path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
90109221/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape | code |
90109221/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
y_test_final = y_test_final.iloc[:, 0]
X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
X_test_final = X_test_final.iloc[:, 1:785]
y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
y_train_final = y_train_final.iloc[:, 0]
X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
X_train_final = X_train_final.iloc[:, 1:785]
lda1 = LDA(n_components=1)
X_train_r21 = lda1.fit(X_train_final, y_train_final)
y_pred1 = lda1.predict(X_test_final)
print(accuracy_score(y_test_final, y_pred1))
print(y_pred1.shape) | code |
90109221/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
mnist_train.head() | code |
90109221/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
y_test_final = y_test_final.iloc[:, 0]
X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
X_test_final = X_test_final.iloc[:, 1:785]
y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
y_train_final = y_train_final.iloc[:, 0]
X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
X_train_final = X_train_final.iloc[:, 1:785]
lda1 = LDA(n_components=1)
X_train_r21 = lda1.fit(X_train_final, y_train_final)
y_pred1 = lda1.predict(X_test_final)
w = lda1.coef_
w.shape | code |
90109221/cell_24 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
y_test_final = y_test_final.iloc[:, 0]
X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
X_test_final = X_test_final.iloc[:, 1:785]
y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
y_train_final = y_train_final.iloc[:, 0]
X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
X_train_final = X_train_final.iloc[:, 1:785]
lda1 = LDA(n_components=1)
X_train_r21 = lda1.fit(X_train_final, y_train_final)
y_pred1 = lda1.predict(X_test_final)
w = lda1.coef_
w.shape
w0 = lda1.intercept_
np.transpose(w0).shape
X_test_final1 = X_test_final.to_numpy(dtype='uint8')
X_attack = X_test_final1 - (X_test_final1 @ np.transpose(w) + w0) @ w / np.linalg.norm(w)
Y_attack = lda1.predict(X_attack) | code |
90109221/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
y_test_final = y_test_final.iloc[:, 0]
X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
X_test_final = X_test_final.iloc[:, 1:785]
y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
y_train_final = y_train_final.iloc[:, 0]
X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
X_train_final = X_train_final.iloc[:, 1:785]
print(y_train_final)
print(np.shape(y_train_final))
print(X_train_final)
print(np.shape(X_train_final)) | code |
90109221/cell_10 | [
"text_html_output_1.png"
] | from sklearn import metrics
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
print(f'Classification report for classifier {lda}:\n{metrics.classification_report(y_test, y_pred)}\n') | code |
90109221/cell_27 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_test = mnist_test.iloc[:, 1:785]
y_test = mnist_test.iloc[:, 0]
y_pred = lda.predict(X_test)
w = lda.coef_
w.shape
w0 = lda.intercept_
np.transpose(w0).shape
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
y_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
y_test_final = y_test_final.iloc[:, 0]
X_test_final = mnist_test.loc[mnist_test['label'].isin([3, 8])]
X_test_final = X_test_final.iloc[:, 1:785]
y_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
y_train_final = y_train_final.iloc[:, 0]
X_train_final = mnist_train.loc[mnist_train['label'].isin([3, 8])]
X_train_final = X_train_final.iloc[:, 1:785]
lda1 = LDA(n_components=1)
X_train_r21 = lda1.fit(X_train_final, y_train_final)
y_pred1 = lda1.predict(X_test_final)
w = lda1.coef_
w.shape
w0 = lda1.intercept_
np.transpose(w0).shape
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test_final, y_pred1)
X_test_final1 = X_test_final.to_numpy(dtype='uint8')
X_attack = X_test_final1 - (X_test_final1 @ np.transpose(w) + w0) @ w / np.linalg.norm(w)
Y_attack = lda1.predict(X_attack)
disp = metrics.ConfusionMatrixDisplay.from_predictions(y_test_final, Y_attack)
disp.figure_.suptitle('Confusion Matrix')
print(f'Confusion matrix:\n{disp.confusion_matrix}')
plt.show() | code |
90109221/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
mnist_train = pd.read_csv('../input/mnist-in-csv/mnist_train.csv')
mnist_test = pd.read_csv('../input/mnist-in-csv/mnist_test.csv')
X_train = mnist_train.iloc[:, 1:785]
y_train = mnist_train.iloc[:, 0]
lda = LDA(n_components=9)
X_train_r2 = lda.fit(X_train, y_train)
X_train_r2 | code |
129010847/cell_9 | [
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import transformers
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('sai1881/bloom-560m-finetuned-Instruct-DB-v', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
prompt = 'Instruction: Why can camels survive for long without water? <END> \ncontext: <END> \n \nresponse: '
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('bigscience/bloom-560m', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
prompt = 'Instruction: Why can camels survive for long without water? <END> \ncontext: <END> \n \nresponse: '
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str.split('<By Manoj>')[0]) | code |
129010847/cell_4 | [
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import transformers
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('sai1881/bloom-560m-finetuned-Instruct-DB-v', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str.split('<By Manoj>')[0]) | code |
129010847/cell_8 | [
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import transformers
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('sai1881/bloom-560m-finetuned-Instruct-DB-v', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
prompt = 'Instruction: Why can camels survive for long without water? <END> \ncontext: <END> \n \nresponse: '
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('bigscience/bloom-560m', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str.split('<By Manoj>')[0]) | code |
129010847/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import transformers
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('sai1881/bloom-560m-finetuned-Instruct-DB-v', torch_dtype=torch.float16)
model = model.to('cuda:0') | code |
129010847/cell_5 | [
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import transformers
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained('sai1881/bloom-560m-finetuned-Instruct-DB-v', torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "Instruction: When did Virgin Australia start operating?<END> \ncontext: Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.<END> \n<END>"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
prompt = 'Instruction: Why can camels survive for long without water? <END> \ncontext: <END> \n \nresponse: '
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str.split('<By Manoj>')[0]) | code |
33106189/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
data_train = pd.read_csv('/kaggle/input/titanic/train.csv')
data_test = pd.read_csv('/kaggle/input/titanic/test.csv')
data_total = data_train.append(data_test, ignore_index=True)
data_train_length = len(data_train.index)
for c in ['Age', 'Fare']:
g = sns.FacetGrid(data_train, col='Survived')
g.map(plt.hist, c)
corr = data_train.corr()
age_mean_by_pclass = data_total[['Pclass', 'Age']].groupby('Pclass').mean()
data_total['Age'] = data_total.apply(lambda row: age_mean_by_pclass.loc[row['Pclass'], 'Age'] if np.isnan(row['Age']) else row['Age'], axis=1)
fare_median_by_pclass = data_total[['Pclass', 'Fare']].groupby('Pclass').median()
data_total['Fare'] = data_total.apply(lambda row: fare_median_by_pclass.loc[row['Pclass'], 'Fare'] if np.isnan(row['Fare']) else row['Fare'], axis=1)
data_total['Embarked'].fillna(data_total['Embarked'].mode()[0], inplace=True)
data_total['isAlone'] = (data_total['SibSp'] + data_total['Parch'] == 0) * 1
data_total['bigGroup'] = (data_total['SibSp'] + data_total['Parch'] > 3) * 1
data_total['Title'] = data_total['Name'].str.extract(' ([A-Za-z]+)\\.', expand=False)
data_total['Title'] = data_total['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Other')
data_total['Title'] = data_total['Title'].replace(['Mlle', 'Ms', 'Mme'], 'Miss')
age_bin_count = 10
data_total['Age_Bin'] = pd.cut(data_total['Age'], age_bin_count, labels=list(range(1, age_bin_count + 1)))
fare_bin_count = 5
data_total['Fare_Bin'] = pd.qcut(data_total['Fare'], fare_bin_count, labels=list(range(1, fare_bin_count + 1)))
enc = OneHotEncoder().fit(data_total[['Sex', 'Embarked', 'Title']])
enc_features_arr = enc.transform(data_total[['Sex', 'Embarked', 'Title']]).toarray()
enc_features_labels = [label for cat in enc.categories_ for label in cat]
enc_features_df = pd.DataFrame(enc_features_arr, columns=enc_features_labels).drop(columns=['male', 'S', 'Other'])
data_total = data_total.join(enc_features_df)
data_total = data_total.drop(columns=['PassengerId', 'Name', 'Cabin', 'Ticket', 'SibSp', 'Parch', 'Age', 'Fare', 'Sex', 'Embarked', 'Title'])
data_train = data_total[:data_train_length]
X = data_train.drop(columns=['Survived'], axis=1)
y = data_train['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
"""#first round of grid search
svc_params = [{'C': [1,2,3,4,5], 'kernel': ['linear', 'rbf', 'sigmoid'], 'gamma': [.1, .2, .3, .4, .5, .6, .7, .8, .9]},
{'C': [1,2,3,4,5], 'kernel': ['linear']}]
#output: {'C': 1, 'gamma': 0.2, 'kernel': 'rbf'}, 0.8264360018091361
knn_params = [{'n_neighbors': [3,4,5,6,7,8], 'weights': ['uniform', 'distance'], 'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
'leaf_size': [25, 30, 35, 40, 50], 'p': [1, 2]}]
#output: {'algorithm': 'brute', 'leaf_size': 25, 'n_neighbors': 8, 'p': 2, 'weights': 'uniform'}, 0.8294663048394391
rfc_params = [{'n_estimators': [20, 50, 100, 150, 200], 'criterion': ['gini', 'entropy']}]
#output: {'criterion': 'entropy', 'n_estimators': 100}, 0.7979873360470375
"""
svc_params = [{'C': [0.2, 0.4, 0.5, 1, 2, 3, 4, 5], 'kernel': ['rbf'], 'gamma': [0.1, 0.15, 0.2, 0.25, 0.3]}]
knn_params = [{'n_neighbors': [7, 8, 9, 10], 'weights': ['uniform'], 'algorithm': ['brute'], 'p': [2]}]
rfc_params = [{'n_estimators': [80, 90, 100, 110, 120, 130, 140], 'criterion': ['entropy']}]
classifier_names = ['SVC', 'KNN', 'RFC']
params = [svc_params, knn_params, rfc_params]
classifier_objs = [SVC(), KNeighborsClassifier(), RandomForestClassifier()]
best_params = {}
for i in range(len(classifier_names)):
classifier_objs[i].fit(X_train, y_train)
grid_search = GridSearchCV(estimator=classifier_objs[i], param_grid=params[i], scoring='accuracy', cv=10).fit(X_train, y_train)
best_params[classifier_names[i]] = grid_search.best_params_
classifier_tuned = [SVC(C=best_params['SVC']['C'], gamma=best_params['SVC']['gamma'], kernel=best_params['SVC']['kernel']), KNeighborsClassifier(algorithm=best_params['KNN']['algorithm'], n_neighbors=best_params['KNN']['n_neighbors'], p=best_params['KNN']['p'], weights=best_params['KNN']['weights']), LogisticRegression(), RandomForestClassifier(criterion=best_params['RFC']['criterion'], n_estimators=best_params['RFC']['n_estimators']), GaussianNB()]
predictions_train = []
for clf in classifier_tuned:
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
predictions_train.append(y_pred)
print(clf)
print(confusion_matrix(y_test, y_pred))
print('accuracy score: ' + str(accuracy_score(y_test, y_pred)))
print('cross val score: ' + str(cross_val_score(clf, X_train, y_train).mean()))
print('–––––––––')
predictions_train = pd.DataFrame(predictions_train).transpose()
predictions_train['y_pred_voted'] = predictions_train.mean(axis=1).round()
predictions_train_voted = predictions_train['y_pred_voted'].values
print('Result after voting:')
print(confusion_matrix(y_test, predictions_train_voted))
print(accuracy_score(y_test, predictions_train_voted)) | code |
33106189/cell_4 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
data_train = pd.read_csv('/kaggle/input/titanic/train.csv')
data_test = pd.read_csv('/kaggle/input/titanic/test.csv')
data_total = data_train.append(data_test, ignore_index=True)
data_train_length = len(data_train.index)
for c in ['Age', 'Fare']:
g = sns.FacetGrid(data_train, col='Survived')
g.map(plt.hist, c)
corr = data_train.corr()
data_total.info() | code |
33106189/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import OneHotEncoder, StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
data_train = pd.read_csv('/kaggle/input/titanic/train.csv')
data_test = pd.read_csv('/kaggle/input/titanic/test.csv')
data_total = data_train.append(data_test, ignore_index=True)
data_train_length = len(data_train.index)
for c in ['Age', 'Fare']:
g = sns.FacetGrid(data_train, col='Survived')
g.map(plt.hist, c)
corr = data_train.corr()
age_mean_by_pclass = data_total[['Pclass', 'Age']].groupby('Pclass').mean()
data_total['Age'] = data_total.apply(lambda row: age_mean_by_pclass.loc[row['Pclass'], 'Age'] if np.isnan(row['Age']) else row['Age'], axis=1)
fare_median_by_pclass = data_total[['Pclass', 'Fare']].groupby('Pclass').median()
data_total['Fare'] = data_total.apply(lambda row: fare_median_by_pclass.loc[row['Pclass'], 'Fare'] if np.isnan(row['Fare']) else row['Fare'], axis=1)
data_total['Embarked'].fillna(data_total['Embarked'].mode()[0], inplace=True)
data_total['isAlone'] = (data_total['SibSp'] + data_total['Parch'] == 0) * 1
data_total['bigGroup'] = (data_total['SibSp'] + data_total['Parch'] > 3) * 1
data_total['Title'] = data_total['Name'].str.extract(' ([A-Za-z]+)\\.', expand=False)
data_total['Title'] = data_total['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Other')
data_total['Title'] = data_total['Title'].replace(['Mlle', 'Ms', 'Mme'], 'Miss')
age_bin_count = 10
data_total['Age_Bin'] = pd.cut(data_total['Age'], age_bin_count, labels=list(range(1, age_bin_count + 1)))
fare_bin_count = 5
data_total['Fare_Bin'] = pd.qcut(data_total['Fare'], fare_bin_count, labels=list(range(1, fare_bin_count + 1)))
enc = OneHotEncoder().fit(data_total[['Sex', 'Embarked', 'Title']])
enc_features_arr = enc.transform(data_total[['Sex', 'Embarked', 'Title']]).toarray()
enc_features_labels = [label for cat in enc.categories_ for label in cat]
enc_features_df = pd.DataFrame(enc_features_arr, columns=enc_features_labels).drop(columns=['male', 'S', 'Other'])
data_total = data_total.join(enc_features_df)
data_total = data_total.drop(columns=['PassengerId', 'Name', 'Cabin', 'Ticket', 'SibSp', 'Parch', 'Age', 'Fare', 'Sex', 'Embarked', 'Title'])
data_total.head() | code |
33106189/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33106189/cell_3 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
data_train = pd.read_csv('/kaggle/input/titanic/train.csv')
data_test = pd.read_csv('/kaggle/input/titanic/test.csv')
data_total = data_train.append(data_test, ignore_index=True)
data_train_length = len(data_train.index)
for c in ['Pclass', 'Sex', 'Embarked', 'SibSp', 'Parch', 'Survived']:
sns.catplot(x=c, kind='count', data=data_train)
plt.show()
for c in ['Age', 'Fare']:
data_train[c].hist().set(xlabel=c)
plt.show()
for c in ['Pclass', 'Sex', 'Embarked', 'SibSp', 'Parch']:
sns.catplot(x=c, y='Survived', kind='bar', data=data_train)
plt.show()
for c in ['Age', 'Fare']:
g = sns.FacetGrid(data_train, col='Survived')
g.map(plt.hist, c)
plt.show()
corr = data_train.corr()
sns.boxplot(x='Pclass', y='Age', hue='Survived', data=data_train)
plt.show()
sns.boxplot(x='Pclass', y='Fare', hue='Survived', data=data_train[data_train['Fare'] < 200])
plt.show() | code |
33106189/cell_5 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
data_train = pd.read_csv('/kaggle/input/titanic/train.csv')
data_test = pd.read_csv('/kaggle/input/titanic/test.csv')
data_total = data_train.append(data_test, ignore_index=True)
data_train_length = len(data_train.index)
for c in ['Age', 'Fare']:
g = sns.FacetGrid(data_train, col='Survived')
g.map(plt.hist, c)
corr = data_train.corr()
age_mean_by_pclass = data_total[['Pclass', 'Age']].groupby('Pclass').mean()
data_total['Age'] = data_total.apply(lambda row: age_mean_by_pclass.loc[row['Pclass'], 'Age'] if np.isnan(row['Age']) else row['Age'], axis=1)
fare_median_by_pclass = data_total[['Pclass', 'Fare']].groupby('Pclass').median()
data_total['Fare'] = data_total.apply(lambda row: fare_median_by_pclass.loc[row['Pclass'], 'Fare'] if np.isnan(row['Fare']) else row['Fare'], axis=1)
data_total['Embarked'].fillna(data_total['Embarked'].mode()[0], inplace=True)
data_total.info() | code |
90154899/cell_25 | [
"image_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.svm import SVC
from sklearn.utils import shuffle
from termcolor import colored
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from termcolor import colored
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T
diabetic_map = {'No, borderline diabetes': 'No', 'Yes (during pregnancy)': 'Yes', 'Yes': 'Yes', 'No': 'No'}
data.Diabetic = data.Diabetic.map(diabetic_map)
categorical_features = ['Smoking', 'AlcoholDrinking', 'Stroke', 'DiffWalking', 'Sex', 'AgeCategory', 'Race', 'Diabetic', 'PhysicalActivity', 'GenHealth', 'Asthma', 'KidneyDisease', 'SkinCancer', 'HeartDisease']
numerical_columns = [x for x in data.columns if x not in categorical_features]
def plotting_function(feature):
fig, axes = plt.subplots(ncols = 3,figsize = (25,5))
heart_disease_by_feature = pd.DataFrame(data[data["HeartDisease"] == "Yes"].groupby(feature).count()["HeartDisease"])
heart_disease_by_feature.sort_values(by = "HeartDisease", ascending = False).plot(kind ="bar", ax = axes[0])
axes[1].pie(heart_disease_by_feature["HeartDisease"], labels = heart_disease_by_feature.index, autopct = "%.2f")
data[feature].value_counts().sort_values(ascending = False).plot(kind = "bar", ax = axes[2], color = "green")
axes[0].set_title(f"{feature} Among People Having Heart Disease (Bar)", size = 15)
axes[1].set_title(f"{feature} Among People Having Heart Disease (Pie)", size = 15)
axes[2].set_title(f"{feature} Sample Count")
axes[0].set_xlabel("")
axes[2].set_xlabel("")
axes[2].set_ylabel("")
plt.show()
for categoric_col in categorical_features[:-1]:
plotting_function(categoric_col)
class Preprocessing:
def __init__(self, data, categorical_features, numerical_columns, scaling=False, n_splits=None, n_inner=None, broad_encoding=None, smooth=None, smote=False):
self.smooth = smooth
self.numerical_columns = numerical_columns
self.smote = smote
self.data = data
self.categorical_features = categorical_features
self.scaling = scaling
self.n_splits = n_splits
self.n_inner = n_inner
self.broad_encoding = broad_encoding
def scaling_func(self):
num_features = [feature for feature in self.data.columns if feature not in self.categorical_features]
for num_feature in num_features:
self.data[num_feature] = (self.data[num_feature] - self.data[num_feature].mean()) / self.data[num_feature].std()
def label_encode(self, broad_encoding=None):
label_encoding_features = []
for categorical_feature in self.categorical_features:
if data[categorical_feature].nunique() == 2:
label_encoding_features.append(categorical_feature)
multivariable_features = [x for x in self.categorical_features if x not in label_encoding_features]
label_encoder_map = {}
for label_encoding_feature in label_encoding_features:
le = LabelEncoder()
le.fit(self.data[label_encoding_feature].values.reshape(-1, 1))
label_encode_map = dict(zip(le.classes_, le.transform(le.classes_)))
label_encoder_map[label_encoding_feature] = label_encode_map
encoded_data = le.transform(self.data[label_encoding_feature])
self.data[label_encoding_feature] = encoded_data
if self.broad_encoding == 'OHE':
self.data = pd.get_dummies(self.data, columns=multivariable_features, drop_first=True)
elif self.broad_encoding == 'SMOOTH':
for cat_col in multivariable_features:
global_mean = self.data['HeartDisease'].mean()
sample_size = self.data.groupby(cat_col).size()
grouped_mean = self.data.groupby(cat_col)['HeartDisease'].mean()
smooth_action = (sample_size * grouped_mean + global_mean * self.smooth) / (sample_size + self.smooth)
self.data[cat_col] = self.data[cat_col].map(smooth_action)
elif self.broad_encoding == 'CROSS_VAL':
for multi_feat in multivariable_features:
global_mean = self.data['HeartDisease'].mean()
skf = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
for train_idx, test_idx in skf.split(self.data[multi_feat], self.data['HeartDisease']):
train_data, test_data = (self.data.loc[train_idx], self.data.loc[test_idx])
train_data_mean = train_data.mean()
grouped_mean_df = pd.DataFrame()
skf_inner = StratifiedKFold(n_splits=self.n_inner, shuffle=True, random_state=42)
for inner_train_idx, _ in skf_inner.split(train_data[multi_feat], train_data['HeartDisease']):
inner_train_data = self.data.loc[inner_train_idx]
grouped_mean = inner_train_data.groupby(multi_feat)['HeartDisease'].mean()
grouped_mean_df = pd.concat([grouped_mean_df, grouped_mean], axis=1).fillna(train_data_mean)
grouped_mean_map = grouped_mean_df.mean(axis=1)
self.data.loc[test_idx, multi_feat] = self.data.loc[test_idx, multi_feat].map(grouped_mean_map)
def smote_upsample(self):
data = self.data.copy()
oversampled_numerics_0 = pd.DataFrame()
oversampled_categorics_0 = pd.DataFrame()
oversampled_numerics_1 = pd.DataFrame()
for _ in range(len(data)):
random = np.random.random()
if random < 0.5:
choice_0_numerics = data[data['HeartDisease'] == 'No'][self.numerical_columns].sample(n=1).reset_index(drop=True)
choice_0_categorics = data[data['HeartDisease'] == 'No'][self.categorical_features].sample(n=1).reset_index(drop=True)
oversampled_numerics_0 = pd.concat([oversampled_numerics_1, choice_0_numerics])
oversampled_categorics_0 = pd.concat([oversampled_categorics_0, choice_0_categorics])
else:
choice_1_numerics = data[data['HeartDisease'] == 'Yes'][self.numerical_columns].sample(n=1).reset_index(drop=True)
choice_2_numerics = data[data['HeartDisease'] == 'Yes'][self.numerical_columns].sample(n=1).reset_index(drop=True)
constant = np.random.random()
synthetic_numerics = choice_1_numerics * constant + choice_2_numerics * (1 - constant)
oversampled_numerics_1 = pd.concat([oversampled_numerics_1, synthetic_numerics])
oversampled_numerics_0.reset_index(drop=True, inplace=True)
oversampled_numerics_1.reset_index(drop=True, inplace=True)
oversampled_categorics_0.reset_index(drop=True, inplace=True)
neighbors = KNeighborsClassifier(n_neighbors=3)
neighbors.fit(data[self.numerical_columns], data[self.categorical_features[:-1]])
oversampled_categorics_1 = pd.DataFrame(neighbors.predict(oversampled_numerics_1), columns=self.categorical_features[:-1])
oversampled_categorics_1['HeartDisease'] = 'Yes'
oversampled_categorics = pd.concat([oversampled_categorics_0, oversampled_categorics_1])
oversampled_numerics = pd.concat([oversampled_numerics_0, oversampled_numerics_1])
oversampled_data = oversampled_numerics.join(oversampled_categorics)
oversampled_data = shuffle(oversampled_data)
oversampled_data.reset_index(drop=True, inplace=True)
del data
return oversampled_data
def transform(self):
if self.smote:
self.data = self.smote_upsample()
else:
pass
if self.scaling:
self.scaling_func()
else:
pass
self.label_encode()
return self.data.copy()
zeros = data[data['HeartDisease'] == 'No'].sample(n=int(len(data) / 50), replace=False)
ones = data[data['HeartDisease'] == 'Yes'].sample(n=int(len(data) / 500), replace=False)
small_data = shuffle(pd.concat([zeros, ones]))
small_data.reset_index(drop=True, inplace=True)
def scores(y_true, y_pred):
y_true = np.array(y_true)
y_pred = np.array(y_pred)
tp = 0
fn = 0
for i in range(len(y_true)):
if y_true[i] == y_pred[i]:
tp += 1
else:
fn += 1
acc_score = tp / (tp + fn)
idx_0 = np.where(y_true == 0)[0]
tp_0 = 0
fn_0 = 0
for i in idx_0:
if y_true[i] == y_pred[i]:
tp_0 += 1
else:
fn_0 += 1
idx_1 = np.where(y_true == 1)[0]
tp_1 = 0
fn_1 = 0
for i in idx_1:
if y_true[i] == y_pred[i]:
tp_1 += 1
else:
fn_1 += 1
prec_score_0 = tp_0 / (tp_0 + fn_0)
prec_score_1 = tp_1 / (tp_1 + fn_1)
tp_0 = 0
tp_1 = 0
no_0 = len(np.where(y_true == 0)[0])
no_1 = len(np.where(y_true == 1)[0])
for i in np.where(y_true == 0)[0]:
if y_true[i] == y_pred[i]:
tp_0 += 1
else:
continue
for i in np.where(y_true == 1)[0]:
if y_true[i] == y_pred[i]:
tp_1 += 1
else:
continue
recall_0 = tp_0 / no_0
recall_1 = tp_1 / no_1
f1_0 = 2 * (prec_score_0 * recall_0) / (prec_score_0 + recall_0)
f1_1 = 2 * (prec_score_1 * recall_1) / (prec_score_1 + recall_1)
def perform_func(preprocessed_data, model, scoring=scores):
model_use = model()
train_cols = [x for x in preprocessed_data.columns if x != 'HeartDisease']
for i in range(5):
test_indicies = np.random.randint(low=0, high=len(preprocessed_data), size=int(len(preprocessed_data) / 5))
train_indicies = np.array([x for x in range(0, len(preprocessed_data)) if x not in test_indicies])
model_use.fit(preprocessed_data.loc[train_indicies, train_cols], preprocessed_data.loc[train_indicies, 'HeartDisease'])
preds = model_use.predict(preprocessed_data.iloc[test_indicies, 1:])
scoring(preprocessed_data.loc[test_indicies, 'HeartDisease'], preds)
preprocessor = Preprocessing(small_data, categorical_features, numerical_columns, scaling=True, broad_encoding='OHE')
encoded_data = preprocessor.transform()
model_list = [('SVC', SVC), ('LogisticRegression', LogisticRegression), ('RandomForestClassifier', RandomForestClassifier)]
for name, model in model_list:
print(f'{name} Model Results')
perform_func(encoded_data, model) | code |
90154899/cell_20 | [
"image_output_1.png"
] | from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from termcolor import colored
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T
diabetic_map = {'No, borderline diabetes': 'No', 'Yes (during pregnancy)': 'Yes', 'Yes': 'Yes', 'No': 'No'}
data.Diabetic = data.Diabetic.map(diabetic_map)
categorical_features = ['Smoking', 'AlcoholDrinking', 'Stroke', 'DiffWalking', 'Sex', 'AgeCategory', 'Race', 'Diabetic', 'PhysicalActivity', 'GenHealth', 'Asthma', 'KidneyDisease', 'SkinCancer', 'HeartDisease']
numerical_columns = [x for x in data.columns if x not in categorical_features]
def plotting_function(feature):
fig, axes = plt.subplots(ncols = 3,figsize = (25,5))
heart_disease_by_feature = pd.DataFrame(data[data["HeartDisease"] == "Yes"].groupby(feature).count()["HeartDisease"])
heart_disease_by_feature.sort_values(by = "HeartDisease", ascending = False).plot(kind ="bar", ax = axes[0])
axes[1].pie(heart_disease_by_feature["HeartDisease"], labels = heart_disease_by_feature.index, autopct = "%.2f")
data[feature].value_counts().sort_values(ascending = False).plot(kind = "bar", ax = axes[2], color = "green")
axes[0].set_title(f"{feature} Among People Having Heart Disease (Bar)", size = 15)
axes[1].set_title(f"{feature} Among People Having Heart Disease (Pie)", size = 15)
axes[2].set_title(f"{feature} Sample Count")
axes[0].set_xlabel("")
axes[2].set_xlabel("")
axes[2].set_ylabel("")
plt.show()
for categoric_col in categorical_features[:-1]:
plotting_function(categoric_col)
class Preprocessing:
def __init__(self, data, categorical_features, numerical_columns, scaling=False, n_splits=None, n_inner=None, broad_encoding=None, smooth=None, smote=False):
self.smooth = smooth
self.numerical_columns = numerical_columns
self.smote = smote
self.data = data
self.categorical_features = categorical_features
self.scaling = scaling
self.n_splits = n_splits
self.n_inner = n_inner
self.broad_encoding = broad_encoding
def scaling_func(self):
num_features = [feature for feature in self.data.columns if feature not in self.categorical_features]
for num_feature in num_features:
self.data[num_feature] = (self.data[num_feature] - self.data[num_feature].mean()) / self.data[num_feature].std()
def label_encode(self, broad_encoding=None):
label_encoding_features = []
for categorical_feature in self.categorical_features:
if data[categorical_feature].nunique() == 2:
label_encoding_features.append(categorical_feature)
multivariable_features = [x for x in self.categorical_features if x not in label_encoding_features]
label_encoder_map = {}
for label_encoding_feature in label_encoding_features:
le = LabelEncoder()
le.fit(self.data[label_encoding_feature].values.reshape(-1, 1))
label_encode_map = dict(zip(le.classes_, le.transform(le.classes_)))
label_encoder_map[label_encoding_feature] = label_encode_map
encoded_data = le.transform(self.data[label_encoding_feature])
self.data[label_encoding_feature] = encoded_data
if self.broad_encoding == 'OHE':
self.data = pd.get_dummies(self.data, columns=multivariable_features, drop_first=True)
elif self.broad_encoding == 'SMOOTH':
for cat_col in multivariable_features:
global_mean = self.data['HeartDisease'].mean()
sample_size = self.data.groupby(cat_col).size()
grouped_mean = self.data.groupby(cat_col)['HeartDisease'].mean()
smooth_action = (sample_size * grouped_mean + global_mean * self.smooth) / (sample_size + self.smooth)
self.data[cat_col] = self.data[cat_col].map(smooth_action)
elif self.broad_encoding == 'CROSS_VAL':
for multi_feat in multivariable_features:
global_mean = self.data['HeartDisease'].mean()
skf = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
for train_idx, test_idx in skf.split(self.data[multi_feat], self.data['HeartDisease']):
train_data, test_data = (self.data.loc[train_idx], self.data.loc[test_idx])
train_data_mean = train_data.mean()
grouped_mean_df = pd.DataFrame()
skf_inner = StratifiedKFold(n_splits=self.n_inner, shuffle=True, random_state=42)
for inner_train_idx, _ in skf_inner.split(train_data[multi_feat], train_data['HeartDisease']):
inner_train_data = self.data.loc[inner_train_idx]
grouped_mean = inner_train_data.groupby(multi_feat)['HeartDisease'].mean()
grouped_mean_df = pd.concat([grouped_mean_df, grouped_mean], axis=1).fillna(train_data_mean)
grouped_mean_map = grouped_mean_df.mean(axis=1)
self.data.loc[test_idx, multi_feat] = self.data.loc[test_idx, multi_feat].map(grouped_mean_map)
def smote_upsample(self):
data = self.data.copy()
oversampled_numerics_0 = pd.DataFrame()
oversampled_categorics_0 = pd.DataFrame()
oversampled_numerics_1 = pd.DataFrame()
for _ in range(len(data)):
random = np.random.random()
if random < 0.5:
choice_0_numerics = data[data['HeartDisease'] == 'No'][self.numerical_columns].sample(n=1).reset_index(drop=True)
choice_0_categorics = data[data['HeartDisease'] == 'No'][self.categorical_features].sample(n=1).reset_index(drop=True)
oversampled_numerics_0 = pd.concat([oversampled_numerics_1, choice_0_numerics])
oversampled_categorics_0 = pd.concat([oversampled_categorics_0, choice_0_categorics])
else:
choice_1_numerics = data[data['HeartDisease'] == 'Yes'][self.numerical_columns].sample(n=1).reset_index(drop=True)
choice_2_numerics = data[data['HeartDisease'] == 'Yes'][self.numerical_columns].sample(n=1).reset_index(drop=True)
constant = np.random.random()
synthetic_numerics = choice_1_numerics * constant + choice_2_numerics * (1 - constant)
oversampled_numerics_1 = pd.concat([oversampled_numerics_1, synthetic_numerics])
oversampled_numerics_0.reset_index(drop=True, inplace=True)
oversampled_numerics_1.reset_index(drop=True, inplace=True)
oversampled_categorics_0.reset_index(drop=True, inplace=True)
neighbors = KNeighborsClassifier(n_neighbors=3)
neighbors.fit(data[self.numerical_columns], data[self.categorical_features[:-1]])
oversampled_categorics_1 = pd.DataFrame(neighbors.predict(oversampled_numerics_1), columns=self.categorical_features[:-1])
oversampled_categorics_1['HeartDisease'] = 'Yes'
oversampled_categorics = pd.concat([oversampled_categorics_0, oversampled_categorics_1])
oversampled_numerics = pd.concat([oversampled_numerics_0, oversampled_numerics_1])
oversampled_data = oversampled_numerics.join(oversampled_categorics)
oversampled_data = shuffle(oversampled_data)
oversampled_data.reset_index(drop=True, inplace=True)
del data
return oversampled_data
def transform(self):
if self.smote:
self.data = self.smote_upsample()
else:
pass
if self.scaling:
self.scaling_func()
else:
pass
self.label_encode()
return self.data.copy()
print('Sample Ratio:', int(len(data[data.HeartDisease == 'No']) / len(data[data.HeartDisease == 'Yes'])))
zeros = data[data['HeartDisease'] == 'No'].sample(n=int(len(data) / 50), replace=False)
ones = data[data['HeartDisease'] == 'Yes'].sample(n=int(len(data) / 500), replace=False)
small_data = shuffle(pd.concat([zeros, ones]))
small_data.reset_index(drop=True, inplace=True)
print(small_data.shape)
small_data.head() | code |
90154899/cell_6 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.info() | code |
90154899/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from termcolor import colored
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T
diabetic_map = {'No, borderline diabetes': 'No', 'Yes (during pregnancy)': 'Yes', 'Yes': 'Yes', 'No': 'No'}
data.Diabetic = data.Diabetic.map(diabetic_map)
plt.figure(figsize=(10, 5))
sns.countplot('Sex', hue='HeartDisease', data=data)
plt.title('Heart Disease for Different Genders', size=15)
plt.show() | code |
90154899/cell_7 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T | code |
90154899/cell_14 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from termcolor import colored
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T
diabetic_map = {'No, borderline diabetes': 'No', 'Yes (during pregnancy)': 'Yes', 'Yes': 'Yes', 'No': 'No'}
data.Diabetic = data.Diabetic.map(diabetic_map)
categorical_features = ['Smoking', 'AlcoholDrinking', 'Stroke', 'DiffWalking', 'Sex', 'AgeCategory', 'Race', 'Diabetic', 'PhysicalActivity', 'GenHealth', 'Asthma', 'KidneyDisease', 'SkinCancer', 'HeartDisease']
numerical_columns = [x for x in data.columns if x not in categorical_features]
def plotting_function(feature):
fig, axes = plt.subplots(ncols=3, figsize=(25, 5))
heart_disease_by_feature = pd.DataFrame(data[data['HeartDisease'] == 'Yes'].groupby(feature).count()['HeartDisease'])
heart_disease_by_feature.sort_values(by='HeartDisease', ascending=False).plot(kind='bar', ax=axes[0])
axes[1].pie(heart_disease_by_feature['HeartDisease'], labels=heart_disease_by_feature.index, autopct='%.2f')
data[feature].value_counts().sort_values(ascending=False).plot(kind='bar', ax=axes[2], color='green')
axes[0].set_title(f'{feature} Among People Having Heart Disease (Bar)', size=15)
axes[1].set_title(f'{feature} Among People Having Heart Disease (Pie)', size=15)
axes[2].set_title(f'{feature} Sample Count')
axes[0].set_xlabel('')
axes[2].set_xlabel('')
axes[2].set_ylabel('')
plt.show()
for categoric_col in categorical_features[:-1]:
plotting_function(categoric_col) | code |
90154899/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from termcolor import colored
from sklearn.utils import shuffle
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.describe().T
diabetic_map = {'No, borderline diabetes': 'No', 'Yes (during pregnancy)': 'Yes', 'Yes': 'Yes', 'No': 'No'}
data.Diabetic = data.Diabetic.map(diabetic_map)
plt.figure(figsize=(15, 5))
sns.countplot('AgeCategory', hue='HeartDisease', data=data)
plt.title('Heart Disease for Different Ranges of Ages', size=15)
plt.show() | code |
90154899/cell_5 | [
"image_output_11.png",
"image_output_13.png",
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_6.png",
"image_output_12.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_9.png"
] | import pandas as pd
data = pd.read_csv('../input/personal-key-indicators-of-heart-disease/heart_2020_cleaned.csv')
data.head() | code |
104124170/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
Type_amount = data.groupby('Type_ID')['Revenue'].sum().reset_index()
Type_amount.rename(columns={'Revenue': 'Amount'}, inplace=True)
Type_amount | code |
104124170/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.figure(figsize=(12, 5))
sns.barplot(x='InvoiceNo', y='Revenue', data=Rev_Country)
plt.xticks(rotation=40, ha='right')
plt.title('Total Revenue of InvoiceNo')
plt.xlabel('InvoiceNo')
plt.ylabel('Total Revenue') | code |
104124170/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
data['Type'].nunique() | code |
104124170/cell_25 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
Type_amount = data.groupby('Type_ID')['Revenue'].sum().reset_index()
Type_amount.rename(columns={'Revenue': 'Amount'}, inplace=True)
Type_amount
Type_Frequency = data.groupby('Type_ID')['Type'].count().reset_index()
Type_Frequency.columns = ['Type_ID', 'Frequency']
Type_Frequency
data | code |
104124170/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data.info() | code |
104124170/cell_20 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
data.head() | code |
104124170/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
plt.figure(figsize=(12, 5))
sns.barplot(x='CustomerID', y='Revenue', data=Rev_Coustomer)
plt.title('Top15 spend Most Client ')
plt.xlabel('Client')
plt.ylabel('Total Revenue') | code |
104124170/cell_28 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
Type_amount = data.groupby('Type_ID')['Revenue'].sum().reset_index()
Type_amount.rename(columns={'Revenue': 'Amount'}, inplace=True)
Type_amount
Type_Frequency = data.groupby('Type_ID')['Type'].count().reset_index()
Type_Frequency.columns = ['Type_ID', 'Frequency']
Type_Frequency
df = pd.merge(Type_amount, Type_Frequency, how='inner', on='Type_ID')
max_date = max(data['InvoiceDate'])
data['Diff'] = max_date - data['InvoiceDate']
Type_Recency = data.groupby('Type_ID')['Diff'].min().reset_index()
Type_Recency['Diff'] = Type_Recency['Diff'].dt.days + 1
Type_Recency.rename(columns={'Diff': 'Recency'}, inplace=True)
df = df.merge(Type_Recency, how='inner', on='Type_ID')
df | code |
104124170/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
Type_SingleClient = Most_customer_Type.sort_values(by='Quantity', ascending=False).reset_index()[:10]
plt.figure(figsize=(14, 8))
sns.barplot(x='Type', y='Quantity', hue='CustomerID', data=Type_SingleClient)
plt.title('Total Revenue of InvoiceNo')
plt.xlabel('InvoiceNo')
plt.ylabel('Total Revenue') | code |
104124170/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data.head() | code |
104124170/cell_17 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df | code |
104124170/cell_24 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
Type_amount = data.groupby('Type_ID')['Revenue'].sum().reset_index()
Type_amount.rename(columns={'Revenue': 'Amount'}, inplace=True)
Type_amount
Type_Frequency = data.groupby('Type_ID')['Type'].count().reset_index()
Type_Frequency.columns = ['Type_ID', 'Frequency']
Type_Frequency
c = data[['Type', 'Type_ID']].drop_duplicates()
c | code |
104124170/cell_14 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type | code |
104124170/cell_22 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
a = data['Description'].str.split()
data['Type'] = a.apply(lambda x: ' '.join(x[-2:]))
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
Rev_Country = data.groupby('InvoiceNo')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.xticks(rotation=40, ha='right')
grouped = data.groupby(['Type', 'CustomerID'])['Quantity'].sum().reset_index()
grouped = grouped.sort_values(by=['Type', 'Quantity'], ascending=[True, False])
grouped['Rank'] = grouped.groupby(['Type']).cumcount() + 1
Most_customer_Type = grouped[['Type', 'CustomerID', 'Quantity']][grouped['Rank'] == 1]
Most_customer_Type
a = data['Type'].unique()
df = pd.DataFrame(data=a.flatten()).reset_index()
df['Type'] = df[0]
df = df[['index', 'Type']]
df
data = data.merge(df, how='inner', on='Type')
data.rename(columns={'index': 'Type_ID'}, inplace=True)
Type_amount = data.groupby('Type_ID')['Revenue'].sum().reset_index()
Type_amount.rename(columns={'Revenue': 'Amount'}, inplace=True)
Type_amount
Type_Frequency = data.groupby('Type_ID')['Type'].count().reset_index()
Type_Frequency.columns = ['Type_ID', 'Frequency']
Type_Frequency | code |
104124170/cell_12 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/onlineretail/OnlineRetail.csv', encoding='cp1252', header=0)
data = data.dropna()
Rev_Coustomer = data.groupby('CustomerID')['Revenue'].sum().sort_values(ascending=False).reset_index()[:15]
Rev_Country = data.groupby('Type')['Revenue'].sum().sort_values(ascending=False).reset_index()[:20]
plt.figure(figsize=(12, 5))
sns.barplot(x='Type', y='Revenue', data=Rev_Country)
plt.xticks(rotation=40, ha='right')
plt.title('Total Revenue of Type')
plt.xlabel('Type')
plt.ylabel('Total Revenue') | code |
34120972/cell_21 | [
"text_plain_output_1.png"
] | import albumentations
import ast
import cv2
import matplotlib.patches as patches
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_id = 'c14c1e300'
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
pascal_voc_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
coco_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'width', 'height']].astype(np.int32).values
assert len(pascal_voc_boxes) == len(coco_boxes)
labels = np.ones((len(pascal_voc_boxes),))
def get_bbox(bboxes, col, color='white', bbox_format='pascal_voc'):
for i in range(len(bboxes)):
if bbox_format == 'pascal_voc':
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
else:
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2], bboxes[i][3], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=pascal_voc_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(pascal_voc_boxes, ax[0], color='red')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show()
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1), albumentations.Blur(p=1)], bbox_params={'format': 'coco', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=coco_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(coco_boxes, ax[0], color='red', bbox_format='coco')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red', bbox_format='coco')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show() | code |
34120972/cell_4 | [
"image_output_1.png"
] | import ast
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
train_df.head() | code |
34120972/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import ast
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_ids = train_df['image_id'].unique()
print(f'Total number of training images: {len(image_ids)}') | code |
34120972/cell_29 | [
"text_plain_output_1.png"
] | from albumentations.augmentations.bbox_utils import denormalize_bbox, normalize_bbox
from albumentations.core.transforms_interface import DualTransform
from collections import namedtuple
import albumentations
import ast
import cv2
import matplotlib.patches as patches
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_ids = train_df['image_id'].unique()
image_id = 'c14c1e300'
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
pascal_voc_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
coco_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'width', 'height']].astype(np.int32).values
assert len(pascal_voc_boxes) == len(coco_boxes)
labels = np.ones((len(pascal_voc_boxes),))
def get_bbox(bboxes, col, color='white', bbox_format='pascal_voc'):
for i in range(len(bboxes)):
if bbox_format == 'pascal_voc':
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
else:
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2], bboxes[i][3], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=pascal_voc_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(pascal_voc_boxes, ax[0], color='red')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show()
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1), albumentations.Blur(p=1)], bbox_params={'format': 'coco', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=coco_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(coco_boxes, ax[0], color='red', bbox_format='coco')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red', bbox_format='coco')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show()
class CustomCutout(DualTransform):
"""
Custom Cutout augmentation with handling of bounding boxes
Note: (only supports square cutout regions)
Author: Kaushal28
"""
def __init__(self, fill_value=0, bbox_removal_threshold=0.5, min_cutout_size=192, max_cutout_size=512, always_apply=False, p=0.5):
"""
Class construstor
:param fill_value: Value to be filled in cutout (default is 0 or black color)
:param bbox_removal_threshold: Bboxes having content cut by cutout path more than this threshold will be removed
:param min_cutout_size: minimum size of cutout (192 x 192)
:param max_cutout_size: maximum size of cutout (512 x 512)
"""
super(CustomCutout, self).__init__(always_apply, p)
self.fill_value = fill_value
self.bbox_removal_threshold = bbox_removal_threshold
self.min_cutout_size = min_cutout_size
self.max_cutout_size = max_cutout_size
def _get_cutout_position(self, img_height, img_width, cutout_size):
"""
Randomly generates cutout position as a named tuple
:param img_height: height of the original image
:param img_width: width of the original image
:param cutout_size: size of the cutout patch (square)
:returns position of cutout patch as a named tuple
"""
position = namedtuple('Point', 'x y')
return position(np.random.randint(0, img_width - cutout_size + 1), np.random.randint(0, img_height - cutout_size + 1))
def _get_cutout(self, img_height, img_width):
"""
Creates a cutout pacth with given fill value and determines the position in the original image
:param img_height: height of the original image
:param img_width: width of the original image
:returns (cutout patch, cutout size, cutout position)
"""
cutout_size = np.random.randint(self.min_cutout_size, self.max_cutout_size + 1)
cutout_position = self._get_cutout_position(img_height, img_width, cutout_size)
return (np.full((cutout_size, cutout_size, 3), self.fill_value), cutout_size, cutout_position)
def apply(self, image, **params):
"""
Applies the cutout augmentation on the given image
:param image: The image to be augmented
:returns augmented image
"""
image = image.copy()
self.img_height, self.img_width, _ = image.shape
cutout_arr, cutout_size, cutout_pos = self._get_cutout(self.img_height, self.img_width)
self.image = image
self.cutout_pos = cutout_pos
self.cutout_size = cutout_size
image[cutout_pos.y:cutout_pos.y + cutout_size, cutout_pos.x:cutout_size + cutout_pos.x, :] = cutout_arr
return image
def apply_to_bbox(self, bbox, **params):
"""
Removes the bounding boxes which are covered by the applied cutout
:param bbox: A single bounding box coordinates in pascal_voc format
:returns transformed bbox's coordinates
"""
bbox = denormalize_bbox(bbox, self.img_height, self.img_width)
x_min, y_min, x_max, y_max = tuple(map(int, bbox))
bbox_size = (x_max - x_min) * (y_max - y_min)
overlapping_size = np.sum((self.image[y_min:y_max, x_min:x_max, 0] == self.fill_value) & (self.image[y_min:y_max, x_min:x_max, 1] == self.fill_value) & (self.image[y_min:y_max, x_min:x_max, 2] == self.fill_value))
if overlapping_size / bbox_size > self.bbox_removal_threshold:
return normalize_bbox((0, 0, 0, 0), self.img_height, self.img_width)
return normalize_bbox(bbox, self.img_height, self.img_width)
def get_transform_init_args_names(self):
"""
Fetches the parameter(s) of __init__ method
:returns: tuple of parameter(s) of __init__ method
"""
return 'fill_value'
augmentation = albumentations.Compose([CustomCutout(p=1), albumentations.Flip(always_apply=True), albumentations.OneOf([albumentations.Blur(p=0.5), albumentations.GaussNoise(var_limit=5.0 / 255.0, p=0.5)], p=1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
def get_bbox(bboxes, col, color='white'):
for i in range(len(bboxes)):
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
num_images = 5
rand_start = np.random.randint(0, len(image_ids) - 5)
fig, ax = plt.subplots(nrows=num_images, ncols=2, figsize=(16, 40))
for index, image_id in enumerate(image_ids[rand_start:rand_start + num_images]):
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
bboxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
labels = np.ones((len(bboxes),))
aug_result = augmentation(image=image, bboxes=bboxes, labels=labels)
get_bbox(bboxes, ax[index][0], color='red')
ax[index][0].grid(False)
ax[index][0].set_xticks([])
ax[index][0].set_yticks([])
ax[index][0].title.set_text('Original Image')
ax[index][0].imshow(image)
get_bbox(aug_result['bboxes'], ax[index][1], color='red')
ax[index][1].grid(False)
ax[index][1].set_xticks([])
ax[index][1].set_yticks([])
ax[index][1].title.set_text(f"Augmented Image: Removed bboxes: {len(bboxes) - len(aug_result['bboxes'])}")
ax[index][1].imshow(aug_result['image'])
plt.show() | code |
34120972/cell_32 | [
"image_output_1.png"
] | from albumentations.augmentations.bbox_utils import denormalize_bbox, normalize_bbox
from albumentations.core.transforms_interface import DualTransform
from collections import namedtuple
from tqdm import tqdm
import albumentations
import ast
import cv2
import matplotlib.patches as patches
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import zipfile
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_ids = train_df['image_id'].unique()
image_id = 'c14c1e300'
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
pascal_voc_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
coco_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'width', 'height']].astype(np.int32).values
assert len(pascal_voc_boxes) == len(coco_boxes)
labels = np.ones((len(pascal_voc_boxes),))
def get_bbox(bboxes, col, color='white', bbox_format='pascal_voc'):
for i in range(len(bboxes)):
if bbox_format == 'pascal_voc':
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
else:
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2], bboxes[i][3], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=pascal_voc_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(pascal_voc_boxes, ax[0], color='red')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show()
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1), albumentations.Blur(p=1)], bbox_params={'format': 'coco', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=coco_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(coco_boxes, ax[0], color='red', bbox_format='coco')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red', bbox_format='coco')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show()
class CustomCutout(DualTransform):
"""
Custom Cutout augmentation with handling of bounding boxes
Note: (only supports square cutout regions)
Author: Kaushal28
"""
def __init__(self, fill_value=0, bbox_removal_threshold=0.5, min_cutout_size=192, max_cutout_size=512, always_apply=False, p=0.5):
"""
Class construstor
:param fill_value: Value to be filled in cutout (default is 0 or black color)
:param bbox_removal_threshold: Bboxes having content cut by cutout path more than this threshold will be removed
:param min_cutout_size: minimum size of cutout (192 x 192)
:param max_cutout_size: maximum size of cutout (512 x 512)
"""
super(CustomCutout, self).__init__(always_apply, p)
self.fill_value = fill_value
self.bbox_removal_threshold = bbox_removal_threshold
self.min_cutout_size = min_cutout_size
self.max_cutout_size = max_cutout_size
def _get_cutout_position(self, img_height, img_width, cutout_size):
"""
Randomly generates cutout position as a named tuple
:param img_height: height of the original image
:param img_width: width of the original image
:param cutout_size: size of the cutout patch (square)
:returns position of cutout patch as a named tuple
"""
position = namedtuple('Point', 'x y')
return position(np.random.randint(0, img_width - cutout_size + 1), np.random.randint(0, img_height - cutout_size + 1))
def _get_cutout(self, img_height, img_width):
"""
Creates a cutout pacth with given fill value and determines the position in the original image
:param img_height: height of the original image
:param img_width: width of the original image
:returns (cutout patch, cutout size, cutout position)
"""
cutout_size = np.random.randint(self.min_cutout_size, self.max_cutout_size + 1)
cutout_position = self._get_cutout_position(img_height, img_width, cutout_size)
return (np.full((cutout_size, cutout_size, 3), self.fill_value), cutout_size, cutout_position)
def apply(self, image, **params):
"""
Applies the cutout augmentation on the given image
:param image: The image to be augmented
:returns augmented image
"""
image = image.copy()
self.img_height, self.img_width, _ = image.shape
cutout_arr, cutout_size, cutout_pos = self._get_cutout(self.img_height, self.img_width)
self.image = image
self.cutout_pos = cutout_pos
self.cutout_size = cutout_size
image[cutout_pos.y:cutout_pos.y + cutout_size, cutout_pos.x:cutout_size + cutout_pos.x, :] = cutout_arr
return image
def apply_to_bbox(self, bbox, **params):
"""
Removes the bounding boxes which are covered by the applied cutout
:param bbox: A single bounding box coordinates in pascal_voc format
:returns transformed bbox's coordinates
"""
bbox = denormalize_bbox(bbox, self.img_height, self.img_width)
x_min, y_min, x_max, y_max = tuple(map(int, bbox))
bbox_size = (x_max - x_min) * (y_max - y_min)
overlapping_size = np.sum((self.image[y_min:y_max, x_min:x_max, 0] == self.fill_value) & (self.image[y_min:y_max, x_min:x_max, 1] == self.fill_value) & (self.image[y_min:y_max, x_min:x_max, 2] == self.fill_value))
if overlapping_size / bbox_size > self.bbox_removal_threshold:
return normalize_bbox((0, 0, 0, 0), self.img_height, self.img_width)
return normalize_bbox(bbox, self.img_height, self.img_width)
def get_transform_init_args_names(self):
"""
Fetches the parameter(s) of __init__ method
:returns: tuple of parameter(s) of __init__ method
"""
return 'fill_value'
augmentation = albumentations.Compose([CustomCutout(p=1), albumentations.Flip(always_apply=True), albumentations.OneOf([albumentations.Blur(p=0.5), albumentations.GaussNoise(var_limit=5.0 / 255.0, p=0.5)], p=1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
def get_bbox(bboxes, col, color='white'):
for i in range(len(bboxes)):
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
num_images = 5
rand_start = np.random.randint(0, len(image_ids) - 5)
fig, ax = plt.subplots(nrows=num_images, ncols=2, figsize=(16, 40))
for index, image_id in enumerate(image_ids[rand_start : rand_start + num_images]):
# Read the image from image id
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0 # Normalize
# Get the bboxes details and apply all the augmentations
bboxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
labels = np.ones((len(bboxes), )) # As we have only one class (wheat heads)
aug_result = augmentation(image=image, bboxes=bboxes, labels=labels)
get_bbox(bboxes, ax[index][0], color='red')
ax[index][0].grid(False)
ax[index][0].set_xticks([])
ax[index][0].set_yticks([])
ax[index][0].title.set_text('Original Image')
ax[index][0].imshow(image)
get_bbox(aug_result['bboxes'], ax[index][1], color='red')
ax[index][1].grid(False)
ax[index][1].set_xticks([])
ax[index][1].set_yticks([])
ax[index][1].title.set_text(f'Augmented Image: Removed bboxes: {len(bboxes) - len(aug_result["bboxes"])}')
ax[index][1].imshow(aug_result['image'])
plt.show()
augmentation = albumentations.Compose([CustomCutout(p=0.5), albumentations.Flip(always_apply=True), albumentations.OneOf([albumentations.Blur(p=0.5), albumentations.GaussNoise(var_limit=5.0 / 255.0, p=0.5)], p=1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
image_metadata = []
with zipfile.ZipFile('train.zip', 'w') as img_out:
for index, image_id in tqdm(enumerate(image_ids), total=len(image_ids)):
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
bboxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
labels = np.ones((len(bboxes),))
aug_result = augmentation(image=image, bboxes=bboxes, labels=labels)
aug_image = aug_result['image']
aug_bboxes = aug_result['bboxes']
img_out.writestr(f'{image_id}.jpg', image)
img_out.writestr(f'{image_id}_aug.jpg', image)
for bbox in aug_bboxes:
bbox = tuple(map(int, bbox))
image_metadata.append({'image_id': f'{image_id}_aug', 'x_min': bbox[0], 'y_min': bbox[1], 'x_max': bbox[2], 'y_max': bbox[3], 'width': bbox[2] - bbox[0], 'height': bbox[3] - bbox[1], 'area': (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])})
break | code |
34120972/cell_8 | [
"text_html_output_1.png"
] | import ast
import cv2
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_id = 'c14c1e300'
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.show() | code |
34120972/cell_16 | [
"text_html_output_1.png"
] | import albumentations
import ast
import cv2
import matplotlib.patches as patches
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
image_id = 'c14c1e300'
image = cv2.imread(os.path.join(BASE_DIR, 'train', f'{image_id}.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
pascal_voc_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'x_max', 'y_max']].astype(np.int32).values
coco_boxes = train_df[train_df['image_id'] == image_id][['x_min', 'y_min', 'width', 'height']].astype(np.int32).values
assert len(pascal_voc_boxes) == len(coco_boxes)
labels = np.ones((len(pascal_voc_boxes),))
def get_bbox(bboxes, col, color='white', bbox_format='pascal_voc'):
for i in range(len(bboxes)):
if bbox_format == 'pascal_voc':
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2] - bboxes[i][0], bboxes[i][3] - bboxes[i][1], linewidth=2, edgecolor=color, facecolor='none')
else:
rect = patches.Rectangle((bboxes[i][0], bboxes[i][1]), bboxes[i][2], bboxes[i][3], linewidth=2, edgecolor=color, facecolor='none')
col.add_patch(rect)
aug = albumentations.Compose([albumentations.Resize(512, 512), albumentations.VerticalFlip(1)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
aug_result = aug(image=image, bboxes=pascal_voc_boxes, labels=labels)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 16))
get_bbox(pascal_voc_boxes, ax[0], color='red')
ax[0].title.set_text('Original Image')
ax[0].imshow(image)
get_bbox(aug_result['bboxes'], ax[1], color='red')
ax[1].title.set_text('Augmented Image')
ax[1].imshow(aug_result['image'])
plt.show() | code |
34120972/cell_5 | [
"image_output_1.png"
] | import ast
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
BASE_DIR = '/kaggle/input/global-wheat-detection'
WORK_DIR = '/kaggle/working'
np.random.seed(1996)
train_df = pd.read_csv(os.path.join(BASE_DIR, 'train.csv'))
train_df[['x_min', 'y_min', 'width', 'height']] = pd.DataFrame([ast.literal_eval(x) for x in train_df.bbox.tolist()], index=train_df.index)
train_df = train_df[['image_id', 'bbox', 'source', 'x_min', 'y_min', 'width', 'height']]
train_df['area'] = train_df['width'] * train_df['height']
train_df['x_max'] = train_df['x_min'] + train_df['width']
train_df['y_max'] = train_df['y_min'] + train_df['height']
train_df = train_df.drop(['bbox', 'source'], axis=1)
train_df = train_df[['image_id', 'x_min', 'y_min', 'x_max', 'y_max', 'width', 'height', 'area']]
train_df = train_df[train_df['area'] < 100000]
print(train_df.shape) | code |
90118148/cell_4 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_absolute_error
import pandas as pd
train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'])
train['hour'] = train['time'].dt.hour
train['minute'] = train['time'].dt.minute
submission_in = pd.read_csv('../input/tabular-playground-march-2022-04/lightautoml_rounded_special_ve_37_v2.csv')
sep = train[(train.time.dt.hour >= 12) & (train.time.dt.weekday < 5) & (train.time.dt.dayofyear >= 246)]
lower = sep.groupby(['hour', 'minute', 'x', 'y', 'direction']).congestion.quantile(0.2).values
upper = sep.groupby(['hour', 'minute', 'x', 'y', 'direction']).congestion.quantile(0.65).values
submission_out = submission_in.copy()
submission_out['congestion'] = submission_in.congestion.clip(lower, upper)
submission_out.to_csv('submission.csv', index=False)
mae = mean_absolute_error(submission_in.congestion, submission_out.congestion)
submission_out
submission_out['congestion'] = submission_out.congestion.round().astype(int)
submission_out.to_csv('submission_rounded.csv', index=False)
submission_out | code |
90118148/cell_3 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.metrics import mean_absolute_error
import pandas as pd
train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', parse_dates=['time'])
train['hour'] = train['time'].dt.hour
train['minute'] = train['time'].dt.minute
submission_in = pd.read_csv('../input/tabular-playground-march-2022-04/lightautoml_rounded_special_ve_37_v2.csv')
sep = train[(train.time.dt.hour >= 12) & (train.time.dt.weekday < 5) & (train.time.dt.dayofyear >= 246)]
lower = sep.groupby(['hour', 'minute', 'x', 'y', 'direction']).congestion.quantile(0.2).values
upper = sep.groupby(['hour', 'minute', 'x', 'y', 'direction']).congestion.quantile(0.65).values
submission_out = submission_in.copy()
submission_out['congestion'] = submission_in.congestion.clip(lower, upper)
submission_out.to_csv('submission.csv', index=False)
mae = mean_absolute_error(submission_in.congestion, submission_out.congestion)
print(f'Mean absolute modification: {mae:.4f}')
print(f'Submission was below lower bound: {(submission_in.congestion < lower - 0.5).sum()}')
print(f'Submission was above upper bound: {(submission_in.congestion > upper + 0.5).sum()}')
submission_out | code |
73090666/cell_4 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/30-days-of-ml/train.csv')
test = pd.read_csv('../input/30-days-of-ml/test.csv')
categorical = [col for col in train.columns if train[col].dtype == 'object']
encoder = LabelEncoder()
for column in categorical:
train[column] = encoder.fit_transform(train[column])
test[column] = encoder.transform(test[column])
X = train.drop(['id', 'target'], axis=1)
y = train['target']
X_valid = test.drop(['id'], axis=1)
X.head() | code |
73090666/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error
from xgboost import XGBRegressor
model = XGBRegressor(n_estimators=1000, learning_rate=0.05, gamma=0.2)
model.fit(X_train, y_train, early_stopping_rounds=5, eval_set=[(X_test, y_test)], verbose=False)
y_predict = model.predict(X_test)
print('MSE', mean_squared_error(y_test, y_predict, squared=False))
print('MAE', mean_absolute_error(y_test, y_predict)) | code |
73090666/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/30-days-of-ml/train.csv')
test = pd.read_csv('../input/30-days-of-ml/test.csv')
train.head() | code |
73090666/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
73090666/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/30-days-of-ml/train.csv')
test = pd.read_csv('../input/30-days-of-ml/test.csv')
categorical = [col for col in train.columns if train[col].dtype == 'object']
encoder = LabelEncoder()
for column in categorical:
train[column] = encoder.fit_transform(train[column])
test[column] = encoder.transform(test[column])
X = train.drop(['id', 'target'], axis=1)
y = train['target']
X_valid = test.drop(['id'], axis=1)
model = XGBRegressor(n_estimators=1000, learning_rate=0.05, gamma=0.2)
model.fit(X_train, y_train, early_stopping_rounds=5, eval_set=[(X_test, y_test)], verbose=False)
y_predict = model.predict(X_test)
predictions = model.predict(X_valid)
sample_sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
submission = pd.DataFrame({'Id': sample_sub['id'], 'target': predictions.astype(float)})
submission.to_csv('./my_submission.csv', index=False)
print('Your submission was successfully saved!') | code |
73090666/cell_3 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/30-days-of-ml/train.csv')
test = pd.read_csv('../input/30-days-of-ml/test.csv')
categorical = [col for col in train.columns if train[col].dtype == 'object']
encoder = LabelEncoder()
for column in categorical:
train[column] = encoder.fit_transform(train[column])
test[column] = encoder.transform(test[column])
train.head() | code |
18116693/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
Vertical1 = vocab.groupby('Vertical1')
vocab.dtypes | code |
18116693/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
sample_sub = pd.read_csv('../input/sample_submission.csv')
print(sample_sub.head()) | code |
18116693/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
print('Total number of names :', vocab['Name'].nunique()) | code |
18116693/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
Vertical1 = vocab.groupby('Vertical1')
vocab.dtypes
text = ' '.join((WD for WD in vocab.WikiDescription))
print('There are {} words in the combination of all review.'.format(len(text))) | code |
18116693/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
18116693/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
Vertical1 = vocab.groupby('Vertical1')
print(Vertical1.describe().head()) | code |
18116693/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
Vertical1 = vocab.groupby('Vertical1')
print(vocab.WikiDescription.head(10)) | code |
18116693/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
print(vocab.head()) | code |
18116693/cell_12 | [
"text_plain_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
vocab = pd.read_csv('../input/vocabulary.csv')
Vertical1 = vocab.groupby('Vertical1')
vocab.dtypes
text = ' '.join((WD for WD in vocab.WikiDescription))
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
wordcloud = WordCloud(max_words=500, background_color='white').generate(text)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show() | code |
18116693/cell_5 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input/frame-sample/frame/')) | code |
17120711/cell_6 | [
"text_plain_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
space = hp.choice('a', [{'ksize': hp.choice('ksize_val', [2, 3, 4]), 'psize': hp.choice('psize_val', [2, 3, 4]), 'ssize': hp.choice('stridesize_val', [1, 2])}])
trials = Trials()
best = fmin(objective, space, algo=tpe.suggest, max_evals=10, trials=trials) | code |
17120711/cell_1 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format() | code |
17120711/cell_7 | [
"image_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
space = hp.choice('a', [{'ksize': hp.choice('ksize_val', [2, 3, 4]), 'psize': hp.choice('psize_val', [2, 3, 4]), 'ssize': hp.choice('stridesize_val', [1, 2])}])
trials = Trials()
best = fmin(objective, space, algo=tpe.suggest, max_evals=10, trials=trials)
print(best)
trials.results | code |
17120711/cell_18 | [
"text_plain_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
kernelsize = 4
poolsize = 2
stridesize = 1
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=100, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
model4 = Sequential()
model4.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Dropout(0.5))
model4.add(Flatten())
model4.add(BatchNormalization())
model4.add(Dense(128, activation='relu'))
model4.add(BatchNormalization())
model4.add(Dense(49, activation='softmax'))
model4.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history4 = model4.fit(Xtrain, ytrain, epochs=50, batch_size=256, validation_data=(Xtest, ytest), verbose=1)
model4 = Sequential()
model4.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Dropout(0.25))
model4.add(Flatten())
model4.add(BatchNormalization())
model4.add(Dense(128, activation='relu'))
model4.add(BatchNormalization())
model4.add(Dense(49, activation='softmax'))
model4.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history4 = model4.fit(Xtrain, ytrain, epochs=50, batch_size=256, validation_data=(Xtest, ytest), verbose=1)
plot_history(history4) | code |
17120711/cell_16 | [
"image_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
kernelsize = 4
poolsize = 2
stridesize = 1
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=100, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
model4 = Sequential()
model4.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Dropout(0.5))
model4.add(Flatten())
model4.add(BatchNormalization())
model4.add(Dense(128, activation='relu'))
model4.add(BatchNormalization())
model4.add(Dense(49, activation='softmax'))
model4.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history4 = model4.fit(Xtrain, ytrain, epochs=50, batch_size=256, validation_data=(Xtest, ytest), verbose=1)
model4 = Sequential()
model4.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Dropout(0.25))
model4.add(Flatten())
model4.add(BatchNormalization())
model4.add(Dense(128, activation='relu'))
model4.add(BatchNormalization())
model4.add(Dense(49, activation='softmax'))
model4.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history4 = model4.fit(Xtrain, ytrain, epochs=50, batch_size=256, validation_data=(Xtest, ytest), verbose=1) | code |
17120711/cell_14 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
kernelsize = 4
poolsize = 2
stridesize = 1
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=100, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
model4 = Sequential()
model4.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model4.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model4.add(MaxPooling2D(pool_size=poolsize))
model4.add(BatchNormalization())
model4.add(Dropout(0.5))
model4.add(Flatten())
model4.add(BatchNormalization())
model4.add(Dense(128, activation='relu'))
model4.add(BatchNormalization())
model4.add(Dense(49, activation='softmax'))
model4.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history4 = model4.fit(Xtrain, ytrain, epochs=50, batch_size=256, validation_data=(Xtest, ytest), verbose=1) | code |
17120711/cell_12 | [
"text_plain_output_1.png"
] | from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from keras.models import Sequential, model_from_json
from sklearn.preprocessing import MinMaxScaler
import keras
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, Flatten, BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from hyperopt import hp, fmin, tpe, space_eval, STATUS_OK, Trials
from keras import backend as K
K.image_data_format()
def plot_history(history):
pass
def get_data():
Xtrain = np.load('../input/k49-train-imgs.npz')['arr_0']
ytrain = np.load('../input/k49-train-labels.npz')['arr_0']
Xtest = np.load('../input/k49-test-imgs.npz')['arr_0']
ytest = np.load('../input/k49-test-labels.npz')['arr_0']
train_one_hot_labels = keras.utils.to_categorical(ytrain, num_classes=49)
test_one_hot_labels = keras.utils.to_categorical(ytest, num_classes=49)
n_train = ytrain.shape[0]
n_test = ytest.shape[0]
npix = Xtrain.shape[1]
Xtrain1 = Xtrain.reshape(n_train, -1)
Xtest1 = Xtest.reshape(n_test, -1)
scaler = MinMaxScaler()
Xtrain1 = scaler.fit_transform(Xtrain1).astype('float32')
Xtest1 = scaler.fit_transform(Xtest1).astype('float32')
if K.image_data_format() == 'channels_last':
Xtrain2d = Xtrain.reshape(n_train, npix, npix, 1).astype('float32') / 255
Xtest2d = Xtest.reshape(n_test, npix, npix, 1).astype('float32') / 255
input_shape = (npix, npix, 1)
return (Xtrain2d, train_one_hot_labels, Xtest2d, test_one_hot_labels, input_shape)
def objective(args):
kernelsize = args['ksize']
poolsize = args['psize']
stridesize = args['ssize']
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=25, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
return_object = {}
return_object['status'] = STATUS_OK
return_object['loss'] = history3.history['loss'][0]
return_object['deets'] = {'loss': history3.history['loss'][0], 'val_loss': history3.history['val_loss'][0], 'acc': history3.history['acc'][0], 'val_acc': history3.history['val_acc'][0], 'args': args, 'model': model3}
return return_object
kernelsize = 4
poolsize = 2
stridesize = 1
model3 = Sequential()
model3.add(Conv2D(32, kernel_size=kernelsize, strides=stridesize, activation='relu', input_shape=input_shape))
model3.add(Conv2D(64, kernel_size=kernelsize, strides=stridesize, activation='relu'))
model3.add(MaxPooling2D(pool_size=poolsize))
model3.add(BatchNormalization())
model3.add(Dropout(0.25))
model3.add(Flatten())
model3.add(BatchNormalization())
model3.add(Dense(128, activation='relu'))
model3.add(BatchNormalization())
model3.add(Dense(49, activation='softmax'))
model3.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
history3 = model3.fit(Xtrain, ytrain, epochs=100, batch_size=256, validation_data=(Xtest, ytest), verbose=0)
plot_history(history3) | code |
73061688/cell_21 | [
"text_plain_output_1.png"
] | from keras.applications import InceptionV3
IncV3 = InceptionV3(include_top=False, weights='imagenet', input_shape=(224, 224, 3)) | code |
73061688/cell_13 | [
"image_output_2.png",
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
import matplotlib.pyplot as plt
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
img = load_img(train_path + '/ANHINGA/001.jpg')
plt.imshow(img)
plt.axis('off')
plt.title('Sample Anhinga Image')
plt.show()
plt.figure()
img = load_img(train_path + '/BALD EAGLE/018.jpg')
plt.imshow(img)
plt.axis('off')
plt.title('Sample Bald Eagle Image')
plt.show() | code |
73061688/cell_26 | [
"text_plain_output_1.png"
] | from glob import glob
from keras.applications import InceptionV3
from keras.layers import Dense, Flatten, BatchNormalization, Dropout
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
className = glob(train_path + '/*')
NumberofClass = len(className)
train_datagen = ImageDataGenerator(rescale=1 / 255)
validation_datagen = ImageDataGenerator(rescale=1 / 255)
test_datagen = ImageDataGenerator(rescale=1 / 255)
batch_size = 256
train_datagen = ImageDataGenerator(rescale=1 / 255, shear_range=0.3, horizontal_flip=True, zoom_range=0.3)
val_datagen = ImageDataGenerator(rescale=1 / 255)
train_generator = train_datagen.flow_from_directory(train_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical')
val_generator = val_datagen.flow_from_directory(validation_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical')
IncV3 = InceptionV3(include_top=False, weights='imagenet', input_shape=(224, 224, 3))
model = Sequential()
model.add(IncV3)
for layer in model.layers:
layer.trainable = False
model.add(Flatten())
model.add(Dense(units=2048, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=NumberofClass, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator, validation_data=val_generator, epochs=10, batch_size=batch_size) | code |
73061688/cell_19 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
train_datagen = ImageDataGenerator(rescale=1 / 255)
validation_datagen = ImageDataGenerator(rescale=1 / 255)
test_datagen = ImageDataGenerator(rescale=1 / 255)
batch_size = 256
train_datagen = ImageDataGenerator(rescale=1 / 255, shear_range=0.3, horizontal_flip=True, zoom_range=0.3)
val_datagen = ImageDataGenerator(rescale=1 / 255)
train_generator = train_datagen.flow_from_directory(train_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical')
val_generator = val_datagen.flow_from_directory(validation_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical') | code |
73061688/cell_28 | [
"text_plain_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | from glob import glob
from keras.applications import InceptionV3
from keras.layers import Dense, Flatten, BatchNormalization, Dropout
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
import matplotlib.pyplot as plt
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
img = load_img(train_path + '/ANHINGA/001.jpg')
plt.axis('off')
img = load_img(train_path + '/BALD EAGLE/018.jpg')
plt.axis('off')
fig, axs = plt.subplots(2, 2, figsize=(8, 8))
axs[0,0].imshow(load_img(train_path + "/BARN OWL/018.jpg"))
axs[0,0].axis("off")
axs[0,1].imshow(load_img(train_path + "/ALBATROSS/001.jpg"))
axs[0,1].axis("off")
axs[1,0].imshow(load_img(train_path + "/CANARY/107.jpg"))
axs[1,0].axis("off")
axs[1,1].imshow(load_img(train_path + "/CROW/100.jpg"))
axs[1,1].axis("off")
plt.show()
className = glob(train_path + '/*')
NumberofClass = len(className)
train_datagen = ImageDataGenerator(rescale=1 / 255)
validation_datagen = ImageDataGenerator(rescale=1 / 255)
test_datagen = ImageDataGenerator(rescale=1 / 255)
batch_size = 256
train_datagen = ImageDataGenerator(rescale=1 / 255, shear_range=0.3, horizontal_flip=True, zoom_range=0.3)
val_datagen = ImageDataGenerator(rescale=1 / 255)
train_generator = train_datagen.flow_from_directory(train_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical')
val_generator = val_datagen.flow_from_directory(validation_path, target_size=(224, 224), batch_size=batch_size, color_mode='rgb', class_mode='categorical')
IncV3 = InceptionV3(include_top=False, weights='imagenet', input_shape=(224, 224, 3))
model = Sequential()
model.add(IncV3)
for layer in model.layers:
layer.trainable = False
model.add(Flatten())
model.add(Dense(units=2048, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=NumberofClass, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator, validation_data=val_generator, epochs=10, batch_size=batch_size)
plt.figure(figsize=(8, 8))
plt.plot(history.history['loss'], color='b', label='Training loss')
plt.plot(history.history['val_loss'], color='r', label='Validation loss')
plt.legend()
plt.show()
plt.figure()
plt.figure(figsize=(8, 8))
plt.plot(history.history['accuracy'], color='b', label='Training accuracy')
plt.plot(history.history['val_accuracy'], color='r', label='Validation accuracy')
plt.legend()
plt.show() | code |
73061688/cell_16 | [
"text_plain_output_1.png"
] | from glob import glob
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
className = glob(train_path + '/*')
NumberofClass = len(className)
print('NumberofClass:', NumberofClass) | code |
73061688/cell_14 | [
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
import matplotlib.pyplot as plt
train_path = '../input/100-bird-species/285 birds/train'
test_path = '../input/100-bird-species/285 birds/test'
validation_path = '../input/100-bird-species/285 birds/valid'
img = load_img(train_path + '/ANHINGA/001.jpg')
plt.axis('off')
img = load_img(train_path + '/BALD EAGLE/018.jpg')
plt.axis('off')
fig, axs = plt.subplots(2, 2, figsize=(8, 8))
axs[0, 0].imshow(load_img(train_path + '/BARN OWL/018.jpg'))
axs[0, 0].axis('off')
axs[0, 1].imshow(load_img(train_path + '/ALBATROSS/001.jpg'))
axs[0, 1].axis('off')
axs[1, 0].imshow(load_img(train_path + '/CANARY/107.jpg'))
axs[1, 0].axis('off')
axs[1, 1].imshow(load_img(train_path + '/CROW/100.jpg'))
axs[1, 1].axis('off')
plt.show() | code |
105209340/cell_1 | [
"text_plain_output_1.png"
] | import gc
import os
import cv2
import zipfile
import rasterio
import numpy as np
import pandas as pd
from PIL import Image
import tifffile
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
from rasterio.windows import Window
from torch.utils.data import Dataset
!pip install staintools
!pip install spams | code |
105209340/cell_8 | [
"image_output_1.png"
] | import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import staintools
imaging_measurements = {'hpa': {'pixel_size': {'kidney': 0.4, 'prostate': 0.4, 'largeintestine': 0.4, 'spleen': 0.4, 'lung': 0.4}, 'tissue_thickness': {'kidney': 4, 'prostate': 4, 'largeintestine': 4, 'spleen': 4, 'lung': 4}}, 'hubmap': {'pixel_size': {'kidney': 0.5, 'prostate': 6.263, 'largeintestine': 0.229, 'spleen': 0.4945, 'lung': 0.7562}, 'tissue_thickness': {'kidney': 10, 'prostate': 5, 'largeintestine': 8, 'spleen': 4, 'lung': 5}}}
import staintools
target = cv2.imread('/kaggle/input/hubmap-organ-segmentation/test_images/10078.tiff')
target = staintools.LuminosityStandardizer.standardize(target)
normalizer = staintools.StainNormalizer(method='vahadane')
normalizer.fit(target)
OUT_TRAIN = './hubmap_images'
os.makedirs(OUT_TRAIN, exist_ok=False)
MASKS = '../input/hubmap-organ-segmentation/train.csv'
DATA = '../input/hubmap-organ-segmentation/train_images'
def augment_image(image, domain_pixel_size, target_pixel_size, domain_tissue_thickness, target_tissue_thickness, alpha=0.15):
"""
Visualize raw and augmented images
Parameters
----------
image (numpy.ndarray of shape (height, width, 3)): Image array
domain_pixel_size (float): Pixel size of the domain images in micrometers
target_pixel_size (float): Pixel size of the target images in micrometers
domain_tissue_thickness (float): Tissue thickness of the domain images in micrometers
target_tissue_thickness (float): Tissue thickness of the target images in micrometers
alpha (float): Multiplier to control saturation and value scale
"""
tissue_thickness_scale_factor = target_tissue_thickness - domain_tissue_thickness
image_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32)
image_hsv[:, :, 1] *= 1 + alpha * tissue_thickness_scale_factor
image_hsv[:, :, 2] *= 1 - alpha * tissue_thickness_scale_factor
image_hsv = image_hsv.astype(np.uint8)
image_scaled = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2RGB)
image_scaled = staintools.LuminosityStandardizer.standardize(image_scaled)
pixel_size_scale_factor = domain_pixel_size / target_pixel_size
image_resized = cv2.resize(image_scaled, dsize=None, fx=pixel_size_scale_factor, fy=pixel_size_scale_factor, interpolation=cv2.INTER_CUBIC)
image_resized = cv2.resize(image_resized, dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
image = staintools.LuminosityStandardizer.standardize(image)
image_augmented = staintools.LuminosityStandardizer.standardize(image_resized)
image_augmented = normalizer.transform(image_augmented)
return (image, image_augmented)
df_train = pd.read_csv(MASKS)
df_masks = df_train.reset_index(drop=True)
for idx, row in df_masks.iterrows():
image = cv2.imread(os.path.join(DATA, str(row['id']) + '.tiff'))
image, image_augmented = augment_image(image=image, domain_pixel_size=imaging_measurements['hpa']['pixel_size'][row['organ']], target_pixel_size=imaging_measurements['hubmap']['pixel_size'][row['organ']], domain_tissue_thickness=imaging_measurements['hpa']['tissue_thickness'][row['organ']], target_tissue_thickness=imaging_measurements['hubmap']['tissue_thickness'][row['organ']], alpha=0.15)
rimage = cv2.resize(image_augmented, (1024, 1024), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(OUT_TRAIN, str(row['id']) + '.png'), rimage)
def visualize_augmentation(image, image_augmented, metadata, path=None):
"""
Visualize raw and augmented images
Parameters
----------
image (numpy.ndarray of shape (height, width, 3)): Raw image array
image_augmented (numpy.ndarray of shape (height, width, 3)): Augmented image array
metadata (dict): Dictionary of image metadata
path (path-like str or None): Path of the output file or None (if path is None, plot is displayed with selected backend)
"""
fig, axes = plt.subplots(figsize=(36, 20), ncols=2)
axes[0].imshow(image)
axes[1].imshow(image_augmented)
for i in range(2):
axes[i].set_xlabel('')
axes[i].set_ylabel('')
axes[i].tick_params(axis='x', labelsize=15, pad=10)
axes[i].tick_params(axis='y', labelsize=15, pad=10)
axes[0].set_title(f'Raw Image\nMean: {np.mean(image):.4f} - Std: {np.std(image):.4f} - Min: {np.min(image)} - Max: {np.max(image)}', size=25, pad=15)
axes[1].set_title(f'Augmented Image\nMean: {np.mean(image_augmented):.4f} - Std: {np.std(image_augmented):.4f} - Min: {np.min(image_augmented)} - Max: {np.max(image_augmented)}', size=25, pad=15)
fig.suptitle(
f'''
Image ID {metadata["id"]} - {metadata["organ"]} - {metadata["data_source"]} - {metadata["age"]} - {metadata["sex"]}
Raw Image Shape: {metadata["img_height"]}x{metadata["img_width"]} - Pixel Size: {metadata["pixel_size"]}µm - Tissue Thickness: {metadata["tissue_thickness"]}µm
Augmented Image Shape: {metadata["img_height"]}x{metadata["img_width"]} - Pixel Size: {imaging_measurements["hubmap"]["pixel_size"][metadata["organ"]]}µm - Tissue Thickness: {imaging_measurements["hubmap"]["tissue_thickness"][metadata["organ"]]}µm
''',
fontsize=50,
y=1.05
)
if path is None:
plt.show()
else:
plt.savefig(path)
plt.close(fig)
visualize_augmentation(image=image, image_augmented=image_augmented, metadata=row.to_dict()) | code |
72120119/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df1.head() | code |
72120119/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.info() | code |
72120119/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.head() | code |
72120119/cell_4 | [
"application_vnd.jupyter.stderr_output_2.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
train.head() | code |
72120119/cell_23 | [
"text_html_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df1['month'].value_counts().plot(kind='bar') | code |
72120119/cell_33 | [
"image_output_11.png",
"image_output_17.png",
"image_output_14.png",
"image_output_13.png",
"image_output_5.png",
"image_output_18.png",
"image_output_7.png",
"image_output_20.png",
"image_output_4.png",
"image_output_8.png",
"image_output_16.png",
"image_output_6.png",
"image_output_12.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_15.png",
"image_output_9.png",
"image_output_19.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df_new = df1.drop('date', axis=1)
df_new.columns
features = df_new[['date_block_num', 'item_price', 'item_cnt_day', 'year', 'month']]
df_new.isnull().sum()
for i in df_new.select_dtypes(include='number').columns:
sns.boxplot(df_new[i])
plt.show() | code |
72120119/cell_29 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df_new = df1.drop('date', axis=1)
df_new.columns | code |
72120119/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape | code |
72120119/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
72120119/cell_32 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df_new = df1.drop('date', axis=1)
df_new.columns
df_new.isnull().sum() | code |
72120119/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.describe(include='object') | code |
72120119/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns | code |
72120119/cell_31 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df_new = df1.drop('date', axis=1)
df_new.columns
features = df_new[['date_block_num', 'item_price', 'item_cnt_day', 'year', 'month']]
for i in features.columns:
for j in features.columns:
if i != j:
sns.scatterplot(x=df_new[i], y=df_new[j])
plt.show() | code |
72120119/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.describe() | code |
72120119/cell_22 | [
"text_plain_output_1.png"
] | import pandas as pd
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv')
submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv')
items_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv')
train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv')
shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv')
test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv')
df_items = pd.merge(left=items, right=items_cat, on='item_category_id')
df_shops = pd.merge(left=train, right=shops, on='shop_id')
df = pd.merge(left=df_shops, right=df_items, on='item_id')
df.shape
df.nunique()
df.columns
df1 = df.drop(['shop_id', 'item_id', 'item_category_id'], axis=1)
df1['year'].value_counts().plot(kind='bar') | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.