path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2032867/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 pd.crosstab(hrd.Department, hrd.Attrition).plot(kind='bar') plt.title('Attrition rate by Department') plt.xlabel('Department') plt.ylabel('Frequency of Attrition')
code
2032867/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 fig,ax = plt.subplots(1, 2, figsize=(18,4)) sns.barplot(x = 'Attrition', y = 'DistanceFromHome', data = hrd, ax = ax[0]) sns.barplot(x = 'Gender',y = 'JobSatisfaction', data = hrd, ax = ax[1]) fig = plt.figure(figsize=(12, 12)) sns.distplot(hrd.JobSatisfaction, hist=False, kde=True, label='Job Satisfaction', hist_kws={'histtype': 'step', 'linewidth': 3, 'alpha': 1, 'color': sns.xkcd_rgb['blue']}) sns.distplot(hrd.EnvironmentSatisfaction, hist=False, kde=True, label='Environment Satisfaction', hist_kws={'histtype': 'step', 'linewidth': 3, 'alpha': 1, 'color': sns.xkcd_rgb['red']}) sns.distplot(hrd.RelationshipSatisfaction, hist=False, kde=True, label='Relationship Satisfaction', hist_kws={'histtype': 'step', 'linewidth': 3, 'alpha': 1, 'color': sns.xkcd_rgb['green']}) plt.suptitle('Satisfaction Levels of Employees', size=22, x=0.5, y=0.94) plt.xlabel('Satisfaction Levels', size=10) plt.legend()
code
2032867/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 fig, ax = plt.subplots(1, 2, figsize=(18, 4)) sns.barplot(x='Attrition', y='DistanceFromHome', data=hrd, ax=ax[0]) sns.barplot(x='Gender', y='JobSatisfaction', data=hrd, ax=ax[1])
code
2032867/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique
code
2032867/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 fig,ax = plt.subplots(1, 2, figsize=(18,4)) sns.barplot(x = 'Attrition', y = 'DistanceFromHome', data = hrd, ax = ax[0]) sns.barplot(x = 'Gender',y = 'JobSatisfaction', data = hrd, ax = ax[1]) fig = plt.figure(figsize=(12,12)) sns.distplot(hrd.JobSatisfaction, hist=False, kde=True, label='Job Satisfaction', hist_kws={"histtype": "step", "linewidth": 3, "alpha": 1, "color": sns.xkcd_rgb["blue"]}) sns.distplot(hrd.EnvironmentSatisfaction, hist=False, kde=True, label='Environment Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["red"]}) sns.distplot(hrd.RelationshipSatisfaction, hist=False, kde=True, label='Relationship Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["green"]}) plt.suptitle('Satisfaction Levels of Employees', size=22, x=0.5, y=0.94) plt.xlabel('Satisfaction Levels', size=10) plt.legend() sns.jointplot(x='Age', y='MonthlyIncome', data=hrd)
code
2032867/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() num_bins = 30 hrd.hist(bins=num_bins, figsize=(20, 15))
code
2032867/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import colors import numpy as np import pandas as pd import seaborn as sns import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 fig,ax = plt.subplots(1, 2, figsize=(18,4)) sns.barplot(x = 'Attrition', y = 'DistanceFromHome', data = hrd, ax = ax[0]) sns.barplot(x = 'Gender',y = 'JobSatisfaction', data = hrd, ax = ax[1]) fig = plt.figure(figsize=(12,12)) sns.distplot(hrd.JobSatisfaction, hist=False, kde=True, label='Job Satisfaction', hist_kws={"histtype": "step", "linewidth": 3, "alpha": 1, "color": sns.xkcd_rgb["blue"]}) sns.distplot(hrd.EnvironmentSatisfaction, hist=False, kde=True, label='Environment Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["red"]}) sns.distplot(hrd.RelationshipSatisfaction, hist=False, kde=True, label='Relationship Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["green"]}) plt.suptitle('Satisfaction Levels of Employees', size=22, x=0.5, y=0.94) plt.xlabel('Satisfaction Levels', size=10) plt.legend() colors = 'red' area = np.pi * 3 fig = plt.figure(figsize=(12, 12)) r = sns.heatmap(hrd.corr(), cmap='BuPu', linewidths=0.5, annot=True, fmt='.1f') r.set_title('Heatmap of IBM HR Data')
code
2032867/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) pd.crosstab(df.Department, df.Gender).plot(kind='bar') plt.title('Genderwise employee distribution in all Department') plt.xlabel('Department') plt.ylabel('Employee')
code
2032867/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import colors import numpy as np import pandas as pd import seaborn as sns import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean() df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition']) groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']]) num_bins = 30 fig,ax = plt.subplots(1, 2, figsize=(18,4)) sns.barplot(x = 'Attrition', y = 'DistanceFromHome', data = hrd, ax = ax[0]) sns.barplot(x = 'Gender',y = 'JobSatisfaction', data = hrd, ax = ax[1]) fig = plt.figure(figsize=(12,12)) sns.distplot(hrd.JobSatisfaction, hist=False, kde=True, label='Job Satisfaction', hist_kws={"histtype": "step", "linewidth": 3, "alpha": 1, "color": sns.xkcd_rgb["blue"]}) sns.distplot(hrd.EnvironmentSatisfaction, hist=False, kde=True, label='Environment Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["red"]}) sns.distplot(hrd.RelationshipSatisfaction, hist=False, kde=True, label='Relationship Satisfaction', hist_kws={"histtype": "step", "linewidth": 3,"alpha": 1, "color": sns.xkcd_rgb["green"]}) plt.suptitle('Satisfaction Levels of Employees', size=22, x=0.5, y=0.94) plt.xlabel('Satisfaction Levels', size=10) plt.legend() colors = 'red' area = np.pi * 3 plt.scatter(x='Age', y='YearsAtCompany', data=hrd, c=colors, s=area, alpha=0.5) plt.title('Scatter plot') plt.xlabel('Age') plt.ylabel('YearsAtCompany') plt.legend(loc=2)
code
2032867/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.isnull().any() hrdunique = HRData.nunique() hrdunique = hrdunique.sort_values() hrdunique hrd = HRData.copy() hrd.drop('Over18', axis=1, inplace=True) hrd.drop('StandardHours', axis=1, inplace=True) hrd.drop('EmployeeNumber', axis=1, inplace=True) hrd.drop('EmployeeCount', axis=1, inplace=True) hrd.groupby('Attrition').mean()
code
2032867/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import warnings # We want to suppress warnings warnings.filterwarnings('ignore') HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv') HRData.info() HRData.isnull().any()
code
50233984/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/credit-card-customers/BankChurners.csv') data = data.drop(columns=['Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2']) data.columns len(data.columns)
code
50233984/cell_6
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/credit-card-customers/BankChurners.csv') data.head(5)
code
50233984/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/credit-card-customers/BankChurners.csv') data = data.drop(columns=['Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1', 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2']) data.columns
code
88094945/cell_63
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() loan.Dependents.count() loan.Dependents.value_counts() loan.Dependents.value_counts(normalize=True).plot.bar(title='Dependents')
code
88094945/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() sns.barplot(x='Gender', hue='Loan_Status', y='ApplicantIncome', data=loan)
code
88094945/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan['Gender'].value_counts()
code
88094945/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan['Married'].count()
code
88094945/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.info()
code
88094945/cell_57
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() sns.barplot(x='Credit_History', hue='Loan_Status', y='ApplicantIncome', data=loan)
code
88094945/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() sns.barplot(x='Married', hue='Loan_Status', y='LoanAmount', data=loan)
code
88094945/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() sns.catplot(x='Gender', hue='Loan_Status', y='ApplicantIncome', data=loan, kind='bar', col='Education')
code
88094945/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() sns.countplot(x='Self_Employed', hue='Loan_Status', data=loan)
code
88094945/cell_55
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() sns.countplot(x='Credit_History', hue='Loan_Status', data=loan)
code
88094945/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes
code
88094945/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan['Married'].value_counts(normalize=True).plot.bar(title='Married')
code
88094945/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan['Self_Employed'].value_counts()
code
88094945/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan['Married'].value_counts()
code
88094945/cell_65
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() loan.Dependents.count() loan.Dependents.value_counts() loan.groupby('Dependents')['Loan_Status'].value_counts()
code
88094945/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self Employed')
code
88094945/cell_61
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() loan.Dependents.count() loan.Dependents.value_counts()
code
88094945/cell_54
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts()
code
88094945/cell_60
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.groupby('Credit_History')['Loan_Status'].value_counts() loan.Dependents.count()
code
88094945/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() sns.countplot(x='Gender', hue='Loan_Status', data=loan)
code
88094945/cell_50
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts()
code
88094945/cell_52
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan.Credit_History.value_counts() loan.Credit_History.value_counts(normalize=True).plot.bar(title='Credit History')
code
88094945/cell_49
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() loan['Credit_History'].count()
code
88094945/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts()
code
88094945/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() sns.countplot(x='Married', hue='Loan_Status', data=loan)
code
88094945/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() sns.countplot(data=loan, x='Married')
code
88094945/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan['Loan_Status'].value_counts()
code
88094945/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes sns.countplot(data=loan, x='Gender')
code
88094945/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan['Gender'].value_counts(normalize=True).plot.bar(title='Gender')
code
88094945/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan['Self_Employed'].count()
code
88094945/cell_47
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() sns.barplot(x='Self_Employed', hue='Loan_Status', y='ApplicantIncome', data=loan)
code
88094945/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.head()
code
88094945/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() sns.barplot(x='Married', hue='Loan_Status', y='ApplicantIncome', data=loan)
code
88094945/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts()
code
88094945/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts()
code
88094945/cell_46
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() loan.groupby('Self_Employed')['Loan_Status'].value_counts() sns.barplot(x='Self_Employed', hue='Loan_Status', y='LoanAmount', data=loan)
code
88094945/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() sns.barplot(x='Gender', hue='Loan_Status', y='LoanAmount', data=loan)
code
88094945/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes sns.countplot(data=loan, x='Loan_Status')
code
88094945/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum()
code
88094945/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns loan = pd.read_csv('../input/loan-prediction-analytics-vidhya/train_ctrUa4K.csv') loan.isnull().sum() loan.dtypes loan.groupby('Gender')['Loan_Status'].value_counts() loan.groupby('Married')['Loan_Status'].value_counts() sns.catplot(x='Married', hue='Loan_Status', y='ApplicantIncome', data=loan, kind='bar', col='Education')
code
32062089/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_niveau = df.groupby(['Programme'])['Genre'].value_counts(normalize=True) * 100 df_niveau = 100 - df_niveau.xs('M', level=1) df_niveau = df_niveau.reindex(niveaux_ordonnes) df_niveau
code
32062089/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_top = df['Autrice - auteur'].value_counts().sort_values(ascending=False) df_top.head(15)
code
32062089/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_corpus = df[df['Nombre de titres'] >= 3] df_corpus = df_corpus.sort_values(by='Nombre de titres', ascending=False) df_corpus['Autrice - auteur'].value_counts()
code
32062089/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_niveau = df.groupby(['Programme'])['Genre'].value_counts(normalize=True) * 100 df_niveau = 100 - df_niveau.xs('M', level=1) df_niveau = df_niveau.reindex(niveaux_ordonnes) df_niveau plt.figure(figsize=(14,6)) graph_niveau = sns.barplot(x=niveaux_ordonnes_court, y=df_niveau.values , palette="GnBu_d") plt.ylabel("Pourcentage des oeuvres d'autrices") plt.xlabel("Niveau") df_agreg = df[df['Programme'] == 'agrégation externe de lettres modernes'].groupby(['Année'])['Genre'].value_counts(normalize=True) * 100 df_agreg = 100 - df_agreg.xs('M', level=1) plt.figure(figsize=(14, 6)) sns.set(style='darkgrid') sns.barplot(x=df_agreg.index, y=df_agreg.values, palette='GnBu_d') plt.ylabel("Pourcentage des oeuvres d'autrices") plt.xlabel("Sessions de l'Agrégation externe de Lettres Modernes")
code
32062089/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_F = df[df['Genre'] == 'F'] df_F = df_F['Autrice - auteur'].value_counts().sort_values(ascending=False) df_F.head(15)
code
32062089/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_niveau = df.groupby(['Programme'])['Genre'].value_counts(normalize=True) * 100 df_niveau = 100 - df_niveau.xs('M', level=1) df_niveau = df_niveau.reindex(niveaux_ordonnes) df_niveau plt.figure(figsize=(14,6)) graph_niveau = sns.barplot(x=niveaux_ordonnes_court, y=df_niveau.values , palette="GnBu_d") plt.ylabel("Pourcentage des oeuvres d'autrices") plt.xlabel("Niveau") df_agreg = df[df['Programme'] == 'agrégation externe de lettres modernes'].groupby(['Année'])['Genre'].value_counts(normalize=True) * 100 df_agreg = 100 - df_agreg.xs('M', level=1) sns.set(style='darkgrid') df_obligatoire = df[df["Niveau d'enseignement"] != 'collège'].groupby(['Année'])['Genre'].value_counts(normalize=True) * 100 df_obligatoire = 100 - df_obligatoire.xs('M', level=1) plt.figure(figsize=(14, 6)) sns.set(style='darkgrid') sns.lineplot(x=df_obligatoire.index, y=df_obligatoire.values, palette='husl') plt.ylabel("Pourcentage des oeuvres d'autrices dans les programmes prescriptifs") plt.xlabel('Années')
code
32062089/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df['Genre'].value_counts(normalize=True) * 100
code
32062089/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df_andro = df[(df['Genre'] == '-') | df['Genre'].isnull()] df_andro.sample(5)
code
32062089/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_niveau = df.groupby(['Programme'])['Genre'].value_counts(normalize=True) * 100 df_niveau = 100 - df_niveau.xs('M', level=1) df_niveau = df_niveau.reindex(niveaux_ordonnes) df_niveau plt.figure(figsize=(14, 6)) graph_niveau = sns.barplot(x=niveaux_ordonnes_court, y=df_niveau.values, palette='GnBu_d') plt.ylabel("Pourcentage des oeuvres d'autrices") plt.xlabel('Niveau')
code
32062089/cell_43
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import interpolate df = pd.read_csv('../input/datasetauteur.csv') df_maj = pd.read_csv('../input/MJ.csv', delimiter=';', encoding='utf-8') df = df.append(df_maj, ignore_index=True, verify_integrity=True, sort=False) df = df.drop(columns=['Source', 'Thématique', 'Questionnement', 'Problématique']) df.loc[997, 'Nombre de titres'] = 3 nan_index = df[df['Nombre de titres'].isnull()].index df.loc[nan_index, 'Nombre de titres'] = 1 niveaux_ordonnes = ['sixième', 'cinquième', 'quatrième', 'troisième', 'terminale L', 'classes préparatoires aux grandes écoles scientifiques', "concours A/L de l'ENS", 'agrégation externe de lettres modernes'] niveaux_ordonnes_court = ['6e', '5e', '4e', '3e', 'Tle', 'Prépa Sc', 'Prépa A/L', 'Agreg'] df = df[df['Genre'] != '-'] df_niveau = df.groupby(['Programme'])['Genre'].value_counts(normalize=True) * 100 df_niveau = 100 - df_niveau.xs('M', level=1) df_niveau = df_niveau.reindex(niveaux_ordonnes) df_niveau df[(df['Genre'] == 'F') & df['Année'].isin([1996, 2000, 2005, 2006]) & (df['Programme'] == 'agrégation externe de lettres modernes')]
code
130008239/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) kw['Title of Competition'].value_counts().tail(20)
code
130008239/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) kw.info()
code
130008239/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130008239/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) num_comp = kw['Title of Competition'].nunique() print(f'The dataset has {num_comp} competitions.')
code
130008239/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) past_two_years_kw = kw[(kw['Competition Launch Date'].dt.year > 2020) & (kw['Competition Launch Date'].dt.month > 4)] num_comp_past_two_years = past_two_years_kw['Title of Competition'].nunique() print(f'Number of competitions from the past two years: {num_comp_past_two_years}.')
code
130008239/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) earliest_comp = kw['Competition Launch Date'].min().strftime('%Y-%m-%d') latest_comp = kw['Competition Launch Date'].max().strftime('%Y-%m-%d') print(f'The earliest competition was held at {earliest_comp} and the latest at {latest_comp}.')
code
130008239/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) kw['Title of Competition'].value_counts().head(20)
code
130008239/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) kw = pd.read_csv('/kaggle/input/2023-kaggle-ai-report/kaggle_writeups_20230510.csv', parse_dates=[0, 3]) kw.head()
code
33096880/cell_21
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[["salary","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") sns.barplot(x='specialisation', y='status', data=train)
code
33096880/cell_13
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) train.head()
code
33096880/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape
code
33096880/cell_23
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[["salary","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") sns.barplot(x='salary', y='specialisation', data=train)
code
33096880/cell_20
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[["salary","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") sns.barplot(x='degree_t', y='salary', data=train)
code
33096880/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape train.head()
code
33096880/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() sns.heatmap(corrMatrix, annot=True) plt.show()
code
33096880/cell_19
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[["salary","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") sns.barplot(x='degree_t', y='status', data=train)
code
33096880/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape train.tail()
code
33096880/cell_18
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[["salary","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") sns.barplot(x='gender', y='status', data=train)
code
33096880/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape train.info()
code
33096880/cell_15
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) train.head()
code
33096880/cell_16
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[['status', 'mba_p', 'etest_p', 'hsc_p', 'degree_p', 'ssc_p', 'gender', 'workex']].corr(), annot=True, fmt='.2f', cmap='summer')
code
33096880/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') print(train.columns.values)
code
33096880/cell_17
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) number = LabelEncoder() train['workex'] = number.fit_transform(train['workex'].astype('str')) corr_numeric = sns.heatmap(train[["status","mba_p","etest_p","hsc_p","degree_p","ssc_p", "gender", "workex"]].corr(), annot=True, fmt = ".2f", cmap = "summer") corr_numeric = sns.heatmap(train[['salary', 'mba_p', 'etest_p', 'hsc_p', 'degree_p', 'ssc_p', 'gender', 'workex']].corr(), annot=True, fmt='.2f', cmap='summer')
code
33096880/cell_14
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape corrMatrix = train.corr() number = LabelEncoder() train['status'] = number.fit_transform(train['status'].astype('str')) number = LabelEncoder() train['gender'] = number.fit_transform(train['gender'].astype('str')) train.head()
code
33096880/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv') train.shape def find_missing_data(data): Total = data.isnull().sum().sort_values(ascending=False) Percentage = (data.isnull().sum() / data.isnull().count()).sort_values(ascending=False) return pd.concat([Total, Percentage], axis=1, keys=['Total', 'Percent']) find_missing_data(train)
code
90109221/cell_21
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] X_test_final1 = X_test_final.to_numpy(dtype='uint8') print(X_test_final1)
code
90109221/cell_13
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] print(y_test_final) print(np.shape(y_test_final)) print(X_test_final) print(np.shape(X_test_final))
code
90109221/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape
code
90109221/cell_25
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape X_test_final1 = X_test_final.to_numpy(dtype='uint8') X_attack = X_test_final1 - (X_test_final1 @ np.transpose(w) + w0) @ w / np.linalg.norm(w) Y_attack = lda1.predict(X_attack) print('Accuracy' + ' ' + str(accuracy_score(y_test_final, Y_attack)))
code
90109221/cell_23
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape X_test_final1 = X_test_final.to_numpy(dtype='uint8') X_attack = X_test_final1 - (X_test_final1 @ np.transpose(w) + w0) @ w / np.linalg.norm(w) print(X_attack)
code
90109221/cell_20
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred) y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test_final, y_pred1) disp.figure_.suptitle('Confusion Matrix') print(f'Confusion matrix:\n{disp.confusion_matrix}') plt.show()
code
90109221/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import metrics from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred) y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test_final, y_pred1) X_test_final1 = X_test_final.to_numpy(dtype='uint8') X_attack = X_test_final1 - (X_test_final1 @ np.transpose(w) + w0) @ w / np.linalg.norm(w) Y_attack = lda1.predict(X_attack) print(f'Classification report for classifier {lda1}:\n{metrics.classification_report(y_test_final, Y_attack)}\n')
code
90109221/cell_11
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred) disp.figure_.suptitle('Confusion Matrix') print(f'Confusion matrix:\n{disp.confusion_matrix}') plt.show()
code
90109221/cell_19
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred) y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape print(f'Classification report for classifier {lda1}:\n{metrics.classification_report(y_test_final, y_pred1)}\n')
code
90109221/cell_7
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) print(accuracy_score(y_test, y_pred)) print(y_pred.shape)
code
90109221/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score import numpy as np import pandas as pd mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv') mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv') X_train = mnist_train.iloc[:, 1:785] y_train = mnist_train.iloc[:, 0] lda = LDA(n_components=9) X_train_r2 = lda.fit(X_train, y_train) X_test = mnist_test.iloc[:, 1:785] y_test = mnist_test.iloc[:, 0] y_pred = lda.predict(X_test) w = lda.coef_ w.shape w0 = lda.intercept_ np.transpose(w0).shape y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] y_test_final = y_test_final.iloc[:, 0] X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])] X_test_final = X_test_final.iloc[:, 1:785] y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] y_train_final = y_train_final.iloc[:, 0] X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])] X_train_final = X_train_final.iloc[:, 1:785] lda1 = LDA(n_components=1) X_train_r21 = lda1.fit(X_train_final, y_train_final) y_pred1 = lda1.predict(X_test_final) w = lda1.coef_ w.shape w0 = lda1.intercept_ np.transpose(w0).shape
code