum() / 1000000 test.memory_usage().sum() / 1000000 sample.memory_usage().sum() / 1000000 sample
code
128009742/cell_13
[ "text_html_output_1.png" ]
"""plt.figure(figsize = (8, 4), dpi = 300) sns.barplot(data = mae_list.reindex((mae_list).mean().sort_values().index, axis = 1), palette = 'viridis', orient = 'h') plt.title('MAE Comparison', weight = 'bold', size = 20) plt.show() """
code
128009742/cell_23
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from lightgbm import LGBMRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor, GradientBoostingRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.svm import SVR, LinearSVR from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, LogisticRegression from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.feature_selection import SelectFromModel from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA, NMF from sklearn.manifold import TSNE from umap import UMAP from scipy.cluster.hierarchy import dendrogram, ward from xgboost import XGBRegressor, XGBClassifier from lightgbm import LGBMRegressor from catboost import CatBoostRegressor sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) X = train.copy() y = X.pop('yield') seed = 42 splits = 5 k = KFold(n_splits=splits, random_state=seed, shuffle=True) np.random.seed(seed) def cross_val_score(model, cv=k, label=''): X = train.copy() y = X.pop('yield') val_predictions = np.zeros(len(train)) train_predictions = np.zeros(len(train)) train_mae, val_mae = ([], []) for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)): model.fit(X.iloc[train_idx], y.iloc[train_idx]) train_preds = model.predict(X.iloc[train_idx]) val_preds = model.predict(X.iloc[val_idx]) train_predictions[train_idx] += train_preds val_predictions[val_idx] += val_preds train_score = mean_absolute_error(y.iloc[train_idx], train_preds) val_score = mean_absolute_error(y.iloc[val_idx], val_preds) train_mae.append(train_score) val_mae.append(val_score) return val_mae from sklearn.model_selection import cross_val_score, cross_validate, train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_absolute_error def cross_val_and_test(model, cv=k, label=''): X = train.copy() y = X.pop('yield') val_predictions = np.zeros(len(train)) train_predictions = np.zeros(len(train)) train_mae, val_mae = ([], []) test_predictions = np.zeros(len(test)) for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)): model.fit(X.iloc[train_idx], y.iloc[train_idx]) train_preds = model.predict(X.iloc[train_idx]) val_preds = model.predict(X.iloc[val_idx]) test_predictions += model.predict(test) train_predictions[train_idx] += train_preds val_predictions[val_idx] = +val_preds train_score = mean_absolute_error(y.iloc[train_idx], train_preds) val_score = mean_absolute_error(y.iloc[val_idx], val_preds) train_mae.append(train_score) val_mae.append(val_score) return test_predictions / splits reg_models = [('lgb', LGBMRegressor(random_state=seed, objective='mae')), ('cb', CatBoostRegressor(random_state=seed, objective='MAE', verbose=0)), ('hgb', HistGradientBoostingRegressor(random_state=seed, loss='absolute_error'))] prediction = np.zeros(len(test)) for label, model in reg_models: prediction += cross_val_and_test(model, label=label) prediction /= len(reg_models) test_1.drop(list(test_1.drop('id', axis=1)), axis=1, inplace=True) test_1['yield'] = prediction test_1.to_csv('submission.csv', index=False) test_1.head()
code
128009742/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor, GradientBoostingRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.svm import SVR, LinearSVR from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, LogisticRegression from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.feature_selection import SelectFromModel from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA, NMF from sklearn.manifold import TSNE from umap import UMAP from scipy.cluster.hierarchy import dendrogram, ward from xgboost import XGBRegressor, XGBClassifier from lightgbm import LGBMRegressor from catboost import CatBoostRegressor sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100)
code
128009742/cell_16
[ "text_plain_output_1.png" ]
"""for (label, model) in models: mae_list[label] = cross_val_score( Pipeline([('fe1', FE1()), (label, model)]), label = label ) """
code
128009742/cell_17
[ "text_plain_output_1.png" ]
"""plt.figure(figsize = (8, 4), dpi = 300) sns.barplot(data = mae_list.reindex((mae_list).mean().sort_values().index, axis = 1), palette = 'viridis', orient = 'h') plt.title('MAE Comparison', weight = 'bold', size = 20) plt.show()"""
code
128009742/cell_22
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from lightgbm import LGBMRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor, GradientBoostingRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.svm import SVR, LinearSVR from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, LogisticRegression from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.feature_selection import SelectFromModel from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA, NMF from sklearn.manifold import TSNE from umap import UMAP from scipy.cluster.hierarchy import dendrogram, ward from xgboost import XGBRegressor, XGBClassifier from lightgbm import LGBMRegressor from catboost import CatBoostRegressor sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) X = train.copy() y = X.pop('yield') seed = 42 splits = 5 k = KFold(n_splits=splits, random_state=seed, shuffle=True) np.random.seed(seed) def cross_val_score(model, cv=k, label=''): X = train.copy() y = X.pop('yield') val_predictions = np.zeros(len(train)) train_predictions = np.zeros(len(train)) train_mae, val_mae = ([], []) for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)): model.fit(X.iloc[train_idx], y.iloc[train_idx]) train_preds = model.predict(X.iloc[train_idx]) val_preds = model.predict(X.iloc[val_idx]) train_predictions[train_idx] += train_preds val_predictions[val_idx] += val_preds train_score = mean_absolute_error(y.iloc[train_idx], train_preds) val_score = mean_absolute_error(y.iloc[val_idx], val_preds) train_mae.append(train_score) val_mae.append(val_score) return val_mae from sklearn.model_selection import cross_val_score, cross_validate, train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_absolute_error def cross_val_and_test(model, cv=k, label=''): X = train.copy() y = X.pop('yield') val_predictions = np.zeros(len(train)) train_predictions = np.zeros(len(train)) train_mae, val_mae = ([], []) test_predictions = np.zeros(len(test)) for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)): model.fit(X.iloc[train_idx], y.iloc[train_idx]) train_preds = model.predict(X.iloc[train_idx]) val_preds = model.predict(X.iloc[val_idx]) test_predictions += model.predict(test) train_predictions[train_idx] += train_preds val_predictions[val_idx] = +val_preds train_score = mean_absolute_error(y.iloc[train_idx], train_preds) val_score = mean_absolute_error(y.iloc[val_idx], val_preds) train_mae.append(train_score) val_mae.append(val_score) return test_predictions / splits reg_models = [('lgb', LGBMRegressor(random_state=seed, objective='mae')), ('cb', CatBoostRegressor(random_state=seed, objective='MAE', verbose=0)), ('hgb', HistGradientBoostingRegressor(random_state=seed, loss='absolute_error'))] prediction = np.zeros(len(test)) for label, model in reg_models: prediction += cross_val_and_test(model, label=label) prediction /= len(reg_models) test_1.drop(list(test_1.drop('id', axis=1)), axis=1, inplace=True)
code
128009742/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor, GradientBoostingRegressor from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.svm import SVR, LinearSVR from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.linear_model import LinearRegression, Ridge, Lasso, LogisticRegression from sklearn.metrics import mean_absolute_error, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler from sklearn.pipeline import make_pipeline, Pipeline from sklearn.feature_selection import SelectFromModel from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA, NMF from sklearn.manifold import TSNE from umap import UMAP from scipy.cluster.hierarchy import dendrogram, ward from xgboost import XGBRegressor, XGBClassifier from lightgbm import LGBMRegressor from catboost import CatBoostRegressor sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) train.head(10)
code
130015002/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df.info()
code
130015002/cell_9
[ "text_html_output_1.png" ]
import pandas as pd train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns
code
130015002/cell_25
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df = train_df.drop(['AveRooms'], axis=1) train_df = train_df.drop(['AveBedrms'], axis=1) plt.figure(figsize=(12, 6)) sns.pairplot(train_df, x_vars=['Population'], y_vars=['MedHouseVal'], size=7, kind='scatter', hue='Population', palette='Greens_r')
code
130015002/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_df = pd.read_csv('/kaggle/input/playground-series-s3e1/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e1/test.csv') train_df.shape train_df.columns train_df.isnull().sum() train_df = train_df.drop(['AveRooms'], axis=1) train_df = train_df.drop(['AveBedrms'], axis=1) train_df.isnull().sum()
code