path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72120119/cell_12
[ "text_html_output_1.png" ]
import pandas as pd items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_items = pd.merge(left=items, right=items_cat, on='item_category_id') df_shops = pd.merge(left=train, right=shops, on='shop_id') df = pd.merge(left=df_shops, right=df_items, on='item_id') df.shape df.nunique()
code
333521/cell_13
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest, f_classif from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import operator import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median()) titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0 titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1 titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0 titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1 titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median()) alg = LogisticRegression(random_state=1) alg.fit(titanic[predictors], titanic['Survived']) predictions = alg.predict(titanic_test[predictors]) submission = pd.DataFrame({'PassengerId': titanic_test['PassengerId'], 'Survived': predictions}) from sklearn import cross_validation from sklearn.ensemble import RandomForestClassifier predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=4, min_samples_leaf=2) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch'] titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x)) import re def get_title(name): title_search = re.search(' ([A-za-z]+)\\.', name) if title_search: return title_search.group(1) return '' titles = titanic['Name'].apply(get_title) title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Dr': 5, 'Rev': 6, 'Major': 7, 'Col': 8, 'Mlle': 8, 'Mme': 8, 'Don': 9, 'Lady': 10, 'Countess': 10, 'Jonkheer': 10, 'Sir': 9, 'Capt': 7, 'Ms': 2} for k, v in title_mapping.items(): titles[titles == k] = v titanic['Title'] = titles import operator family_id_mapping = {} def get_family_id(row): last_name = row['Name'].split(',')[0] family_id = '{0}{1}'.format(last_name, row['FamilySize']) if family_id not in family_id_mapping: if len(family_id_mapping) == 0: current_id = 1 else: current_id = max(family_id_mapping.items(), key=operator.itemgetter(1))[1] + 1 family_id_mapping[family_id] = current_id return family_id_mapping[family_id] family_ids = titanic.apply(get_family_id, axis=1) family_ids[titanic['FamilySize'] < 3] = -1 titanic['FamilyId'] = family_ids from sklearn.feature_selection import SelectKBest, f_classif predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'FamilySize', 'Title', 'FamilyId'] selector = SelectKBest(f_classif, k=5) selector.fit(titanic[predictors], titanic['Survived']) scores = -np.log10(selector.pvalues_) import matplotlib.pyplot as plt plt.bar(range(len(predictors)), scores) plt.xticks(range(len(predictors)), predictors, rotation='vertical') plt.show() predictors = ['Pclass', 'Sex', 'Fare', 'Title'] alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=8, min_samples_leaf=4) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) print(scores.mean())
code
333521/cell_4
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 print(titanic['Embarked'].unique())
code
333521/cell_6
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) print(accuracy)
code
333521/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic.describe()
code
333521/cell_11
[ "text_html_output_1.png" ]
from sklearn import cross_validation from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median()) titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0 titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1 titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0 titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1 titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median()) alg = LogisticRegression(random_state=1) alg.fit(titanic[predictors], titanic['Survived']) predictions = alg.predict(titanic_test[predictors]) submission = pd.DataFrame({'PassengerId': titanic_test['PassengerId'], 'Survived': predictions}) titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch'] titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x)) import re def get_title(name): title_search = re.search(' ([A-za-z]+)\\.', name) if title_search: return title_search.group(1) return '' titles = titanic['Name'].apply(get_title) title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Dr': 5, 'Rev': 6, 'Major': 7, 'Col': 8, 'Mlle': 8, 'Mme': 8, 'Don': 9, 'Lady': 10, 'Countess': 10, 'Jonkheer': 10, 'Sir': 9, 'Capt': 7, 'Ms': 2} for k, v in title_mapping.items(): titles[titles == k] = v print(pd.value_counts(titles)) titanic['Title'] = titles
code
333521/cell_1
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic.head()
code
333521/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) print(scores.mean())
code
333521/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_7.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.describe()
code
333521/cell_10
[ "text_html_output_1.png" ]
from sklearn import cross_validation from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median()) titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0 titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1 titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0 titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1 titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median()) alg = LogisticRegression(random_state=1) alg.fit(titanic[predictors], titanic['Survived']) predictions = alg.predict(titanic_test[predictors]) submission = pd.DataFrame({'PassengerId': titanic_test['PassengerId'], 'Survived': predictions}) from sklearn import cross_validation from sklearn.ensemble import RandomForestClassifier predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = RandomForestClassifier(random_state=1, n_estimators=150, min_samples_split=4, min_samples_leaf=2) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) print(scores.mean())
code
333521/cell_12
[ "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import numpy as np # linear algebra import operator import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median()) titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0 titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1 titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0 titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1 titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median()) alg = LogisticRegression(random_state=1) alg.fit(titanic[predictors], titanic['Survived']) predictions = alg.predict(titanic_test[predictors]) submission = pd.DataFrame({'PassengerId': titanic_test['PassengerId'], 'Survived': predictions}) titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch'] titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x)) import re def get_title(name): title_search = re.search(' ([A-za-z]+)\\.', name) if title_search: return title_search.group(1) return '' titles = titanic['Name'].apply(get_title) title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Dr': 5, 'Rev': 6, 'Major': 7, 'Col': 8, 'Mlle': 8, 'Mme': 8, 'Don': 9, 'Lady': 10, 'Countess': 10, 'Jonkheer': 10, 'Sir': 9, 'Capt': 7, 'Ms': 2} for k, v in title_mapping.items(): titles[titles == k] = v titanic['Title'] = titles import operator family_id_mapping = {} def get_family_id(row): last_name = row['Name'].split(',')[0] family_id = '{0}{1}'.format(last_name, row['FamilySize']) if family_id not in family_id_mapping: if len(family_id_mapping) == 0: current_id = 1 else: current_id = max(family_id_mapping.items(), key=operator.itemgetter(1))[1] + 1 family_id_mapping[family_id] = current_id return family_id_mapping[family_id] family_ids = titanic.apply(get_family_id, axis=1) family_ids[titanic['FamilySize'] < 3] = -1 titanic['FamilyId'] = family_ids print(pd.value_counts(family_ids))
code
326551/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes set(crashes['Operator'].tolist())
code
326551/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes
code
326551/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes crashes['Date'][1].split('/')
code
326551/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
326551/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes print(crashes.describe())
code
326551/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) crashes = pd.read_csv('../input/3-Airplane_Crashes_Since_1908.txt') crashes.dtypes crashes.head()
code
106211998/cell_13
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train.head()
code
106211998/cell_9
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.head()
code
106211998/cell_34
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train.iloc[0, 5][0:2] df_train.head()
code
106211998/cell_23
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.head()
code
106211998/cell_6
[ "text_html_output_1.png" ]
import os train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) print('Number of files in train directory: ', len(train_files)) print('Firt files in train directory: ', train_files[0:5])
code
106211998/cell_29
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.iloc[0, 5][0:2]
code
106211998/cell_39
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) first_score = music21.converter.parse(os.path.join(train_directory, train_files[0])) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test all_measures_train = [] for i in range(len(scores_train)): part = [] measures_in_part = scores_train[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_train.append(part) all_measures_test = [] for i in range(len(scores_test)): part = [] measures_in_part = scores_test[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_test.append(part) def remove_xml(partition): new_partition = [] for measure in partition: new_measure = [] for tup in measure: ch = tup[0] ch_list = [] for pitch in ch.pitches: name = pitch.name octave = pitch.octave name_and_otacve = name + str(octave) ch_list.append(name_and_otacve) duration = ch.quarterLength new_measure.append((ch_list, duration)) new_partition.append(new_measure) return new_partition text2_train = [] text2_test = [] for i in range(len(all_measures_train)): text2_train.append(remove_xml(all_measures_train[i])) for i in range(len(all_measures_test)): text2_test.append(remove_xml(all_measures_test[i])) df_train.iloc[0, 5][0:2] df_test.iloc[0, 5][0:2] all_train_pitches = set() all_train_durations = [] for partition in text2_train: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_train_durations.append(duration) for pitch in pitches: all_train_pitches.add(pitch) all_test_pitches = set() all_test_durations = [] for partition in text2_test: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_test_durations.append(duration) for pitch in pitches: all_test_pitches.add(pitch) all_pitches = all_train_pitches.union(all_test_pitches) train_dict2 = dict() test_dict2 = dict() train_dict2['NOM_FICHIER'] = [] test_dict2['NOM_FICHIER'] = [] for elt in all_pitches: train_dict2[elt] = [] test_dict2[elt] = [] for i in range(df_train.shape[0]): partition = df_train.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: train_dict2['NOM_FICHIER'].append(df_train.iloc[i, 0]) for key in train_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: train_dict2[key].append(1) else: train_dict2[key].append(0) for i in range(df_test.shape[0]): partition = df_test.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: test_dict2['NOM_FICHIER'].append(df_test.iloc[i, 0]) for key in test_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: test_dict2[key].append(1) else: test_dict2[key].append(0) df_train_2 = pd.DataFrame(train_dict2) df_test_2 = pd.DataFrame(test_dict2) df_test_2.head(16)
code
106211998/cell_41
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) first_score = music21.converter.parse(os.path.join(train_directory, train_files[0])) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test all_measures_train = [] for i in range(len(scores_train)): part = [] measures_in_part = scores_train[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_train.append(part) all_measures_test = [] for i in range(len(scores_test)): part = [] measures_in_part = scores_test[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_test.append(part) def remove_xml(partition): new_partition = [] for measure in partition: new_measure = [] for tup in measure: ch = tup[0] ch_list = [] for pitch in ch.pitches: name = pitch.name octave = pitch.octave name_and_otacve = name + str(octave) ch_list.append(name_and_otacve) duration = ch.quarterLength new_measure.append((ch_list, duration)) new_partition.append(new_measure) return new_partition text2_train = [] text2_test = [] for i in range(len(all_measures_train)): text2_train.append(remove_xml(all_measures_train[i])) for i in range(len(all_measures_test)): text2_test.append(remove_xml(all_measures_test[i])) df_train.iloc[0, 5][0:2] df_test.iloc[0, 5][0:2] all_train_pitches = set() all_train_durations = [] for partition in text2_train: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_train_durations.append(duration) for pitch in pitches: all_train_pitches.add(pitch) all_test_pitches = set() all_test_durations = [] for partition in text2_test: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_test_durations.append(duration) for pitch in pitches: all_test_pitches.add(pitch) all_pitches = all_train_pitches.union(all_test_pitches) train_dict2 = dict() test_dict2 = dict() train_dict2['NOM_FICHIER'] = [] test_dict2['NOM_FICHIER'] = [] for elt in all_pitches: train_dict2[elt] = [] test_dict2[elt] = [] for i in range(df_train.shape[0]): partition = df_train.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: train_dict2['NOM_FICHIER'].append(df_train.iloc[i, 0]) for key in train_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: train_dict2[key].append(1) else: train_dict2[key].append(0) for i in range(df_test.shape[0]): partition = df_test.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: test_dict2['NOM_FICHIER'].append(df_test.iloc[i, 0]) for key in test_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: test_dict2[key].append(1) else: test_dict2[key].append(0) df_train_2 = pd.DataFrame(train_dict2) df_test_2 = pd.DataFrame(test_dict2) sliding_window = 32 list_train_X = [] list_train_Y = [] df_train_2_group = df_train_2.groupby('NOM_FICHIER') for name, group in df_train_2_group: group_ = group.reset_index() for i in range(group_.shape[0] - sliding_window): temp_df_train_X = group_.iloc[i:i + sliding_window, :] temp_df_train_Y = group_.iloc[i + sliding_window:i + sliding_window + 1, :] list_train_X.append(temp_df_train_X) list_train_Y.append(temp_df_train_Y) df_train_X = pd.concat(list_train_X, ignore_index=True) df_train_Y = pd.concat(list_train_Y, ignore_index=True) df_train_X.head()
code
106211998/cell_2
[ "text_plain_output_1.png" ]
!pip install music21
code
106211998/cell_11
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test df_train.head()
code
106211998/cell_18
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test['N_MEASURES'].value_counts()
code
106211998/cell_28
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train.iloc[0, 5][0:2]
code
106211998/cell_8
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_train.head()
code
106211998/cell_15
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train['N_MEASURES'].unique()
code
106211998/cell_16
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test['N_MEASURES'].unique()
code
106211998/cell_38
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) first_score = music21.converter.parse(os.path.join(train_directory, train_files[0])) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test all_measures_train = [] for i in range(len(scores_train)): part = [] measures_in_part = scores_train[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_train.append(part) all_measures_test = [] for i in range(len(scores_test)): part = [] measures_in_part = scores_test[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_test.append(part) def remove_xml(partition): new_partition = [] for measure in partition: new_measure = [] for tup in measure: ch = tup[0] ch_list = [] for pitch in ch.pitches: name = pitch.name octave = pitch.octave name_and_otacve = name + str(octave) ch_list.append(name_and_otacve) duration = ch.quarterLength new_measure.append((ch_list, duration)) new_partition.append(new_measure) return new_partition text2_train = [] text2_test = [] for i in range(len(all_measures_train)): text2_train.append(remove_xml(all_measures_train[i])) for i in range(len(all_measures_test)): text2_test.append(remove_xml(all_measures_test[i])) df_train.iloc[0, 5][0:2] df_test.iloc[0, 5][0:2] all_train_pitches = set() all_train_durations = [] for partition in text2_train: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_train_durations.append(duration) for pitch in pitches: all_train_pitches.add(pitch) all_test_pitches = set() all_test_durations = [] for partition in text2_test: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_test_durations.append(duration) for pitch in pitches: all_test_pitches.add(pitch) all_pitches = all_train_pitches.union(all_test_pitches) train_dict2 = dict() test_dict2 = dict() train_dict2['NOM_FICHIER'] = [] test_dict2['NOM_FICHIER'] = [] for elt in all_pitches: train_dict2[elt] = [] test_dict2[elt] = [] for i in range(df_train.shape[0]): partition = df_train.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: train_dict2['NOM_FICHIER'].append(df_train.iloc[i, 0]) for key in train_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: train_dict2[key].append(1) else: train_dict2[key].append(0) for i in range(df_test.shape[0]): partition = df_test.iloc[i, 6] for measure in partition: for chord_tup in measure: for dup_list in chord_tup: test_dict2['NOM_FICHIER'].append(df_test.iloc[i, 0]) for key in test_dict2.keys(): if key != 'NOM_FICHIER': if key in dup_list: test_dict2[key].append(1) else: test_dict2[key].append(0) df_train_2 = pd.DataFrame(train_dict2) df_test_2 = pd.DataFrame(test_dict2) df_train_2.head(16)
code
106211998/cell_17
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train['N_MEASURES'].value_counts()
code
106211998/cell_35
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.iloc[0, 5][0:2] df_test.head()
code
106211998/cell_31
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) first_score = music21.converter.parse(os.path.join(train_directory, train_files[0])) all_measures_train = [] for i in range(len(scores_train)): part = [] measures_in_part = scores_train[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_train.append(part) all_measures_test = [] for i in range(len(scores_test)): part = [] measures_in_part = scores_test[i].getElementsByClass(music21.stream.Part)[0].getElementsByClass(music21.stream.Measure) for j in range(len(measures_in_part)): tmp_meas = [] chords = measures_in_part[j].getElementsByClass(music21.chord.Chord) for chord in chords: tmp_meas.append((chord, chord.duration)) part.append(tmp_meas) all_measures_test.append(part) def remove_xml(partition): new_partition = [] for measure in partition: new_measure = [] for tup in measure: ch = tup[0] ch_list = [] for pitch in ch.pitches: name = pitch.name octave = pitch.octave name_and_otacve = name + str(octave) ch_list.append(name_and_otacve) duration = ch.quarterLength new_measure.append((ch_list, duration)) new_partition.append(new_measure) return new_partition text2_train = [] text2_test = [] for i in range(len(all_measures_train)): text2_train.append(remove_xml(all_measures_train[i])) for i in range(len(all_measures_test)): text2_test.append(remove_xml(all_measures_test[i])) all_train_pitches = set() all_train_durations = [] for partition in text2_train: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_train_durations.append(duration) for pitch in pitches: all_train_pitches.add(pitch) all_test_pitches = set() all_test_durations = [] for partition in text2_test: for measure in partition: for tup in measure: pitches = tup[0] duration = tup[1] all_test_durations.append(duration) for pitch in pitches: all_test_pitches.add(pitch) cardinal_pitches_train = len(all_train_pitches) min_duration_train = min(all_train_durations) print('total number of different train pitches: ', cardinal_pitches_train) print('The minimum duration of a chord in train: ', min_duration_train) cardinal_pitches_test = len(all_test_pitches) min_duration_test = min(all_test_durations) print('total number of different test pitches: ', cardinal_pitches_test) print('The minimum duration of a chord in test: ', min_duration_test)
code
106211998/cell_14
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.head()
code
106211998/cell_22
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) n_parts_train = [len(scores_train[i].parts) for i in range(len(train_files))] n_parts_test = [len(scores_test[i].parts) for i in range(len(test_files))] df_train['N_PARTS'] = n_parts_train df_test['N_PARTS'] = n_parts_test measures_per_file_train = [len(list(scores_train[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_train))] measures_per_file_test = [len(list(scores_test[i].recurse().getElementsByClass('Measure'))) for i in range(len(scores_test))] df_train['N_MEASURES'] = measures_per_file_train df_test['N_MEASURES'] = measures_per_file_test df_train.head()
code
106211998/cell_10
[ "text_plain_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) first_score = music21.converter.parse(os.path.join(train_directory, train_files[0])) print('File read: ', train_files[0]) print('Loaded score object: ', first_score)
code
106211998/cell_12
[ "text_html_output_1.png" ]
import music21 import os import pandas as pd USE_MUSESCORE = True if USE_MUSESCORE: env = music21.environment.Environment() env['musescoreDirectPNGPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' env['musicxmlPath'] = '../input/data-challenge-igad-2022-data-set/3 - Challenge/musescore.exe' train_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/train' test_directory = '../input/data-challenge-igad-2022-data-set/3 - Challenge/X_test' train_files = os.listdir(train_directory) test_files = os.listdir(test_directory) scores_train = [music21.converter.parse(os.path.join(train_directory, train_files[i])) for i in range(len(train_files))] scores_test = [music21.converter.parse(os.path.join(test_directory, test_files[i])) for i in range(len(test_files))] train_dict = {'NOM_FICHIER': train_files, 'SCORE': scores_train} test_dict = {'NOM_FICHIER': test_files, 'SCORE': scores_test} df_train = pd.DataFrame(train_dict) df_test = pd.DataFrame(test_dict) df_test.head()
code
2024103/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.head()
code
2024103/cell_9
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average
code
2024103/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) donor['contb_receipt_amt'].value_counts()
code
2024103/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll.head()
code
2024103/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count()
code
2024103/cell_23
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor['contb_receipt_amt'].value_counts()
code
2024103/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.head()
code
2024103/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) poll.info()
code
2024103/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) top_donation = donor['contb_receipt_amt'].copy() top_donation.sort_values(ascending=False, inplace=True) com_don = top_donation[top_donation < 2500] com_don.hist(bins=100)
code
2024103/cell_39
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count() donor.groupby('cand_nm')['contb_receipt_amt'].sum() cand_amount = donor.groupby('cand_nm')['contb_receipt_amt'].sum() i = 0 for don in cand_amount: i += 1 occupation = donor.pivot_table('contb_receipt_amt', index='contbr_occupation', columns='Party', aggfunc='sum') occupation
code
2024103/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) donor_mean = donor['contb_receipt_amt'].mean() donor_std = donor['contb_receipt_amt'].std() print('Average donation was: %0.2f with a standard deviation of: %0.2f' % (donor_mean, donor_std))
code
2024103/cell_11
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std average.plot(yerr=std, kind='bar', legend=False, color='seagreen', fontsize=20)
code
2024103/cell_19
[ "text_html_output_1.png" ]
import matplotlib as plt import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std from datetime import datetime poll['Difference'] = (poll.Trump - poll.Clinton) / 100 poll = poll.groupby('Start Date', as_index=False).mean() poll.plot('Start Date', 'Difference', figsize=(25, 15), marker='s', color='red', xlim=(209, 262)) plt.pyplot.axvline(x=209 + 27, linewidth=4, color='grey') plt.pyplot.axvline(x=209 + 40, linewidth=4, color='grey') plt.pyplot.axvline(x=209 + 50, linewidth=4, color='grey')
code
2024103/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) sns.factorplot('Affiliation', data=poll, kind='count', legend=True, color='orange', size=6)
code
2024103/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std from datetime import datetime poll['Difference'] = (poll.Trump - poll.Clinton) / 100 poll = poll.groupby('Start Date', as_index=False).mean() row_in = 0 xlimit = [] for date in poll['Start Date']: if date[0:7] == '2016-09': xlimit.append(row_in) row_in += 1 else: row_in += 1 print(min(xlimit)) row_in = 0 xlimit = [] for date in poll['Start Date']: if date[0:7] == '2016-10': xlimit.append(row_in) row_in += 1 else: row_in += 1 print(max(xlimit))
code
2024103/cell_28
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) top_donation = donor['contb_receipt_amt'].copy() top_donation.sort_values(ascending=False, inplace=True) top_donation.value_counts(sort=True).head(10)
code
2024103/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) sns.factorplot('Affiliation', data=poll, kind='count', legend=True, hue='Population', size=6, aspect=2, palette='dark')
code
2024103/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std from datetime import datetime poll['Difference'] = (poll.Trump - poll.Clinton) / 100 poll.head()
code
2024103/cell_16
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std from datetime import datetime poll['Difference'] = (poll.Trump - poll.Clinton) / 100 poll = poll.groupby('Start Date', as_index=False).mean() poll.head()
code
2024103/cell_38
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count() donor.groupby('cand_nm')['contb_receipt_amt'].sum() cand_amount = donor.groupby('cand_nm')['contb_receipt_amt'].sum() i = 0 for don in cand_amount: i += 1 donor.groupby('Party')['contb_receipt_amt'].sum().plot(kind='bar', legend=True, logy=True, color='seagreen')
code
2024103/cell_17
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std from datetime import datetime poll['Difference'] = (poll.Trump - poll.Clinton) / 100 poll = poll.groupby('Start Date', as_index=False).mean() poll.plot('Start Date', 'Difference', figsize=(25, 15), marker='s', color='red')
code
2024103/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count() donor.groupby('cand_nm')['contb_receipt_amt'].sum()
code
2024103/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates
code
2024103/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll.plot(x='End Date', y=['Trump', 'Clinton', 'Other', 'Undecided'], linestyle='', marker='s').legend(bbox_to_anchor=(1.5, 1))
code
2024103/cell_22
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.info()
code
2024103/cell_10
[ "text_html_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std
code
2024103/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) top_donation = donor['contb_receipt_amt'].copy() top_donation.sort_values(ascending=False, inplace=True) top_donation.head(10)
code
2024103/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count() donor.groupby('cand_nm')['contb_receipt_amt'].sum() cand_amount = donor.groupby('cand_nm')['contb_receipt_amt'].sum() i = 0 for don in cand_amount: i += 1 cand_amount.plot(kind='bar', legend=True, logy=True, color='blue')
code
2024103/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg
code
2024103/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) poll.head()
code
2024103/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd poll = pd.read_csv('../input/2016-general-election-trump-vs-clinton.csv') poll = poll.drop(['Pollster URL', 'Source URL', 'Partisan', 'Question Text', 'Question Iteration'], axis=1) average = pd.DataFrame(poll.mean()) average.drop('Number of Observations', inplace=True) average std = pd.DataFrame(poll.std()) std.drop('Number of Observations', inplace=True) std poll_avg = pd.concat([average, std], axis=1) poll_avg.column = ['Average', 'STD'] poll_avg donor = pd.read_csv('../input/Donor_Data.csv') donor.drop(donor[donor.contb_receipt_amt < 0].index, inplace=True) candidates = donor.cand_nm.unique() candidates party_map = {'Rubio, Marco': 'Republican', 'Santorum, Richard J.': 'Republican', 'Perry, James R. (Rick)': 'Republican', 'Carson, Benjamin S.': 'Republican', "Cruz, Rafael Edward 'Ted'": 'Republican', 'Paul, Rand': 'Republican', 'Clinton, Hillary Rodham': 'Democrat'} donor['Party'] = donor.cand_nm.map(party_map) donor.groupby('cand_nm')['contb_receipt_amt'].count() donor.groupby('cand_nm')['contb_receipt_amt'].sum() cand_amount = donor.groupby('cand_nm')['contb_receipt_amt'].sum() i = 0 for don in cand_amount: print('The candidate %s raised %.0f dollars' % (cand_amount.index[i], don)) print('\n') i += 1
code
122251391/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data.head()
code
122251391/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() data.HomePlanet.unique()
code
122251391/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.info()
code
122251391/cell_34
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred = y_pred >= 0.5 y_pred y_pred = pd.DataFrame(y_pred) y_pred.head()
code
122251391/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] y.head()
code
122251391/cell_33
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred = y_pred >= 0.5 y_pred
code
122251391/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') test.isnull().sum()
code
122251391/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) X.head()
code
122251391/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred = y_pred >= 0.5 y_pred y_pred = pd.DataFrame(y_pred) sub = sub.drop(columns=['Transported']) sub['Transported'] = y_pred sub.head()
code
122251391/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) data_1.head()
code
122251391/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122251391/cell_32
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred
code
122251391/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum()
code
122251391/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.head()
code
122251391/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) test.isnull().sum()
code
122251391/cell_35
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred = y_pred >= 0.5 y_pred y_pred = pd.DataFrame(y_pred) test['Transported'] = y_pred test.head()
code
122251391/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.head()
code
122251391/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) test_1.head()
code
122251391/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum()
code
122251391/cell_36
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') sub = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data.isnull().sum() test.isnull().sum() data.HomePlanet.unique() data.dropna(subset=['Cabin'], inplace=True) test.dropna(subset=['Cabin'], inplace=True) data.isnull().sum() test.isnull().sum() data.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) test.drop(columns=['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck', 'Cabin', 'Name'], inplace=True) data_1 = pd.get_dummies(data, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) data_1['Transported'] = data_1['Transported'].astype(float) data_1['VIP'] = data_1['VIP'].astype(float) test_1 = pd.get_dummies(test, columns=['CryoSleep', 'side', 'deck', 'HomePlanet', 'Destination']) test_1['VIP'] = test_1['VIP'].astype(float) test_1 = test_1.drop(columns=['PassengerId']) from sklearn.ensemble import RandomForestRegressor X = data_1.drop(columns=['PassengerId']) X = X.drop(columns=['Transported']) y = data_1[['Transported']] model = RandomForestRegressor(n_estimators=1000, random_state=42) model.fit(X, y.values.ravel()) y_pred = model.predict(test_1) y_pred = y_pred >= 0.5 y_pred y_pred = pd.DataFrame(y_pred) test['Transported'] = y_pred subbmission = test[['PassengerId', 'Transported']] subbmission.head()
code
105210810/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.head()
code
105210810/cell_9
[ "image_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns
code
105210810/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique() cars.CompanyName = cars.CompanyName.str.lower() cars.CompanyName.replace('maxda', 'mazda', inplace=True) cars.CompanyName.replace('porcshce', 'porsche', inplace=True) cars.CompanyName.replace('toyouta', 'toyota', inplace=True) cars.CompanyName.replace('vokswagen', 'volkswagen', inplace=True) cars.CompanyName.replace('vw', 'volkswagen', inplace=True) cars.CompanyName.unique() cars.loc[cars.duplicated()] categorical_cols = [cname for cname in cars.columns if cars[cname].dtype == 'object' or cars[cname].nunique() < 10] print(categorical_cols)
code
105210810/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique() cars.CompanyName = cars.CompanyName.str.lower() cars.CompanyName.replace('maxda', 'mazda', inplace=True) cars.CompanyName.replace('porcshce', 'porsche', inplace=True) cars.CompanyName.replace('toyouta', 'toyota', inplace=True) cars.CompanyName.replace('vokswagen', 'volkswagen', inplace=True) cars.CompanyName.replace('vw', 'volkswagen', inplace=True) cars.CompanyName.unique() cars.loc[cars.duplicated()] print(cars.price.describe(percentiles=[0.25, 0.5, 0.75, 0.85, 0.9, 1]))
code
105210810/cell_6
[ "image_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape
code
105210810/cell_11
[ "text_html_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum()
code
105210810/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique() cars.CompanyName = cars.CompanyName.str.lower() cars.CompanyName.replace('maxda', 'mazda', inplace=True) cars.CompanyName.replace('porcshce', 'porsche', inplace=True) cars.CompanyName.replace('toyouta', 'toyota', inplace=True) cars.CompanyName.replace('vokswagen', 'volkswagen', inplace=True) cars.CompanyName.replace('vw', 'volkswagen', inplace=True) cars.CompanyName.unique() cars.loc[cars.duplicated()] plt.figure(figsize=(20, 8)) plt.subplot(1, 2, 1) plt.title('Car Price Distribution Plot') sns.histplot(cars.price, kde=True) plt.subplot(1, 2, 2) plt.title('Car Price Spread') sns.boxplot(y=cars.price) plt.show()
code
105210810/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.describe()
code
105210810/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.info()
code