path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
104127064/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col df['Sex'].unique()
code
104127064/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data x = shuffle_data.drop('Survived', axis=1) y = shuffle_data['Survived'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lo = LogisticRegression() lo.fit(x_train, y_train) y_pred = lo.predict(x_test) plt.scatter(y_test, y_pred)
code
104127064/cell_31
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data x = shuffle_data.drop('Survived', axis=1) y = shuffle_data['Survived'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) (x_train.shape, x_test.shape, y_train.shape, y_test.shape)
code
104127064/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data
code
104127064/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum()
code
104127064/cell_27
[ "text_html_output_1.png" ]
from sklearn.utils import shuffle import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data
code
104127064/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df df.drop(['Pclass', 'Name', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1, inplace=True) df.isna().sum() round(df.isna().sum() / len(df.index) * 100, 2) round(df.isna().sum() / len(df.index) * 100, 2) categrocal_col = df.select_dtypes(exclude=np.number) categrocal_col labels_ = ['child', 'young', 'teenage', 'adult', 'old'] bins_ = [0, 10, 18, 28, 45, 80] df['Age'] = pd.cut(df['Age'], bins=bins_, labels=labels_) age = pd.get_dummies(df['Age']) data = pd.concat([df, age], axis=1) data data.drop(['Age'], axis=1, inplace=True) from sklearn.utils import shuffle shuffle_data = shuffle(data, random_state=42) shuffle_data x = shuffle_data.drop('Survived', axis=1) y = shuffle_data['Survived'] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=42) (x_train.shape, x_test.shape, y_train.shape, y_test.shape) lo = LogisticRegression() lo.fit(x_train, y_train) y_pred = lo.predict(x_test) from sklearn.metrics import confusion_matrix cm = pd.DataFrame(confusion_matrix(y_test, y_pred), columns=['predicted yes', 'predicted no'], index=['actual yes', 'actual no']) cm
code
104127064/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df
code
74050138/cell_13
[ "text_plain_output_1.png" ]
from PIL import Image from keras.callbacks import ModelCheckpoint from keras.layers import Input, BatchNormalization, Activation,Softmax from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.layers.pooling import MaxPooling2D from keras.models import Model import numpy as np import os import seaborn as sns EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def LoadImage(name, path): img = Image.open(os.path.join(path, name)) img = np.array(img) image = img[:, :256] mask = img[:, 256:] return (image, mask) def bin_image(mask): bins = np.array([20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240]) new_mask = np.digitize(mask, bins) return new_mask def getSegmentationArr(image, classes, width=WIDTH, height=HEIGHT): seg_labels = np.zeros((height, width, classes)) img = image[:, :, 0] for c in range(classes): seg_labels[:, :, c] = (img == c).astype(int) return seg_labels def give_color_to_seg_img(seg, n_classes=N_CLASSES): seg_img = np.zeros((seg.shape[0], seg.shape[1], 3)).astype('float') colors = sns.color_palette('hls', n_classes) for c in range(n_classes): segc = seg == c seg_img[:, :, 0] += segc * colors[c][0] seg_img[:, :, 1] += segc * colors[c][1] seg_img[:, :, 2] += segc * colors[c][2] return seg_img classes = 13 train_folder = '../input/cityscapes-image-pairs/cityscapes_data/train' valid_folder = '../input/cityscapes-image-pairs/cityscapes_data/val' num_of_training_samples = len(os.listdir(train_folder)) num_of_valid_samples = len(os.listdir(valid_folder)) def DataGenerator(path, batch_size=BATCH_SIZE, classes=N_CLASSES): files = os.listdir(path) while True: for i in range(0, len(files), batch_size): batch_files = files[i:i + batch_size] imgs = [] segs = [] for file in batch_files: image, mask = LoadImage(file, path) mask_binned = bin_image(mask) labels = getSegmentationArr(mask_binned, classes) imgs.append(image) segs.append(labels) yield (np.array(imgs), np.array(segs)) train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) def conv2d_block(input_tensor, n_filters, kernel_size=3): x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(n_filters=16): inputs = Input((HEIGHT, WIDTH, 3)) c1 = conv2d_block(inputs, n_filters * 1, kernel_size=3) p1 = MaxPooling2D((2, 2))(c1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3) p2 = MaxPooling2D((2, 2))(c2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3) p3 = MaxPooling2D((2, 2))(c3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3) p4 = MaxPooling2D((2, 2))(c4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3) p5 = MaxPooling2D((2, 2))(c5) c6 = conv2d_block(p5, n_filters=n_filters * 32, kernel_size=3) u7 = Conv2DTranspose(n_filters * 16, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c5]) c7 = conv2d_block(u7, n_filters * 16, kernel_size=3) u8 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c4]) c8 = conv2d_block(u8, n_filters * 8, kernel_size=3) u9 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c3]) c9 = conv2d_block(u9, n_filters * 4, kernel_size=3) u10 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c9) u10 = concatenate([u10, c2]) c10 = conv2d_block(u10, n_filters * 2, kernel_size=3) u11 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c10) u11 = concatenate([u11, c1]) c11 = conv2d_block(u11, n_filters * 1, kernel_size=3) outputs = Conv2D(13, (1, 1), activation='sigmoid')(c11) model = Model(inputs, outputs=[outputs]) return model checkpoint = ModelCheckpoint('unet_model.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max') model = get_unet() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() TRAIN_STEPS = num_of_training_samples // BATCH_SIZE + 1 VAL_STEPS = num_of_valid_samples // BATCH_SIZE + 1 results = model.fit(train_gen, validation_data=val_gen, steps_per_epoch=TRAIN_STEPS, validation_steps=VAL_STEPS, epochs=EPOCHS, callbacks=checkpoint)
code
74050138/cell_6
[ "image_output_2.png", "image_output_1.png" ]
from PIL import Image import numpy as np import os import seaborn as sns EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def LoadImage(name, path): img = Image.open(os.path.join(path, name)) img = np.array(img) image = img[:, :256] mask = img[:, 256:] return (image, mask) def bin_image(mask): bins = np.array([20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240]) new_mask = np.digitize(mask, bins) return new_mask def getSegmentationArr(image, classes, width=WIDTH, height=HEIGHT): seg_labels = np.zeros((height, width, classes)) img = image[:, :, 0] for c in range(classes): seg_labels[:, :, c] = (img == c).astype(int) return seg_labels def give_color_to_seg_img(seg, n_classes=N_CLASSES): seg_img = np.zeros((seg.shape[0], seg.shape[1], 3)).astype('float') colors = sns.color_palette('hls', n_classes) for c in range(n_classes): segc = seg == c seg_img[:, :, 0] += segc * colors[c][0] seg_img[:, :, 1] += segc * colors[c][1] seg_img[:, :, 2] += segc * colors[c][2] return seg_img classes = 13 train_folder = '../input/cityscapes-image-pairs/cityscapes_data/train' valid_folder = '../input/cityscapes-image-pairs/cityscapes_data/val' num_of_training_samples = len(os.listdir(train_folder)) num_of_valid_samples = len(os.listdir(valid_folder)) def DataGenerator(path, batch_size=BATCH_SIZE, classes=N_CLASSES): files = os.listdir(path) while True: for i in range(0, len(files), batch_size): batch_files = files[i:i + batch_size] imgs = [] segs = [] for file in batch_files: image, mask = LoadImage(file, path) mask_binned = bin_image(mask) labels = getSegmentationArr(mask_binned, classes) imgs.append(image) segs.append(labels) yield (np.array(imgs), np.array(segs)) train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) imgs, segs = next(train_gen) (imgs.shape, segs.shape)
code
74050138/cell_11
[ "text_plain_output_1.png" ]
from keras.layers import Input, BatchNormalization, Activation,Softmax from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.layers.pooling import MaxPooling2D from keras.models import Model EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def conv2d_block(input_tensor, n_filters, kernel_size=3): x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(n_filters=16): inputs = Input((HEIGHT, WIDTH, 3)) c1 = conv2d_block(inputs, n_filters * 1, kernel_size=3) p1 = MaxPooling2D((2, 2))(c1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3) p2 = MaxPooling2D((2, 2))(c2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3) p3 = MaxPooling2D((2, 2))(c3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3) p4 = MaxPooling2D((2, 2))(c4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3) p5 = MaxPooling2D((2, 2))(c5) c6 = conv2d_block(p5, n_filters=n_filters * 32, kernel_size=3) u7 = Conv2DTranspose(n_filters * 16, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c5]) c7 = conv2d_block(u7, n_filters * 16, kernel_size=3) u8 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c4]) c8 = conv2d_block(u8, n_filters * 8, kernel_size=3) u9 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c3]) c9 = conv2d_block(u9, n_filters * 4, kernel_size=3) u10 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c9) u10 = concatenate([u10, c2]) c10 = conv2d_block(u10, n_filters * 2, kernel_size=3) u11 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c10) u11 = concatenate([u11, c1]) c11 = conv2d_block(u11, n_filters * 1, kernel_size=3) outputs = Conv2D(13, (1, 1), activation='sigmoid')(c11) model = Model(inputs, outputs=[outputs]) return model model = get_unet() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary()
code
74050138/cell_7
[ "text_plain_output_1.png" ]
from PIL import Image import cv2 import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def LoadImage(name, path): img = Image.open(os.path.join(path, name)) img = np.array(img) image = img[:, :256] mask = img[:, 256:] return (image, mask) def bin_image(mask): bins = np.array([20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240]) new_mask = np.digitize(mask, bins) return new_mask def getSegmentationArr(image, classes, width=WIDTH, height=HEIGHT): seg_labels = np.zeros((height, width, classes)) img = image[:, :, 0] for c in range(classes): seg_labels[:, :, c] = (img == c).astype(int) return seg_labels def give_color_to_seg_img(seg, n_classes=N_CLASSES): seg_img = np.zeros((seg.shape[0], seg.shape[1], 3)).astype('float') colors = sns.color_palette('hls', n_classes) for c in range(n_classes): segc = seg == c seg_img[:, :, 0] += segc * colors[c][0] seg_img[:, :, 1] += segc * colors[c][1] seg_img[:, :, 2] += segc * colors[c][2] return seg_img classes = 13 train_folder = '../input/cityscapes-image-pairs/cityscapes_data/train' valid_folder = '../input/cityscapes-image-pairs/cityscapes_data/val' num_of_training_samples = len(os.listdir(train_folder)) num_of_valid_samples = len(os.listdir(valid_folder)) def DataGenerator(path, batch_size=BATCH_SIZE, classes=N_CLASSES): files = os.listdir(path) while True: for i in range(0, len(files), batch_size): batch_files = files[i:i + batch_size] imgs = [] segs = [] for file in batch_files: image, mask = LoadImage(file, path) mask_binned = bin_image(mask) labels = getSegmentationArr(mask_binned, classes) imgs.append(image) segs.append(labels) yield (np.array(imgs), np.array(segs)) train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) imgs, segs = next(train_gen) (imgs.shape, segs.shape) image = imgs[2] mask = give_color_to_seg_img(np.argmax(segs[2], axis=-1)) masked_image = cv2.addWeighted(image / 255, 0.5, mask, 0.5, 0) fig, axs = plt.subplots(1, 3, figsize=(20, 20)) axs[0].imshow(image) axs[0].set_title('Original Image') axs[1].imshow(mask) axs[1].set_title('Segmentation Mask') axs[2].imshow(masked_image) axs[2].set_title('Masked Image') plt.show()
code
74050138/cell_15
[ "text_plain_output_1.png" ]
from PIL import Image from keras.callbacks import ModelCheckpoint from keras.layers import Input, BatchNormalization, Activation,Softmax from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.layers.pooling import MaxPooling2D from keras.models import Model import cv2 import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def LoadImage(name, path): img = Image.open(os.path.join(path, name)) img = np.array(img) image = img[:, :256] mask = img[:, 256:] return (image, mask) def bin_image(mask): bins = np.array([20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240]) new_mask = np.digitize(mask, bins) return new_mask def getSegmentationArr(image, classes, width=WIDTH, height=HEIGHT): seg_labels = np.zeros((height, width, classes)) img = image[:, :, 0] for c in range(classes): seg_labels[:, :, c] = (img == c).astype(int) return seg_labels def give_color_to_seg_img(seg, n_classes=N_CLASSES): seg_img = np.zeros((seg.shape[0], seg.shape[1], 3)).astype('float') colors = sns.color_palette('hls', n_classes) for c in range(n_classes): segc = seg == c seg_img[:, :, 0] += segc * colors[c][0] seg_img[:, :, 1] += segc * colors[c][1] seg_img[:, :, 2] += segc * colors[c][2] return seg_img classes = 13 train_folder = '../input/cityscapes-image-pairs/cityscapes_data/train' valid_folder = '../input/cityscapes-image-pairs/cityscapes_data/val' num_of_training_samples = len(os.listdir(train_folder)) num_of_valid_samples = len(os.listdir(valid_folder)) def DataGenerator(path, batch_size=BATCH_SIZE, classes=N_CLASSES): files = os.listdir(path) while True: for i in range(0, len(files), batch_size): batch_files = files[i:i + batch_size] imgs = [] segs = [] for file in batch_files: image, mask = LoadImage(file, path) mask_binned = bin_image(mask) labels = getSegmentationArr(mask_binned, classes) imgs.append(image) segs.append(labels) yield (np.array(imgs), np.array(segs)) train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) imgs, segs = next(train_gen) (imgs.shape, segs.shape) image = imgs[2] mask = give_color_to_seg_img(np.argmax(segs[2], axis=-1)) masked_image = cv2.addWeighted(image/255, 0.5, mask, 0.5, 0) fig, axs = plt.subplots(1, 3, figsize=(20,20)) axs[0].imshow(image) axs[0].set_title('Original Image') axs[1].imshow(mask) axs[1].set_title('Segmentation Mask') axs[2].imshow(masked_image) axs[2].set_title('Masked Image') plt.show() def conv2d_block(input_tensor, n_filters, kernel_size=3): x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(n_filters=16): inputs = Input((HEIGHT, WIDTH, 3)) c1 = conv2d_block(inputs, n_filters * 1, kernel_size=3) p1 = MaxPooling2D((2, 2))(c1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3) p2 = MaxPooling2D((2, 2))(c2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3) p3 = MaxPooling2D((2, 2))(c3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3) p4 = MaxPooling2D((2, 2))(c4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3) p5 = MaxPooling2D((2, 2))(c5) c6 = conv2d_block(p5, n_filters=n_filters * 32, kernel_size=3) u7 = Conv2DTranspose(n_filters * 16, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c5]) c7 = conv2d_block(u7, n_filters * 16, kernel_size=3) u8 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c4]) c8 = conv2d_block(u8, n_filters * 8, kernel_size=3) u9 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c3]) c9 = conv2d_block(u9, n_filters * 4, kernel_size=3) u10 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c9) u10 = concatenate([u10, c2]) c10 = conv2d_block(u10, n_filters * 2, kernel_size=3) u11 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c10) u11 = concatenate([u11, c1]) c11 = conv2d_block(u11, n_filters * 1, kernel_size=3) outputs = Conv2D(13, (1, 1), activation='sigmoid')(c11) model = Model(inputs, outputs=[outputs]) return model checkpoint = ModelCheckpoint('unet_model.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max') model = get_unet() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() TRAIN_STEPS = num_of_training_samples // BATCH_SIZE + 1 VAL_STEPS = num_of_valid_samples // BATCH_SIZE + 1 results = model.fit(train_gen, validation_data=val_gen, steps_per_epoch=TRAIN_STEPS, validation_steps=VAL_STEPS, epochs=EPOCHS, callbacks=checkpoint) max_show = 2 imgs, segs = next(val_gen) pred = model.predict(imgs) for i in range(max_show): _p = give_color_to_seg_img(np.argmax(pred[i], axis=-1)) _s = give_color_to_seg_img(np.argmax(segs[i], axis=-1)) predimg = cv2.addWeighted(imgs[i] / 255, 0.5, _p, 0.5, 0) trueimg = cv2.addWeighted(imgs[i] / 255, 0.5, _s, 0.5, 0) plt.figure(figsize=(12, 6)) plt.subplot(121) plt.title('Prediction') plt.imshow(predimg) plt.axis('off') plt.subplot(122) plt.title('Original') plt.imshow(trueimg) plt.axis('off') plt.tight_layout() plt.savefig('pred_' + str(i) + '.png', dpi=150) plt.show()
code
74050138/cell_14
[ "image_output_1.png" ]
from PIL import Image from keras.callbacks import ModelCheckpoint from keras.layers import Input, BatchNormalization, Activation,Softmax from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.layers.pooling import MaxPooling2D from keras.models import Model import cv2 import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def LoadImage(name, path): img = Image.open(os.path.join(path, name)) img = np.array(img) image = img[:, :256] mask = img[:, 256:] return (image, mask) def bin_image(mask): bins = np.array([20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240]) new_mask = np.digitize(mask, bins) return new_mask def getSegmentationArr(image, classes, width=WIDTH, height=HEIGHT): seg_labels = np.zeros((height, width, classes)) img = image[:, :, 0] for c in range(classes): seg_labels[:, :, c] = (img == c).astype(int) return seg_labels def give_color_to_seg_img(seg, n_classes=N_CLASSES): seg_img = np.zeros((seg.shape[0], seg.shape[1], 3)).astype('float') colors = sns.color_palette('hls', n_classes) for c in range(n_classes): segc = seg == c seg_img[:, :, 0] += segc * colors[c][0] seg_img[:, :, 1] += segc * colors[c][1] seg_img[:, :, 2] += segc * colors[c][2] return seg_img classes = 13 train_folder = '../input/cityscapes-image-pairs/cityscapes_data/train' valid_folder = '../input/cityscapes-image-pairs/cityscapes_data/val' num_of_training_samples = len(os.listdir(train_folder)) num_of_valid_samples = len(os.listdir(valid_folder)) def DataGenerator(path, batch_size=BATCH_SIZE, classes=N_CLASSES): files = os.listdir(path) while True: for i in range(0, len(files), batch_size): batch_files = files[i:i + batch_size] imgs = [] segs = [] for file in batch_files: image, mask = LoadImage(file, path) mask_binned = bin_image(mask) labels = getSegmentationArr(mask_binned, classes) imgs.append(image) segs.append(labels) yield (np.array(imgs), np.array(segs)) train_gen = DataGenerator(train_folder, batch_size=BATCH_SIZE) val_gen = DataGenerator(valid_folder, batch_size=BATCH_SIZE) imgs, segs = next(train_gen) (imgs.shape, segs.shape) image = imgs[2] mask = give_color_to_seg_img(np.argmax(segs[2], axis=-1)) masked_image = cv2.addWeighted(image/255, 0.5, mask, 0.5, 0) fig, axs = plt.subplots(1, 3, figsize=(20,20)) axs[0].imshow(image) axs[0].set_title('Original Image') axs[1].imshow(mask) axs[1].set_title('Segmentation Mask') axs[2].imshow(masked_image) axs[2].set_title('Masked Image') plt.show() def conv2d_block(input_tensor, n_filters, kernel_size=3): x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(n_filters=16): inputs = Input((HEIGHT, WIDTH, 3)) c1 = conv2d_block(inputs, n_filters * 1, kernel_size=3) p1 = MaxPooling2D((2, 2))(c1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3) p2 = MaxPooling2D((2, 2))(c2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3) p3 = MaxPooling2D((2, 2))(c3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3) p4 = MaxPooling2D((2, 2))(c4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3) p5 = MaxPooling2D((2, 2))(c5) c6 = conv2d_block(p5, n_filters=n_filters * 32, kernel_size=3) u7 = Conv2DTranspose(n_filters * 16, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c5]) c7 = conv2d_block(u7, n_filters * 16, kernel_size=3) u8 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c4]) c8 = conv2d_block(u8, n_filters * 8, kernel_size=3) u9 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c3]) c9 = conv2d_block(u9, n_filters * 4, kernel_size=3) u10 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c9) u10 = concatenate([u10, c2]) c10 = conv2d_block(u10, n_filters * 2, kernel_size=3) u11 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c10) u11 = concatenate([u11, c1]) c11 = conv2d_block(u11, n_filters * 1, kernel_size=3) outputs = Conv2D(13, (1, 1), activation='sigmoid')(c11) model = Model(inputs, outputs=[outputs]) return model checkpoint = ModelCheckpoint('unet_model.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max') model = get_unet() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() TRAIN_STEPS = num_of_training_samples // BATCH_SIZE + 1 VAL_STEPS = num_of_valid_samples // BATCH_SIZE + 1 results = model.fit(train_gen, validation_data=val_gen, steps_per_epoch=TRAIN_STEPS, validation_steps=VAL_STEPS, epochs=EPOCHS, callbacks=checkpoint) plt.figure(figsize=(8, 8)) plt.title('Learning curve') plt.plot(results.history['loss'], label='loss') plt.plot(results.history['val_loss'], label='val_loss') plt.plot(np.argmin(results.history['val_loss']), np.min(results.history['val_loss']), marker='x', color='r', label='best model') plt.xlabel('Epochs') plt.ylabel('log_loss') plt.legend()
code
74050138/cell_12
[ "image_output_1.png" ]
from keras.layers import Input, BatchNormalization, Activation,Softmax from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.layers.pooling import MaxPooling2D from keras.models import Model import tensorflow as tf EPOCHS = 10 BATCH_SIZE = 17 HEIGHT = 256 WIDTH = 256 N_CLASSES = 13 def conv2d_block(input_tensor, n_filters, kernel_size=3): x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(n_filters=16): inputs = Input((HEIGHT, WIDTH, 3)) c1 = conv2d_block(inputs, n_filters * 1, kernel_size=3) p1 = MaxPooling2D((2, 2))(c1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3) p2 = MaxPooling2D((2, 2))(c2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3) p3 = MaxPooling2D((2, 2))(c3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3) p4 = MaxPooling2D((2, 2))(c4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3) p5 = MaxPooling2D((2, 2))(c5) c6 = conv2d_block(p5, n_filters=n_filters * 32, kernel_size=3) u7 = Conv2DTranspose(n_filters * 16, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c5]) c7 = conv2d_block(u7, n_filters * 16, kernel_size=3) u8 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c4]) c8 = conv2d_block(u8, n_filters * 8, kernel_size=3) u9 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c3]) c9 = conv2d_block(u9, n_filters * 4, kernel_size=3) u10 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c9) u10 = concatenate([u10, c2]) c10 = conv2d_block(u10, n_filters * 2, kernel_size=3) u11 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c10) u11 = concatenate([u11, c1]) c11 = conv2d_block(u11, n_filters * 1, kernel_size=3) outputs = Conv2D(13, (1, 1), activation='sigmoid')(c11) model = Model(inputs, outputs=[outputs]) return model model = get_unet() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() tf.keras.utils.plot_model(model=model, show_shapes=True, to_file='/kaggle/working/UNet Model.png')
code
18153349/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data = pd.read_csv('../input/pokemon.csv') data[np.logical_and(data['Speed'] > 145, data['Attack'] > 100)]
code
18153349/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data.plot(kind='scatter', x='Speed', y='Attack', alpha=0.5, color='red') plt.xlabel('Speed') plt.ylabel('Attack') plt.title('Speed Attack Scatter Plot')
code
18153349/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head()
code
18153349/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.head()
code
18153349/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() dictionary = {'1': 'Istanbul', '2': 'Izmır', '3': 'Ankara', '4': 'London', '5': 'Boston'} dictionary.clear() data = pd.read_csv('../input/pokemon.csv') lis = [1, 2, 3, 4, 5] for i in lis: print('i is :', i) print('') for index, value in enumerate(lis): print(index, ':', value) dictionary = {'Turkey': 'Ankara', 'England': 'Londra'} for key, value in dictionary.items(): print(key, ':', value) print('') for index, value in data[['Speed']][0:1].iterrows(): print(index, ':', value)
code
18153349/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data = pd.read_csv('../input/pokemon.csv') x = data['Speed'] > 150 data[x]
code
18153349/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.shape data.columns
code
18153349/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data.head(2)
code
18153349/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data = pd.read_csv('../input/pokemon.csv') series = data['Speed'] print(type(series)) data_frame = data[['Speed']] print(type(data_frame))
code
18153349/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os print(os.listdir('../input'))
code
18153349/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes
code
18153349/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.describe()
code
18153349/cell_15
[ "text_html_output_1.png" ]
dictionary = {'1': 'Istanbul', '2': 'Izmır', '3': 'Ankara', '4': 'London', '5': 'Boston'} print(dictionary.keys()) print(dictionary.values())
code
18153349/cell_16
[ "text_html_output_1.png" ]
dictionary = {'1': 'Istanbul', '2': 'Izmır', '3': 'Ankara', '4': 'London', '5': 'Boston'} dictionary['1'] = 'Bursa' dictionary['6'] = 'İstanbul' print(dictionary) del dictionary['3'] print(dictionary) print('3' in dictionary)
code
18153349/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.info()
code
18153349/cell_17
[ "image_output_1.png" ]
dictionary = {'1': 'Istanbul', '2': 'Izmır', '3': 'Ankara', '4': 'London', '5': 'Boston'} dictionary.clear() print(dictionary)
code
18153349/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data.Attack.plot(kind='hist', bins=50, figsize=(12, 12)) plt.show()
code
18153349/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data = pd.read_csv('../input/pokemon.csv') data[(data['Speed'] > 145) & (data['Attack'] > 100)]
code
18153349/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() f, ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt='.1f', ax=ax) plt.show()
code
18153349/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('../input/pokemon.csv') data.shape data.columns data.dtypes data.sort_values(by='Attack', ascending=False).head() #correlation map f,ax = plt.subplots(figsize=(20, 20)) sns.heatmap(data.corr(), annot=True, linewidths=1, fmt= '.1f',ax=ax) plt.show() data.Attack.plot(kind='line', color='blue', label='Attack', linewidth=1, alpha=0.5, grid=True, linestyle=':') data.Speed.plot(kind='line', color='red', label='Speed', linewidth=1, alpha=0.5, grid=True, linestyle='-.')
code
18153349/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/pokemon.csv') data.shape
code
89133083/cell_4
[ "text_plain_output_1.png" ]
import cv2 import numpy as np import os import pandas as pd def breaker(num: int=50, char: str='*') -> None: pass def preprocess(image: np.ndarray, size: int) -> np.ndarray: return cv2.resize(src=cv2.cvtColor(src=image, code=cv2.COLOR_BGR2RGB), dsize=(size, size), interpolation=cv2.INTER_AREA) def get_images(path: str, names: np.ndarray, size: int) -> np.ndarray: images = np.zeros((len(names), size, size, 3), dtype=np.uint8) i = 0 for name in names: images[i] = preprocess(cv2.imread(os.path.join(path, name + '.jpg'), cv2.IMREAD_COLOR), size) i += 1 return images def save(train_images: np.ndarray, test_images: np.ndarray, targets: np.ndarray, size: int) -> None: np.save(f'./train_images_{size}.npy', train_images) np.save(f'./test_images_{size}.npy', test_images) np.save(f'./targets_{size}.npy', targets) def get_statistics(images: np.ndarray, size: int) -> None: breaker() breaker() breaker() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') ss_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/sample_submission.csv') train_filenames = train_df['image_id'].copy().values test_filenames = ss_df['image_id'].copy().values targets = train_df.iloc[:, 1:].copy().values size = 224 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size)
code
89133083/cell_6
[ "text_plain_output_1.png" ]
import cv2 import numpy as np import os import pandas as pd def breaker(num: int=50, char: str='*') -> None: pass def preprocess(image: np.ndarray, size: int) -> np.ndarray: return cv2.resize(src=cv2.cvtColor(src=image, code=cv2.COLOR_BGR2RGB), dsize=(size, size), interpolation=cv2.INTER_AREA) def get_images(path: str, names: np.ndarray, size: int) -> np.ndarray: images = np.zeros((len(names), size, size, 3), dtype=np.uint8) i = 0 for name in names: images[i] = preprocess(cv2.imread(os.path.join(path, name + '.jpg'), cv2.IMREAD_COLOR), size) i += 1 return images def save(train_images: np.ndarray, test_images: np.ndarray, targets: np.ndarray, size: int) -> None: np.save(f'./train_images_{size}.npy', train_images) np.save(f'./test_images_{size}.npy', test_images) np.save(f'./targets_{size}.npy', targets) def get_statistics(images: np.ndarray, size: int) -> None: breaker() breaker() breaker() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') ss_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/sample_submission.csv') train_filenames = train_df['image_id'].copy().values test_filenames = ss_df['image_id'].copy().values targets = train_df.iloc[:, 1:].copy().values size = 224 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 320 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 384 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size)
code
89133083/cell_7
[ "text_plain_output_1.png" ]
import cv2 import numpy as np import os import pandas as pd def breaker(num: int=50, char: str='*') -> None: pass def preprocess(image: np.ndarray, size: int) -> np.ndarray: return cv2.resize(src=cv2.cvtColor(src=image, code=cv2.COLOR_BGR2RGB), dsize=(size, size), interpolation=cv2.INTER_AREA) def get_images(path: str, names: np.ndarray, size: int) -> np.ndarray: images = np.zeros((len(names), size, size, 3), dtype=np.uint8) i = 0 for name in names: images[i] = preprocess(cv2.imread(os.path.join(path, name + '.jpg'), cv2.IMREAD_COLOR), size) i += 1 return images def save(train_images: np.ndarray, test_images: np.ndarray, targets: np.ndarray, size: int) -> None: np.save(f'./train_images_{size}.npy', train_images) np.save(f'./test_images_{size}.npy', test_images) np.save(f'./targets_{size}.npy', targets) def get_statistics(images: np.ndarray, size: int) -> None: breaker() breaker() breaker() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') ss_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/sample_submission.csv') train_filenames = train_df['image_id'].copy().values test_filenames = ss_df['image_id'].copy().values targets = train_df.iloc[:, 1:].copy().values size = 224 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 320 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 384 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 512 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size)
code
89133083/cell_5
[ "text_plain_output_1.png" ]
import cv2 import numpy as np import os import pandas as pd def breaker(num: int=50, char: str='*') -> None: pass def preprocess(image: np.ndarray, size: int) -> np.ndarray: return cv2.resize(src=cv2.cvtColor(src=image, code=cv2.COLOR_BGR2RGB), dsize=(size, size), interpolation=cv2.INTER_AREA) def get_images(path: str, names: np.ndarray, size: int) -> np.ndarray: images = np.zeros((len(names), size, size, 3), dtype=np.uint8) i = 0 for name in names: images[i] = preprocess(cv2.imread(os.path.join(path, name + '.jpg'), cv2.IMREAD_COLOR), size) i += 1 return images def save(train_images: np.ndarray, test_images: np.ndarray, targets: np.ndarray, size: int) -> None: np.save(f'./train_images_{size}.npy', train_images) np.save(f'./test_images_{size}.npy', test_images) np.save(f'./targets_{size}.npy', targets) def get_statistics(images: np.ndarray, size: int) -> None: breaker() breaker() breaker() train_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/train.csv') ss_df = pd.read_csv('../input/plant-pathology-2020-fgvc7/sample_submission.csv') train_filenames = train_df['image_id'].copy().values test_filenames = ss_df['image_id'].copy().values targets = train_df.iloc[:, 1:].copy().values size = 224 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size) size = 320 train_images = get_images('../input/plant-pathology-2020-fgvc7/images', train_filenames, size) test_images = get_images('../input/plant-pathology-2020-fgvc7/images', test_filenames, size) save(train_images, test_images, targets, size) get_statistics(train_images, size)
code
106200991/cell_7
[ "image_output_1.png" ]
from glob import glob import matplotlib.pylab as plt import pandas as pd train_img = glob('../input/kaggle-pog-series-s01e03/corn/train/*.png') test_img = glob('../input/kaggle-pog-series-s01e03/corn/test/*.png') train_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/train.csv') test_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/test.csv') def get_index(view,label): return train_df[(train_df.view==view) & (train_df.label==label)].index[0] def plots(label): # top img_mpl1 = plt.imread(train_img[get_index('top',label)]) ax = pd.Series(img_mpl1.flatten()).rename(f'top {label.capitalize()}').plot(kind='hist',bins=50,legend=True) ax.set_title(f'{label.capitalize()} Corn',pad=40) ax.title.set_size(28) fig = ax.get_figure() fig.tight_layout() # bottom broken img_mpl2 = plt.imread(train_img[get_index('bottom',label)]) pd.Series(img_mpl2.flatten()).rename(f'bottom {label.capitalize()}').plot(kind='hist',bins=50,legend=True) # pictures fig, axs= plt.subplots(1,2,figsize=(8,8)) axs[0].imshow(img_mpl1) axs[1].imshow(img_mpl2) axs[0].set_title('Top') axs[0].title.set_size(20) axs[1].set_title('Bottom') axs[1].title.set_size(20) plt.show() plots('broken') plots('pure') plots('discolored') plots('silkcut')
code
106200991/cell_8
[ "image_output_1.png" ]
from glob import glob import matplotlib.pylab as plt import pandas as pd train_img = glob('../input/kaggle-pog-series-s01e03/corn/train/*.png') test_img = glob('../input/kaggle-pog-series-s01e03/corn/test/*.png') train_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/train.csv') test_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/test.csv') def get_index(view,label): return train_df[(train_df.view==view) & (train_df.label==label)].index[0] def plots(label): # top img_mpl1 = plt.imread(train_img[get_index('top',label)]) ax = pd.Series(img_mpl1.flatten()).rename(f'top {label.capitalize()}').plot(kind='hist',bins=50,legend=True) ax.set_title(f'{label.capitalize()} Corn',pad=40) ax.title.set_size(28) fig = ax.get_figure() fig.tight_layout() # bottom broken img_mpl2 = plt.imread(train_img[get_index('bottom',label)]) pd.Series(img_mpl2.flatten()).rename(f'bottom {label.capitalize()}').plot(kind='hist',bins=50,legend=True) # pictures fig, axs= plt.subplots(1,2,figsize=(8,8)) axs[0].imshow(img_mpl1) axs[1].imshow(img_mpl2) axs[0].set_title('Top') axs[0].title.set_size(20) axs[1].set_title('Bottom') axs[1].title.set_size(20) plt.show() ax = train_df.groupby(['label'])['image'].count().plot(kind='pie', figsize=(10, 10), title='Corn Type Ratio', autopct='%1.1f%%', shadow=True, fontsize=15) ax.title.set_size(25)
code
106200991/cell_10
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from glob import glob import matplotlib.pylab as plt import pandas as pd train_img = glob('../input/kaggle-pog-series-s01e03/corn/train/*.png') test_img = glob('../input/kaggle-pog-series-s01e03/corn/test/*.png') train_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/train.csv') test_df = pd.read_csv('../input/kaggle-pog-series-s01e03/corn/test.csv') def get_index(view,label): return train_df[(train_df.view==view) & (train_df.label==label)].index[0] def plots(label): # top img_mpl1 = plt.imread(train_img[get_index('top',label)]) ax = pd.Series(img_mpl1.flatten()).rename(f'top {label.capitalize()}').plot(kind='hist',bins=50,legend=True) ax.set_title(f'{label.capitalize()} Corn',pad=40) ax.title.set_size(28) fig = ax.get_figure() fig.tight_layout() # bottom broken img_mpl2 = plt.imread(train_img[get_index('bottom',label)]) pd.Series(img_mpl2.flatten()).rename(f'bottom {label.capitalize()}').plot(kind='hist',bins=50,legend=True) # pictures fig, axs= plt.subplots(1,2,figsize=(8,8)) axs[0].imshow(img_mpl1) axs[1].imshow(img_mpl2) axs[0].set_title('Top') axs[0].title.set_size(20) axs[1].set_title('Bottom') axs[1].title.set_size(20) plt.show() ax = train_df.groupby(['label'])['image'].count().plot(kind='pie',figsize=(10,10),title='Corn Type Ratio',autopct='%1.1f%%',shadow=True,fontsize=15); ax.title.set_size(25) ax = train_df.groupby(['label', 'view'])['image'].count().plot(kind='pie', figsize=(10, 10), title='Corn Type and View Ratio', autopct='%1.1f%%', shadow=True, fontsize=15) ax.title.set_size(25)
code
74045159/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() plt.figure(figsize=(12, 10)) sns.heatmap(cor)
code
74045159/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df train_df['date'] = train_df['date'].str.replace('T000000', '') train_df
code
74045159/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df X_test = slct_test_df.to_numpy() X_test
code
74045159/cell_33
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df X = slct_train_df.to_numpy() X y = train_df['price'].to_numpy() log1p_y = np.log1p(y) log1p_y from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, log1p_y) X_test = slct_test_df.to_numpy() X_test log1p_p = model.predict(X_test) log1p_p p = np.expm1(log1p_p) p
code
74045159/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df test_df['date'] = test_df['date'].str.replace('T000000', '') test_df
code
74045159/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df for c in slct_test_df.columns: print(c, slct_test_df[c].isna().sum())
code
74045159/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/'): for filename in filenames: print(os.path.join(dirname, filename))
code
74045159/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df for c in slct_train_df.columns: print(c, slct_train_df[c].isna().sum())
code
74045159/cell_28
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df X = slct_train_df.to_numpy() X y = train_df['price'].to_numpy() log1p_y = np.log1p(y) log1p_y from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, log1p_y) print('result:{}'.format(model.score(X, log1p_y)))
code
74045159/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df
code
74045159/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df
code
74045159/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df
code
74045159/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df submit_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/sample_submission.csv', index_col=0) submit_df
code
74045159/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df X = slct_train_df.to_numpy() X y = train_df['price'].to_numpy() log1p_y = np.log1p(y) log1p_y from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, log1p_y) X_test = slct_test_df.to_numpy() X_test log1p_p = model.predict(X_test) log1p_p
code
74045159/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() y = train_df['price'].to_numpy() log1p_y = np.log1p(y) log1p_y
code
74045159/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df X = slct_train_df.to_numpy() X
code
74045159/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df X = slct_train_df.to_numpy() X y = train_df['price'].to_numpy() log1p_y = np.log1p(y) log1p_y from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, log1p_y) X_test = slct_test_df.to_numpy() X_test log1p_p = model.predict(X_test) log1p_p p = np.expm1(log1p_p) p submit_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/sample_submission.csv', index_col=0) submit_df submit_df['price'] = p submit_df
code
74045159/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df
code
88075597/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) df_mod.dropna(inplace=True) df_mod.Complain.value_counts() df_mod.drop(columns=['Complain'], inplace=True) Discount_matrix = df_mod[sorted([i for i in df_mod.columns if i.startswith('Acc')])] l = {} k = [] for i in range(len(Discount_matrix)): for j in Discount_matrix.columns: if Discount_matrix.iloc[i][j] != 0: l[i] = int(j[-1]) break else: l[i] = 0 df_mod['No_first_accepted'] = l.values() df_mod['total_accepted'] = np.sum(Discount_matrix, axis=1) df_mod['accepted_any'] = np.where(df_mod['total_accepted'] != 0, 1, 0) df_mod.loc[np.isin(df_mod['Marital_Status'], ['YOLO', 'Absurd', 'Alone']), 'Marital_Status'] = 'Single' df_mod['Marital_Status'].value_counts() fig, axs = plt.subplots(1,3, figsize=(12,6)) fig.patch.set_facecolor('white') sns.histplot(df_mod, x="No_first_accepted", ax=axs[0]) sns.histplot(df_mod, x="accepted_any", ax=axs[1]) sns.histplot(df_mod, x="total_accepted", ax=axs[2]) fig, axs = plt.subplots(1, 3, figsize=(18, 6)) sns.set_theme(style='whitegrid') for i, j in enumerate(['Marital_Status', 'Education', 'Kidhome']): sns.barplot(x=j, y='accepted_any', data=df_mod, ax=axs[i], capsize=0.2) fig.patch.set_facecolor('white')
code
88075597/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) df_mod.dropna(inplace=True) df_mod.Complain.value_counts()
code
88075597/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) df_mod.dropna(inplace=True) df_mod.Complain.value_counts() df_mod.drop(columns=['Complain'], inplace=True) Discount_matrix = df_mod[sorted([i for i in df_mod.columns if i.startswith('Acc')])] l = {} k = [] for i in range(len(Discount_matrix)): for j in Discount_matrix.columns: if Discount_matrix.iloc[i][j] != 0: l[i] = int(j[-1]) break else: l[i] = 0 df_mod['No_first_accepted'] = l.values() df_mod['total_accepted'] = np.sum(Discount_matrix, axis=1) df_mod['accepted_any'] = np.where(df_mod['total_accepted'] != 0, 1, 0) df_mod.loc[np.isin(df_mod['Marital_Status'], ['YOLO', 'Absurd', 'Alone']), 'Marital_Status'] = 'Single' df_mod['Marital_Status'].value_counts() fig, axs = plt.subplots(1,3, figsize=(12,6)) fig.patch.set_facecolor('white') sns.histplot(df_mod, x="No_first_accepted", ax=axs[0]) sns.histplot(df_mod, x="accepted_any", ax=axs[1]) sns.histplot(df_mod, x="total_accepted", ax=axs[2]) fig, axs = plt.subplots(1,3, figsize=(18,6)) sns.set_theme(style="whitegrid") for i,j in enumerate(["Marital_Status", "Education", "Kidhome"]): sns.barplot(x=j, y="accepted_any", data=df_mod, ax=axs[i], capsize=.2) fig.patch.set_facecolor('white') fig, axs = plt.subplots(2, 6, figsize=(24, 12)) fig.patch.set_facecolor('white') subs = df_mod.loc[df_mod.Income < 200000] for j, i in enumerate([i for i in df_mod.columns if i.startswith('Mnt')]): for k in range(2): cols = ['Recency', 'Income'] sns.scatterplot(x=cols[k], y=i, data=subs, ax=axs[k][j]) spear_corr = stats.spearmanr(df_mod[cols[k]], df_mod[i]) pear_cor = stats.pearsonr(df_mod[cols[k]], df_mod[i]) axs[k][j].set_title('corr: spearm.:{} and pears.:{}'.format(round(spear_corr[0], 3), round(pear_cor[0], 3)))
code
88075597/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) df_mod.dropna(inplace=True) df_mod.Complain.value_counts() df_mod.drop(columns=['Complain'], inplace=True) Discount_matrix = df_mod[sorted([i for i in df_mod.columns if i.startswith('Acc')])] l = {} k = [] for i in range(len(Discount_matrix)): for j in Discount_matrix.columns: if Discount_matrix.iloc[i][j] != 0: l[i] = int(j[-1]) break else: l[i] = 0 df_mod['No_first_accepted'] = l.values() df_mod['total_accepted'] = np.sum(Discount_matrix, axis=1) df_mod['accepted_any'] = np.where(df_mod['total_accepted'] != 0, 1, 0) df_mod.loc[np.isin(df_mod['Marital_Status'], ['YOLO', 'Absurd', 'Alone']), 'Marital_Status'] = 'Single' df_mod['Marital_Status'].value_counts() fig, axs = plt.subplots(1, 3, figsize=(12, 6)) fig.patch.set_facecolor('white') sns.histplot(df_mod, x='No_first_accepted', ax=axs[0]) sns.histplot(df_mod, x='accepted_any', ax=axs[1]) sns.histplot(df_mod, x='total_accepted', ax=axs[2])
code
88075597/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) for i in df_mod.columns: if len(df_mod.loc[df_mod[i].isna()]) != 0: print(i, len(df_mod.loc[df_mod[i].isna()]))
code
88075597/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', delimiter='\\t', engine='python') df_mod = df df_mod['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'], format='%d-%m-%Y') df_mod['Age'] = max(df_mod.Dt_Customer.dt.year) - df['Year_Birth'] df_mod = df.rename(columns={'Response': 'AcceptedCmp6'}) df_mod = df_mod.drop(columns=['Z_Revenue', 'Z_CostContact']) df_mod.dropna(inplace=True) df_mod.Complain.value_counts() df_mod.drop(columns=['Complain'], inplace=True) Discount_matrix = df_mod[sorted([i for i in df_mod.columns if i.startswith('Acc')])] l = {} k = [] for i in range(len(Discount_matrix)): for j in Discount_matrix.columns: if Discount_matrix.iloc[i][j] != 0: l[i] = int(j[-1]) break else: l[i] = 0 df_mod['No_first_accepted'] = l.values() df_mod['total_accepted'] = np.sum(Discount_matrix, axis=1) df_mod['accepted_any'] = np.where(df_mod['total_accepted'] != 0, 1, 0) df_mod.loc[np.isin(df_mod['Marital_Status'], ['YOLO', 'Absurd', 'Alone']), 'Marital_Status'] = 'Single' df_mod['Marital_Status'].value_counts()
code
104117681/cell_4
[ "text_plain_output_1.png" ]
import math math.e math.pi
code
104117681/cell_6
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a)
code
104117681/cell_11
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000)
code
104117681/cell_7
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a)
code
104117681/cell_18
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000) math.log(1000, 10) math.sin(math.pi / 2) degree = 90 math.sin(math.radians(degree)) math.sqrt(5) math.factorial(5) l = [1.2, 2.3, 3.4, 4.5] math.fsum(l)
code
104117681/cell_8
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a)
code
104117681/cell_16
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000) math.log(1000, 10) math.sin(math.pi / 2) degree = 90 math.sin(math.radians(degree)) math.sqrt(5)
code
104117681/cell_3
[ "text_plain_output_1.png" ]
import math math.e
code
104117681/cell_17
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000) math.log(1000, 10) math.sin(math.pi / 2) degree = 90 math.sin(math.radians(degree)) math.sqrt(5) math.factorial(5)
code
104117681/cell_14
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000) math.log(1000, 10) math.sin(math.pi / 2) degree = 90 math.sin(math.radians(degree))
code
104117681/cell_10
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x)
code
104117681/cell_12
[ "text_plain_output_1.png" ]
import math math.e math.pi a = math.pi math.ceil(a) math.floor(a) math.trunc(a) x = 7 math.exp(x) math.log(1000) math.log(1000, 10)
code
130013718/cell_21
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import numpy as np # linear algebra import os import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] result = [] for i in sol_train.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] soltest = pd.DataFrame() soltest = soltest.assign(filename=Id) result = [] for i in soltest.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] soltest = soltest.assign(prediction=result) soltest.head()
code
130013718/cell_13
[ "text_plain_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] result = [] for i in sol_train.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_train = sol_train.assign(prediction=result) sol_train.head()
code
130013718/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy']
code
130013718/cell_4
[ "text_html_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] sol_train.head()
code
130013718/cell_23
[ "text_plain_output_1.png" ]
import os import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] soltest = pd.DataFrame() soltest = soltest.assign(filename=Id) sol = pd.read_csv('/kaggle/input/cassava-disease-classification/submission.csv') sol['filename'] = '/kaggle/input/cassava-disease-classification/sol/' + sol['Id'] sol.head()
code
130013718/cell_20
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import numpy as np # linear algebra import os import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] result = [] for i in sol_train.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] soltest = pd.DataFrame() soltest = soltest.assign(filename=Id) result = [] for i in soltest.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5]
code
130013718/cell_6
[ "text_html_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test.head()
code
130013718/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train.head()
code
130013718/cell_11
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_test = sol_test.assign(prediction=result) sol_test.head()
code
130013718/cell_19
[ "text_html_output_1.png" ]
import os import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] soltest = pd.DataFrame() soltest = soltest.assign(filename=Id) soltest.head()
code
130013718/cell_1
[ "text_plain_output_1.png" ]
import os Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5]
code
130013718/cell_7
[ "text_html_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test.head()
code
130013718/cell_18
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import os import os Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5]
code
130013718/cell_8
[ "text_html_output_1.png" ]
import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] sol_test.head()
code
130013718/cell_15
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] result = [] for i in sol_train.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_train = sol_train.assign(prediction=result) sol_train['label'] = sol_train['label'].replace({'cbb': 'Cassava Bacterial Blight (CBB)', 'cbsd': 'Cassava Brown Streak Disease (CBSD)', 'cgm': 'Cassava Green Mottle (CGM)', 'cmd': 'Cassava Mosaic Disease (CMD)', 'healthy': 'Healthy'}) sol_train.head()
code
130013718/cell_16
[ "text_html_output_1.png" ]
from PIL import Image from sklearn.metrics import classification_report import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train['label'] = sol_train['label'].str.split('/').str[0] Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] result = [] for i in sol_train.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_train = sol_train.assign(prediction=result) sol_train['label'] = sol_train['label'].replace({'cbb': 'Cassava Bacterial Blight (CBB)', 'cbsd': 'Cassava Brown Streak Disease (CBSD)', 'cgm': 'Cassava Green Mottle (CGM)', 'cmd': 'Cassava Mosaic Disease (CMD)', 'healthy': 'Healthy'}) from sklearn.metrics import classification_report print(classification_report(sol_train['label'], sol_train['prediction']))
code
130013718/cell_3
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) sol_train['label'] = sol_train['filename'] sol_train['label'] = sol_train['label'].str.replace('/kaggle/input/cassava-disease-classification/train/', '') sol_train.head()
code
130013718/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from sklearn.metrics import classification_report import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_test = sol_test.assign(prediction=result) sol_test['label'] = sol_test['label'].replace({'cbb': 'Cassava Bacterial Blight (CBB)', 'cbsd': 'Cassava Brown Streak Disease (CBSD)', 'cgm': 'Cassava Green Mottle (CGM)', 'cmd': 'Cassava Mosaic Disease (CMD)', 'healthy': 'Healthy'}) print(classification_report(sol_test['label'], sol_test['prediction']))
code
130013718/cell_14
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5] sol_test = sol_test.assign(prediction=result) sol_test['label'] = sol_test['label'].replace({'cbb': 'Cassava Bacterial Blight (CBB)', 'cbsd': 'Cassava Brown Streak Disease (CBSD)', 'cgm': 'Cassava Green Mottle (CGM)', 'cmd': 'Cassava Mosaic Disease (CMD)', 'healthy': 'Healthy'}) sol_test.head()
code
130013718/cell_22
[ "text_html_output_1.png" ]
import os import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/soltest'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] soltest = pd.DataFrame() soltest = soltest.assign(filename=Id) sol = pd.read_csv('/kaggle/input/cassava-disease-classification/submission.csv') sol.head()
code
130013718/cell_10
[ "text_html_output_1.png" ]
from PIL import Image import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/train'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_train = pd.DataFrame() sol_train = sol_train.assign(filename=Id) Id = [] import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input/cassava-disease-classification/test'): for filename in filenames: Id.append(os.path.join(dirname, filename)) Id[:5] sol_test = pd.DataFrame() sol_test = sol_test.assign(filename=Id) sol_test['label'] = sol_test['filename'] sol_test['label'] = sol_test['label'].str.replace('/kaggle/input/cassava-disease-classification/test/', '') sol_test['label'] = sol_test['label'].str.split('/').str[0] import tensorflow as tf import numpy as np from PIL import Image model = tf.saved_model.load('/kaggle/input/efficientnet-cassava-disease-classification/EfficientNet') classes = ['Cassava Bacterial Blight (CBB)', 'Cassava Brown Streak Disease (CBSD)', 'Cassava Green Mottle (CGM)', 'Cassava Mosaic Disease (CMD)', 'Healthy'] result = [] for i in sol_test.filename: img = Image.open(i).convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = np.array(img)[None] inp = tf.constant(inp_numpy, dtype='float32') class_scores = model(inp)[0].numpy() result.append(classes[class_scores.argmax()]) result[:5]
code