path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105210810/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique() cars.CompanyName = cars.CompanyName.str.lower() cars.CompanyName.replace('maxda', 'mazda', inplace=True) cars.CompanyName.replace('porcshce', 'porsche', inplace=True) cars.CompanyName.replace('toyouta', 'toyota', inplace=True) cars.CompanyName.replace('vokswagen', 'volkswagen', inplace=True) cars.CompanyName.replace('vw', 'volkswagen', inplace=True) cars.CompanyName.unique()
code
105210810/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique() cars.CompanyName = cars.CompanyName.str.lower() cars.CompanyName.replace('maxda', 'mazda', inplace=True) cars.CompanyName.replace('porcshce', 'porsche', inplace=True) cars.CompanyName.replace('toyouta', 'toyota', inplace=True) cars.CompanyName.replace('vokswagen', 'volkswagen', inplace=True) cars.CompanyName.replace('vw', 'volkswagen', inplace=True) cars.CompanyName.unique() cars.loc[cars.duplicated()]
code
105210810/cell_14
[ "text_html_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.shape cars.columns cars.isnull().sum() CompanyName = cars['CarName'].apply(lambda x: x.split(' ')[0]) cars.insert(2, 'CompanyName', CompanyName) cars.drop(['CarName'], axis=1, inplace=True) cars.CompanyName.unique()
code
105210810/cell_5
[ "text_html_output_1.png" ]
import pandas as pd file_path = '../input/car-price-prediction/CarPrice_Assignment.csv' cars = pd.read_csv(file_path, index_col='car_ID') cars.head()
code
48166353/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from keras.preprocessing import image from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import xml.etree.ElementTree as ET from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 import xml.etree.ElementTree as ET output = np.zeros((200, 4)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue tree = ET.parse('/kaggle/input/fruit-detection/annotations/fruit{}.xml'.format(i)) root = tree.getroot() for elem in root: for subelem in elem: if subelem.tag == 'name': if subelem.text == 'snake fruit': output[q, 0] = 1 elif subelem.text == 'dragon fruit': output[q, 1] = 1 elif subelem.text == 'banana': output[q, 2] = 1 elif subelem.text == 'pineapple': output[q, 3] = 1 q = q + 1 from keras.utils import to_categorical from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ims, output, test_size=0.3, random_state=0) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(300, 400, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test), batch_size=64)
code
48166353/cell_6
[ "text_plain_output_1.png" ]
from PIL import Image from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import os import xml.etree.ElementTree as ET from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 import xml.etree.ElementTree as ET output = np.zeros((200, 4)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue tree = ET.parse('/kaggle/input/fruit-detection/annotations/fruit{}.xml'.format(i)) root = tree.getroot() for elem in root: for subelem in elem: if subelem.tag == 'name': if subelem.text == 'snake fruit': output[q, 0] = 1 elif subelem.text == 'dragon fruit': output[q, 1] = 1 elif subelem.text == 'banana': output[q, 2] = 1 elif subelem.text == 'pineapple': output[q, 3] = 1 q = q + 1 from keras.utils import to_categorical print(ims.shape) print(output.shape) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ims, output, test_size=0.3, random_state=0) print(x_train.shape) print(x_test.shape) print(y_train.shape) print(y_test.shape) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print(y_train[0]) print(y_train.shape) print(y_test.shape)
code
48166353/cell_11
[ "text_plain_output_1.png" ]
from PIL import Image from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from keras.preprocessing import image from lime import lime_image from skimage.segmentation import mark_boundaries from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import xml.etree.ElementTree as ET from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 import xml.etree.ElementTree as ET output = np.zeros((200, 4)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue tree = ET.parse('/kaggle/input/fruit-detection/annotations/fruit{}.xml'.format(i)) root = tree.getroot() for elem in root: for subelem in elem: if subelem.tag == 'name': if subelem.text == 'snake fruit': output[q, 0] = 1 elif subelem.text == 'dragon fruit': output[q, 1] = 1 elif subelem.text == 'banana': output[q, 2] = 1 elif subelem.text == 'pineapple': output[q, 3] = 1 q = q + 1 from keras.utils import to_categorical from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ims, output, test_size=0.3, random_state=0) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(300, 400, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test), batch_size=64) scores = model.evaluate(x_test, y_test, verbose=0) predictions = model.predict(x_test[0:4, :, :, :]) from lime import lime_image from lime.wrappers.scikit_image import SegmentationAlgorithm from skimage.segmentation import mark_boundaries image_example = ims[2] explainer = lime_image.LimeImageExplainer(verbose=False) explanation = explainer.explain_instance(image_example, classifier_fn=model.predict, top_labels=100, hide_color=0, num_samples=1000) temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=5, hide_rest=False) plt.imshow(mark_boundaries(temp, mask))
code
48166353/cell_1
[ "text_plain_output_1.png" ]
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load #!pip install image-classifiers==0.2.2 !pip install keras_sequential_ascii #!pip install keras_applications #!pip install plot_utils import sys import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
code
48166353/cell_8
[ "text_plain_output_2.png", "image_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(300, 400, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='sigmoid')) model.summary()
code
48166353/cell_3
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np # linear algebra import os from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 print(q) except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 print(q)
code
48166353/cell_10
[ "text_plain_output_1.png" ]
from PIL import Image from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from keras.preprocessing import image from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import xml.etree.ElementTree as ET from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 import xml.etree.ElementTree as ET output = np.zeros((200, 4)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue tree = ET.parse('/kaggle/input/fruit-detection/annotations/fruit{}.xml'.format(i)) root = tree.getroot() for elem in root: for subelem in elem: if subelem.tag == 'name': if subelem.text == 'snake fruit': output[q, 0] = 1 elif subelem.text == 'dragon fruit': output[q, 1] = 1 elif subelem.text == 'banana': output[q, 2] = 1 elif subelem.text == 'pineapple': output[q, 3] = 1 q = q + 1 from keras.utils import to_categorical from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ims, output, test_size=0.3, random_state=0) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(300, 400, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test), batch_size=64) scores = model.evaluate(x_test, y_test, verbose=0) print('Accuracy: %.2f%%' % (scores[1] * 100)) predictions = model.predict(x_test[0:4, :, :, :]) print(predictions) print(y_test[0:4, :])
code
48166353/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from keras.preprocessing import image from lime import lime_image from skimage.segmentation import mark_boundaries from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import eli5 import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import xml.etree.ElementTree as ET from PIL import Image def change_image_channels(image, image_path): if image.mode == 'RGBA': r, g, b, a = image.split() image = Image.merge('RGB', (r, g, b)) image.save(image_path) elif image.mode != 'RGB': image = image.convert('RGB') os.remove(image_path) image.save(image_path) return image for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) change_image_channels(im, 'fruit_change{}.png'.format(i)) import matplotlib.pyplot as plt ims = np.zeros((200, 300, 400, 3)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue try: im = plt.imread('fruit_change{}.png'.format(i)) ims[q, :, :, :] = im q = q + 1 except: try: im = Image.open('fruit_change{}.png'.format(i)) except: im = Image.open('/kaggle/input/fruit-detection/images/fruit{}.png'.format(i)) imBackground = im.resize((400, 300)) imBackground.save('ProcessedImage{}.png'.format(i), 'png') im = plt.imread('ProcessedImage{}.png'.format(i)) size = im.shape x = size[0] y = size[1] channels = size[2] ims[q, 0:x, 0:y, 0:channels] = im q = q + 1 import xml.etree.ElementTree as ET output = np.zeros((200, 4)) q = 0 for i in range(212): if i >= 189 and i <= 195 or (i >= 203 and i <= 207): continue tree = ET.parse('/kaggle/input/fruit-detection/annotations/fruit{}.xml'.format(i)) root = tree.getroot() for elem in root: for subelem in elem: if subelem.tag == 'name': if subelem.text == 'snake fruit': output[q, 0] = 1 elif subelem.text == 'dragon fruit': output[q, 1] = 1 elif subelem.text == 'banana': output[q, 2] = 1 elif subelem.text == 'pineapple': output[q, 3] = 1 q = q + 1 from keras.utils import to_categorical from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(ims, output, test_size=0.3, random_state=0) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(300, 400, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test), batch_size=64) scores = model.evaluate(x_test, y_test, verbose=0) predictions = model.predict(x_test[0:4, :, :, :]) from lime import lime_image from lime.wrappers.scikit_image import SegmentationAlgorithm from skimage.segmentation import mark_boundaries image_example = ims[2] explainer = lime_image.LimeImageExplainer(verbose=False) explanation = explainer.explain_instance(image_example, classifier_fn=model.predict, top_labels=100, hide_color=0, num_samples=1000) temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=5, hide_rest=False) import eli5 image_example = np.expand_dims(ims[2], axis=0) eli5.show_prediction(model, image_example)
code
2017107/cell_9
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering from sklearn.feature_selection import VarianceThreshold from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False) unique_cat = set(frame['position'].unique()) | {'unknown'} frame['position_'] = pd.Categorical(frame['position'], categories=unique_cat).codes frame['salary_'] = pd.Categorical(frame['salary'], categories=['low', 'medium', 'unknown', 'high'], ordered=True).codes from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold frame_ = pd.get_dummies(frame.drop(['salary_', 'position_'], axis=1)).sample(3000) sampled_index = frame_.index selector = VarianceThreshold(threshold=0.95 * (1 - 0.95)) frame_ = selector.fit_transform(frame_) mds = MDS(n_components=2) scaler = StandardScaler(with_mean=False) frame_ = scaler.fit_transform(frame_) frame_ = mds.fit_transform(frame_) pc_1 = [frame_[i][0] for i in range(len(frame_))] pc_2 = [frame_[i][1] for i in range(len(frame_))] ### Clustering with kmeans ### from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering def plot_pc (label, frame): pc_1 = frame[frame['label']==label].loc[:,'pc1'] pc_2 = frame[frame['label']==label].loc[:,'pc2'] plt.scatter(pc_1, pc_2, label=label) plt.legend() def plot_clusters(function, n_clusters, function_kwargs=None): if function_kwargs==None: function_kwargs = dict() model = function(n_clusters=n_clusters, **function_kwargs) labels = model.fit_predict(frame_) results = pd.DataFrame({'label':labels, 'pc1':pc_1, 'pc2':pc_2}) for i in range(n_clusters): plot_pc(i, results) plt.title('{} ({} clusters)'.format(function.__name__, n_clusters)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(15,13)) for i, ax in zip(range(7,11), fig.axes): plt.subplot(ax) plot_clusters(KMeans, n_clusters=i, function_kwargs={'init': 'random'}); fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(15,13)) for i, ax in zip(range(7,11), fig.axes): plt.subplot(ax) plot_clusters(AgglomerativeClustering, n_clusters=i, function_kwargs={'linkage': 'ward', 'affinity':'euclidean'}) n_clusters = 10 model = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', affinity='euclidean') model.fit(frame_) labels = model.labels_ results = pd.DataFrame({'label': labels, 'pc1': pc_1, 'pc2': pc_2}) plt.figure(figsize=(10, 8)) for i in range(n_clusters): plot_pc(i, results)
code
2017107/cell_6
[ "image_output_1.png" ]
from sklearn.feature_selection import VarianceThreshold from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False) unique_cat = set(frame['position'].unique()) | {'unknown'} frame['position_'] = pd.Categorical(frame['position'], categories=unique_cat).codes frame['salary_'] = pd.Categorical(frame['salary'], categories=['low', 'medium', 'unknown', 'high'], ordered=True).codes from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold frame_ = pd.get_dummies(frame.drop(['salary_', 'position_'], axis=1)).sample(3000) sampled_index = frame_.index selector = VarianceThreshold(threshold=0.95 * (1 - 0.95)) frame_ = selector.fit_transform(frame_) print('{} features used'.format(frame_.shape[1])) mds = MDS(n_components=2) scaler = StandardScaler(with_mean=False) frame_ = scaler.fit_transform(frame_) frame_ = mds.fit_transform(frame_) pc_1 = [frame_[i][0] for i in range(len(frame_))] pc_2 = [frame_[i][1] for i in range(len(frame_))] plt.figure(figsize=(10, 8)) plt.scatter(pc_1, pc_2, color='green') plt.xlabel('pc 1') plt.ylabel('pc 2')
code
2017107/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) frame.iloc[:, 5:].head()
code
2017107/cell_1
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) frame.iloc[:, :5].head()
code
2017107/cell_7
[ "image_output_1.png" ]
from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering from sklearn.feature_selection import VarianceThreshold from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False) unique_cat = set(frame['position'].unique()) | {'unknown'} frame['position_'] = pd.Categorical(frame['position'], categories=unique_cat).codes frame['salary_'] = pd.Categorical(frame['salary'], categories=['low', 'medium', 'unknown', 'high'], ordered=True).codes from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold frame_ = pd.get_dummies(frame.drop(['salary_', 'position_'], axis=1)).sample(3000) sampled_index = frame_.index selector = VarianceThreshold(threshold=0.95 * (1 - 0.95)) frame_ = selector.fit_transform(frame_) mds = MDS(n_components=2) scaler = StandardScaler(with_mean=False) frame_ = scaler.fit_transform(frame_) frame_ = mds.fit_transform(frame_) pc_1 = [frame_[i][0] for i in range(len(frame_))] pc_2 = [frame_[i][1] for i in range(len(frame_))] from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering def plot_pc(label, frame): pc_1 = frame[frame['label'] == label].loc[:, 'pc1'] pc_2 = frame[frame['label'] == label].loc[:, 'pc2'] plt.scatter(pc_1, pc_2, label=label) plt.legend() def plot_clusters(function, n_clusters, function_kwargs=None): if function_kwargs == None: function_kwargs = dict() model = function(n_clusters=n_clusters, **function_kwargs) labels = model.fit_predict(frame_) results = pd.DataFrame({'label': labels, 'pc1': pc_1, 'pc2': pc_2}) for i in range(n_clusters): plot_pc(i, results) plt.title('{} ({} clusters)'.format(function.__name__, n_clusters)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 13)) for i, ax in zip(range(7, 11), fig.axes): plt.subplot(ax) plot_clusters(KMeans, n_clusters=i, function_kwargs={'init': 'random'})
code
2017107/cell_8
[ "image_output_1.png" ]
from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering from sklearn.feature_selection import VarianceThreshold from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False) unique_cat = set(frame['position'].unique()) | {'unknown'} frame['position_'] = pd.Categorical(frame['position'], categories=unique_cat).codes frame['salary_'] = pd.Categorical(frame['salary'], categories=['low', 'medium', 'unknown', 'high'], ordered=True).codes from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold frame_ = pd.get_dummies(frame.drop(['salary_', 'position_'], axis=1)).sample(3000) sampled_index = frame_.index selector = VarianceThreshold(threshold=0.95 * (1 - 0.95)) frame_ = selector.fit_transform(frame_) mds = MDS(n_components=2) scaler = StandardScaler(with_mean=False) frame_ = scaler.fit_transform(frame_) frame_ = mds.fit_transform(frame_) pc_1 = [frame_[i][0] for i in range(len(frame_))] pc_2 = [frame_[i][1] for i in range(len(frame_))] ### Clustering with kmeans ### from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering def plot_pc (label, frame): pc_1 = frame[frame['label']==label].loc[:,'pc1'] pc_2 = frame[frame['label']==label].loc[:,'pc2'] plt.scatter(pc_1, pc_2, label=label) plt.legend() def plot_clusters(function, n_clusters, function_kwargs=None): if function_kwargs==None: function_kwargs = dict() model = function(n_clusters=n_clusters, **function_kwargs) labels = model.fit_predict(frame_) results = pd.DataFrame({'label':labels, 'pc1':pc_1, 'pc2':pc_2}) for i in range(n_clusters): plot_pc(i, results) plt.title('{} ({} clusters)'.format(function.__name__, n_clusters)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(15,13)) for i, ax in zip(range(7,11), fig.axes): plt.subplot(ax) plot_clusters(KMeans, n_clusters=i, function_kwargs={'init': 'random'}); fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 13)) for i, ax in zip(range(7, 11), fig.axes): plt.subplot(ax) plot_clusters(AgglomerativeClustering, n_clusters=i, function_kwargs={'linkage': 'ward', 'affinity': 'euclidean'})
code
2017107/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False)
code
2017107/cell_10
[ "text_html_output_1.png" ]
from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering from sklearn.feature_selection import VarianceThreshold from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output frame = pd.read_csv('../input/HR_comma_sep.csv').rename(columns={'sales': 'position'}) pd.DataFrame({'dtypes': frame.dtypes, 'isnull': pd.isnull(frame).any(), 'count distinct': [len(frame[name].unique()) for name in frame.columns], 'max': frame.select_dtypes(exclude=['object']).max(), 'min': frame.select_dtypes(exclude=['object']).min(), 'std': frame.select_dtypes(exclude=['object']).std()}, index=frame.columns).sort_values('count distinct', ascending=False) unique_cat = set(frame['position'].unique()) | {'unknown'} frame['position_'] = pd.Categorical(frame['position'], categories=unique_cat).codes frame['salary_'] = pd.Categorical(frame['salary'], categories=['low', 'medium', 'unknown', 'high'], ordered=True).codes from sklearn.manifold import MDS from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold frame_ = pd.get_dummies(frame.drop(['salary_', 'position_'], axis=1)).sample(3000) sampled_index = frame_.index selector = VarianceThreshold(threshold=0.95 * (1 - 0.95)) frame_ = selector.fit_transform(frame_) mds = MDS(n_components=2) scaler = StandardScaler(with_mean=False) frame_ = scaler.fit_transform(frame_) frame_ = mds.fit_transform(frame_) pc_1 = [frame_[i][0] for i in range(len(frame_))] pc_2 = [frame_[i][1] for i in range(len(frame_))] ### Clustering with kmeans ### from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering def plot_pc (label, frame): pc_1 = frame[frame['label']==label].loc[:,'pc1'] pc_2 = frame[frame['label']==label].loc[:,'pc2'] plt.scatter(pc_1, pc_2, label=label) plt.legend() def plot_clusters(function, n_clusters, function_kwargs=None): if function_kwargs==None: function_kwargs = dict() model = function(n_clusters=n_clusters, **function_kwargs) labels = model.fit_predict(frame_) results = pd.DataFrame({'label':labels, 'pc1':pc_1, 'pc2':pc_2}) for i in range(n_clusters): plot_pc(i, results) plt.title('{} ({} clusters)'.format(function.__name__, n_clusters)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(15,13)) for i, ax in zip(range(7,11), fig.axes): plt.subplot(ax) plot_clusters(KMeans, n_clusters=i, function_kwargs={'init': 'random'}); fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize=(15,13)) for i, ax in zip(range(7,11), fig.axes): plt.subplot(ax) plot_clusters(AgglomerativeClustering, n_clusters=i, function_kwargs={'linkage': 'ward', 'affinity':'euclidean'}) n_clusters = 10 model = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', affinity='euclidean') model.fit(frame_) labels = model.labels_ results = pd.DataFrame({'label': labels, 'pc1': pc_1, 'pc2': pc_2}) label1 = 5 label0 = 1 frame = frame.loc[sampled_index] frame['labels'] = labels label_0 = frame[frame['labels'] == label0].drop(['position', 'salary'], axis=1) label_1 = frame[frame['labels'] == label1].drop(['position', 'salary'], axis=1) for name in label_1.columns: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) plt.subplot(ax1) plot_dist(name, label_1) plt.title(label1) plt.subplot(ax2) plot_dist(name, label_0, color='red') plt.title(label0)
code
2017107/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns import matplotlib.pyplot as plt def plot_dist(name, frame, color='green'): name0 = '{}_'.format(name) if name0 not in frame.columns: name0 = name data_count = len(frame[name0].unique()) if data_count > 3: sns.distplot(frame[name0], rug=False, color=color) if data_count < 10: plt.xticks(frame[name0].unique()) else: sns.countplot(frame[name0], color=color) name1 = ''.join([char.upper() if i == 0 else char for i, char in enumerate(list(name))]) fig, ((ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8, ax9)) = plt.subplots(nrows=3, ncols=3, figsize=(12, 10)) plt.subplots_adjust(hspace=0.3, wspace=0.3) cols_to_plot = list(frame.columns) cols_to_plot.remove('left') for ax, name in zip(fig.axes, cols_to_plot): plt.subplot(ax) plot_dist(name, frame) sns.despine()
code
128007514/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/list-of-world-cities-by-population-density/List of world cities by population density.csv') def preprocess_inputs(df): df = df.copy() drop_cols = ['Unnamed: 0'] df = df.drop(drop_cols, axis=1) df[Area] return df X = preprocess_inputs(data) X.head()
code
128007514/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/list-of-world-cities-by-population-density/List of world cities by population density.csv') data.head()
code
18119291/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) cat_data.head()
code
18119291/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()]
code
18119291/cell_25
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) print(train.OverallQual.unique())
code
18119291/cell_4
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
18119291/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) numeric_data.drop('Id', axis=1, inplace=True) plt.figure(figsize=(20, 20)) corr = numeric_data.corr() sns.heatmap(corr, annot=True)
code
18119291/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) numeric_data.head() numeric_data.drop('Id', axis=1, inplace=True)
code
18119291/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) cat_data.describe()
code
18119291/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) pivot = train.pivot_table(index='OverallQual', values='SalePrice', aggfunc='median') pivot.plot(kind='bar')
code
18119291/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing
code
18119291/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18119291/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.info()
code
18119291/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) print(target.skew()) sns.distplot(target)
code
18119291/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) pivot = train.pivot_table(index='OverallQual', values='SalePrice', aggfunc='median') train.GarageCars.unique() pivot = train.pivot_table(index='GarageCars', values='SalePrice', aggfunc='median') pivot.plot(kind='bar')
code
18119291/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum()
code
18119291/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) sns.distplot(train['SalePrice'])
code
18119291/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing print('The skewness of SalePrice is {}'.format(train['SalePrice'].skew()))
code
18119291/cell_31
[ "text_plain_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) numeric_data.drop('Id', axis=1, inplace=True) corr = numeric_data.corr() pivot = train.pivot_table(index='OverallQual', values='SalePrice', aggfunc='median') train.GarageCars.unique() pivot = train.pivot_table(index='GarageCars', values='SalePrice', aggfunc='median') cat = [f for f in train.columns if train.dtypes[f] == 'object'] def anova(frame): anv = pd.DataFrame() anv['features'] = cat pvals = [] for c in cat: samples = [] for cls in frame[c].unique(): s = frame[frame[c] == cls]['SalePrice'].values samples.append(s) pval = stats.f_oneway(*samples)[1] pvals.append(pval) anv['pval'] = pvals return anv.sort_values('pval') cat_data['SalePrice'] = train.SalePrice.values k = anova(cat_data) k['disparity'] = np.log(1.0 / k['pval'].values) sns.barplot(data=k, x='features', y='disparity') plt.xticks(rotation=90) plt
code
18119291/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) numeric_data.drop('Id', axis=1, inplace=True) corr = numeric_data.corr() print(corr['SalePrice'].sort_values(ascending=False))
code
18119291/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index sns.barplot(x='name', y='count', data=missing) plt.xticks(rotation=90)
code
18119291/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.isnull().any().sum() train.columns[train.isnull().any()] missing = train.isnull().sum() / len(train) missing = missing[missing > 0] missing.sort_values(inplace=True) missing missing = pd.DataFrame(missing) missing.columns = ['count'] missing.index.names = ['name'] missing['name'] = missing.index plt.xticks(rotation=90) target = np.log(train['SalePrice']) numeric_data = train.select_dtypes(include=[np.number]) cat_data = train.select_dtypes(exclude=[np.number]) numeric_data.drop('Id', axis=1, inplace=True) corr = numeric_data.corr() pivot = train.pivot_table(index='OverallQual', values='SalePrice', aggfunc='median') sns.jointplot(x=train['GrLivArea'], y=train['SalePrice']) sns.jointplot(x=train['OverallQual'], y=train['SalePrice'])
code
18119291/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') print(train.shape) print(test.shape)
code
105187475/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.describe()
code
105187475/cell_25
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any() df.isnull().sum() plt.xticks(fontsize=14) for column in df.columns: print(column, '=>', df[column].nunique())
code
105187475/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any() df.isnull().sum()
code
105187475/cell_6
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.head()
code
105187475/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any() df.isnull().sum() plt.xticks(fontsize=14) categoricalFeature = [feature for feature in df.columns if df[feature].dtype == 'o'] categoricalFeature
code
105187475/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any()
code
105187475/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105187475/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape
code
105187475/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull()
code
105187475/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any() df.isnull().sum() plt.xticks(fontsize=14) df.info()
code
105187475/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.info()
code
105187475/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.info()
code
105187475/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes df.isnull() df.isnull().any() df.isnull().sum() plt.figure(figsize=(12, 10)) sns.heatmap(df.isnull(), cmap='viridis') plt.xticks(fontsize=14) plt.title('Count if Missing Values using heatmap') plt.show()
code
105187475/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/concretecsv/concrete.csv') df.shape df.dtypes
code
1008613/cell_13
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) plt.figure(figsize=(11, 6)) for i in range(66): plt.subplot(6, 11, i + 1) plt.imshow(x_train[i]) plt.xticks([]) plt.yticks([]) plt.tight_layout()
code
1008613/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) print('Amount of training data:', num_training, 'pairs of images and labels.') print('Amount of testing data:', num_testing, 'images.')
code
1008613/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Dropout, Activation, Flatten, Dense from keras.models import Sequential from keras.optimizers import Adam from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) for i in range(66): plt.xticks([]) plt.yticks([]) plt.tight_layout() rawx = train.values[:1000] from sklearn.preprocessing import StandardScaler xscaled = StandardScaler().fit_transform(rawx) from sklearn.manifold import TSNE tsne = TSNE() vis = tsne.fit_transform(xscaled) vis = [{'X': vis[i][0], 'Y': vis[i][1], 'K': y_train[i]} for i in range(len(vis))] sns.FacetGrid(pd.DataFrame.from_dict(vis), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() from sklearn.decomposition import PCA pca = PCA(n_components=5) pca_ani = pca.fit_transform(xscaled) xpca = pca_ani[:, 0] ypca = pca_ani[:, 1] vispca = [{'X': xpca[i], 'Y': ypca[i], 'K': y_train[i]} for i in range(len(xpca))] sns.FacetGrid(pd.DataFrame.from_dict(vispca), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() x_train = x_train / 255.0 x_test = x_test / 255.0 from sklearn.preprocessing import LabelBinarizer y_train_hot = LabelBinarizer().fit_transform(y_train) model = Sequential() model.add(Conv2D(6, 5, 5, input_shape=(28, 28, 1), bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Dropout(p=0.12)) model.add(Conv2D(16, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Conv2D(35, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Flatten()) model.add(Dense(120, bias=True)) model.add(Activation('relu')) model.add(Dropout(p=0.5)) model.add(Dense(84, bias=True)) model.add(Activation('relu')) model.add(Dense(10, bias=True)) model.add(Activation('softmax')) model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'], decay=1) x_train = np.expand_dims(x_train, axis=4) x_test = np.expand_dims(x_test, axis=4) training_hist = model.fit(x_train, y_train_hot, nb_epoch=16, batch_size=64, verbose=2, validation_split=0.23) hdf = pd.DataFrame.from_dict(training_hist.history) hdf['epochs'] = list(range(16)) sns.FacetGrid(hdf, size=6).map(sns.pointplot, 'epochs', 'val_acc', color='y').map(sns.pointplot, 'epochs', 'acc', color='r').set(xlabel='Epochs', ylabel='Validation Accuracy (Yellow) and Test Accuracy (Red)') sns.FacetGrid(hdf, size=6).map(sns.pointplot, 'epochs', 'loss', color='g').map(sns.pointplot, 'epochs', 'val_loss', color='m').set(xlabel='Epochs', ylabel='Validation Loss (Magenta) and Training Loss (Green)')
code
1008613/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import seaborn as sns from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Activation, Flatten, Dense from keras.optimizers import Adam from sklearn.model_selection import train_test_split from subprocess import check_output print('Files in Input Directory:') print(check_output(['ls', '../input']).decode('utf8'))
code
1008613/cell_19
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) for i in range(66): plt.xticks([]) plt.yticks([]) plt.tight_layout() rawx = train.values[:1000] from sklearn.preprocessing import StandardScaler xscaled = StandardScaler().fit_transform(rawx) from sklearn.manifold import TSNE tsne = TSNE() vis = tsne.fit_transform(xscaled) vis = [{'X': vis[i][0], 'Y': vis[i][1], 'K': y_train[i]} for i in range(len(vis))] sns.FacetGrid(pd.DataFrame.from_dict(vis), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() from sklearn.decomposition import PCA pca = PCA(n_components=5) pca_ani = pca.fit_transform(xscaled) xpca = pca_ani[:, 0] ypca = pca_ani[:, 1] vispca = [{'X': xpca[i], 'Y': ypca[i], 'K': y_train[i]} for i in range(len(xpca))] sns.FacetGrid(pd.DataFrame.from_dict(vispca), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend()
code
1008613/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.head()
code
1008613/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Dropout, Activation, Flatten, Dense from keras.models import Sequential from keras.optimizers import Adam from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) for i in range(66): plt.xticks([]) plt.yticks([]) plt.tight_layout() rawx = train.values[:1000] from sklearn.preprocessing import StandardScaler xscaled = StandardScaler().fit_transform(rawx) from sklearn.manifold import TSNE tsne = TSNE() vis = tsne.fit_transform(xscaled) vis = [{'X': vis[i][0], 'Y': vis[i][1], 'K': y_train[i]} for i in range(len(vis))] sns.FacetGrid(pd.DataFrame.from_dict(vis), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() from sklearn.decomposition import PCA pca = PCA(n_components=5) pca_ani = pca.fit_transform(xscaled) xpca = pca_ani[:, 0] ypca = pca_ani[:, 1] vispca = [{'X': xpca[i], 'Y': ypca[i], 'K': y_train[i]} for i in range(len(xpca))] sns.FacetGrid(pd.DataFrame.from_dict(vispca), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() x_train = x_train / 255.0 x_test = x_test / 255.0 from sklearn.preprocessing import LabelBinarizer y_train_hot = LabelBinarizer().fit_transform(y_train) model = Sequential() model.add(Conv2D(6, 5, 5, input_shape=(28, 28, 1), bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Dropout(p=0.12)) model.add(Conv2D(16, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Conv2D(35, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Flatten()) model.add(Dense(120, bias=True)) model.add(Activation('relu')) model.add(Dropout(p=0.5)) model.add(Dense(84, bias=True)) model.add(Activation('relu')) model.add(Dense(10, bias=True)) model.add(Activation('softmax')) model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'], decay=1) x_train = np.expand_dims(x_train, axis=4) x_test = np.expand_dims(x_test, axis=4) training_hist = model.fit(x_train, y_train_hot, nb_epoch=16, batch_size=64, verbose=2, validation_split=0.23) hdf = pd.DataFrame.from_dict(training_hist.history) hdf['epochs'] = list(range(16)) sns.FacetGrid(hdf, size=6).map(sns.pointplot, 'epochs', 'val_acc', color='y').map(sns.pointplot, 'epochs', 'acc', color='r').set(xlabel='Epochs', ylabel='Validation Accuracy (Yellow) and Test Accuracy (Red)')
code
1008613/cell_28
[ "image_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Dropout, Activation, Flatten, Dense from keras.models import Sequential from keras.optimizers import Adam from sklearn.preprocessing import LabelBinarizer import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) x_train = x_train / 255.0 x_test = x_test / 255.0 from sklearn.preprocessing import LabelBinarizer y_train_hot = LabelBinarizer().fit_transform(y_train) model = Sequential() model.add(Conv2D(6, 5, 5, input_shape=(28, 28, 1), bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Dropout(p=0.12)) model.add(Conv2D(16, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Conv2D(35, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Flatten()) model.add(Dense(120, bias=True)) model.add(Activation('relu')) model.add(Dropout(p=0.5)) model.add(Dense(84, bias=True)) model.add(Activation('relu')) model.add(Dense(10, bias=True)) model.add(Activation('softmax')) model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'], decay=1) x_train = np.expand_dims(x_train, axis=4) x_test = np.expand_dims(x_test, axis=4) training_hist = model.fit(x_train, y_train_hot, nb_epoch=16, batch_size=64, verbose=2, validation_split=0.23)
code
1008613/cell_16
[ "text_html_output_1.png" ]
from sklearn.manifold import TSNE from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) for i in range(66): plt.xticks([]) plt.yticks([]) plt.tight_layout() rawx = train.values[:1000] from sklearn.preprocessing import StandardScaler xscaled = StandardScaler().fit_transform(rawx) from sklearn.manifold import TSNE tsne = TSNE() vis = tsne.fit_transform(xscaled) vis = [{'X': vis[i][0], 'Y': vis[i][1], 'K': y_train[i]} for i in range(len(vis))] sns.FacetGrid(pd.DataFrame.from_dict(vis), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend()
code
1008613/cell_37
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Dropout, Activation, Flatten, Dense from keras.models import Sequential from keras.optimizers import Adam from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') num_training = len(train.values) num_testing = len(test.values) y_train = np.array(train.pop('label').values) x_train = np.array(train.values) x_test = np.array(test.values) x_train = x_train.reshape(num_training, 28, 28) x_test = x_test.reshape(num_testing, 28, 28) for i in range(66): plt.xticks([]) plt.yticks([]) plt.tight_layout() rawx = train.values[:1000] from sklearn.preprocessing import StandardScaler xscaled = StandardScaler().fit_transform(rawx) from sklearn.manifold import TSNE tsne = TSNE() vis = tsne.fit_transform(xscaled) vis = [{'X': vis[i][0], 'Y': vis[i][1], 'K': y_train[i]} for i in range(len(vis))] sns.FacetGrid(pd.DataFrame.from_dict(vis), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() from sklearn.decomposition import PCA pca = PCA(n_components=5) pca_ani = pca.fit_transform(xscaled) xpca = pca_ani[:, 0] ypca = pca_ani[:, 1] vispca = [{'X': xpca[i], 'Y': ypca[i], 'K': y_train[i]} for i in range(len(xpca))] sns.FacetGrid(pd.DataFrame.from_dict(vispca), hue='K', size=8).map(plt.scatter, 'X', 'Y').add_legend() x_train = x_train / 255.0 x_test = x_test / 255.0 from sklearn.preprocessing import LabelBinarizer y_train_hot = LabelBinarizer().fit_transform(y_train) model = Sequential() model.add(Conv2D(6, 5, 5, input_shape=(28, 28, 1), bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Dropout(p=0.12)) model.add(Conv2D(16, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Conv2D(35, 5, 5, bias=True, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), border_mode='same')) model.add(Flatten()) model.add(Dense(120, bias=True)) model.add(Activation('relu')) model.add(Dropout(p=0.5)) model.add(Dense(84, bias=True)) model.add(Activation('relu')) model.add(Dense(10, bias=True)) model.add(Activation('softmax')) model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'], decay=1) x_train = np.expand_dims(x_train, axis=4) x_test = np.expand_dims(x_test, axis=4) training_hist = model.fit(x_train, y_train_hot, nb_epoch=16, batch_size=64, verbose=2, validation_split=0.23) hdf = pd.DataFrame.from_dict(training_hist.history) hdf['epochs'] = list(range(16)) pred = model.predict_classes(x_test, verbose=2) sub_df = pd.DataFrame() sub_df['ImageId'] = list(range(1, num_testing + 1)) sub_df['Label'] = pred print('Amount of test points:', num_testing) print('Amount of predictions:', len(pred)) sub_df.head()
code
1008613/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
33102252/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Ydata = pd.read_csv('../input/youtube-new/USvideos.csv') original_data = Ydata.copy() Ydata.apply(lambda x: sum(x.isnull())) Ydata.corr() Ydata[(Ydata['likes'] > 500000) & (Ydata['dislikes'] > 500000)]
code
18127655/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) pd.crosstab(data.USER_ID, data['PAGE']).head()
code
18127655/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape X_test.iloc[0, 0:1725].sum() data = data[data.FEC_EVENT.dt.month < 10] X_train = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_train.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_train = pd.concat(X_train, axis=1) features = list(set(X_train.columns).intersection(set(X_test.columns))) X_train = X_train[features] X_test = X_test[features] y_prev = pd.read_csv('../input/conversiones/conversiones.csv') y_train = pd.Series(0, index=X_train.index) idx = set(y_prev[y_prev.mes >= 10].USER_ID.unique()).intersection(set(X_train.index)) y_train.loc[list(idx)] = 1 y_train.head(23)
code
18127655/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape X_test.iloc[0, 0:1725].sum() data = data[data.FEC_EVENT.dt.month < 10] X_train = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_train.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_train = pd.concat(X_train, axis=1) features = list(set(X_train.columns).intersection(set(X_test.columns))) X_train = X_train[features] X_test = X_test[features] y_prev = pd.read_csv('../input/conversiones/conversiones.csv') y_train = pd.Series(0, index=X_train.index) idx = set(y_prev[y_prev.mes >= 10].USER_ID.unique()).intersection(set(X_train.index)) y_train.loc[list(idx)] = 1 fi = [] test_probs = [] i = 0 for train_idx, valid_idx in model_selection.KFold(n_splits=10, shuffle=True).split(X_train): i += 1 Xt = X_train.iloc[train_idx] yt = y_train.loc[X_train.index].iloc[train_idx] Xv = X_train.iloc[valid_idx] yv = y_train.loc[X_train.index].iloc[valid_idx] learner = LGBMClassifier(n_estimators=10000) learner.fit(Xt, yt, early_stopping_rounds=10, eval_metric='auc', eval_set=[(Xt, yt), (Xv, yv)]) test_probs.append(pd.Series(learner.predict_proba(X_test)[:, -1], index=X_test.index, name='fold_' + str(i))) fi.append(pd.Series(learner.feature_importances_ / learner.feature_importances_.sum(), index=Xt.columns)) test_probs = pd.concat(test_probs, axis=1).mean(axis=1) test_probs.index.name = 'USER_ID' test_probs.name = 'SCORE' test_probs.to_csv('benchmark.zip', header=True, compression='zip') fi = pd.concat(fi, axis=1).mean(axis=1)
code
18127655/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape X_test.iloc[0, 0:1725].sum() data = data[data.FEC_EVENT.dt.month < 10] X_train = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_train.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_train = pd.concat(X_train, axis=1) features = list(set(X_train.columns).intersection(set(X_test.columns))) X_train = X_train[features] X_test = X_test[features] X_train.head()
code
18127655/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape X_test.iloc[0, 0:1725].sum()
code
18127655/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) data.head()
code
18127655/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.head()
code
18127655/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape
code
18127655/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) X_test.shape X_test.iloc[0, 0:1725].sum() data = data[data.FEC_EVENT.dt.month < 10] X_train = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_train.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_train = pd.concat(X_train, axis=1) features = list(set(X_train.columns).intersection(set(X_test.columns))) X_train = X_train[features] X_test = X_test[features] y_prev = pd.read_csv('../input/conversiones/conversiones.csv') y_train = pd.Series(0, index=X_train.index) idx = set(y_prev[y_prev.mes >= 10].USER_ID.unique()).intersection(set(X_train.index)) y_train.loc[list(idx)] = 1 fi = [] test_probs = [] i = 0 for train_idx, valid_idx in model_selection.KFold(n_splits=10, shuffle=True).split(X_train): i += 1 Xt = X_train.iloc[train_idx] yt = y_train.loc[X_train.index].iloc[train_idx] Xv = X_train.iloc[valid_idx] yv = y_train.loc[X_train.index].iloc[valid_idx] learner = LGBMClassifier(n_estimators=10000) learner.fit(Xt, yt, early_stopping_rounds=10, eval_metric='auc', eval_set=[(Xt, yt), (Xv, yv)]) test_probs.append(pd.Series(learner.predict_proba(X_test)[:, -1], index=X_test.index, name='fold_' + str(i))) fi.append(pd.Series(learner.feature_importances_ / learner.feature_importances_.sum(), index=Xt.columns)) test_probs = pd.concat(test_probs, axis=1).mean(axis=1) test_probs.index.name = 'USER_ID' test_probs.name = 'SCORE' test_probs.to_csv('benchmark.zip', header=True, compression='zip') fi = pd.concat(fi, axis=1).mean(axis=1) test_probs
code
18127655/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1) data = data[data.FEC_EVENT.dt.month < 10] X_train = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: print('haciendo', c) temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_train.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_train = pd.concat(X_train, axis=1)
code
18127655/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # Manipulación y análisis de datos, Data Frames, lectura de CSV data = pd.read_csv('../input/pageviews/pageviews.csv', parse_dates=['FEC_EVENT']) X_test = [] for c in data.drop(['USER_ID', 'FEC_EVENT'], axis=1).columns: print('haciendo', c) temp = pd.crosstab(data.USER_ID, data[c]) temp.columns = [c + '_' + str(v) for v in temp.columns] X_test.append(temp.apply(lambda x: x / x.sum(), axis=1)) X_test = pd.concat(X_test, axis=1)
code
90120122/cell_6
[ "text_plain_output_5.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import tensorflow as tf def show_image_with_filter(image, kernel): image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.expand_dims(image, axis=0) kernel = tf.reshape(kernel, [*kernel.shape, 1, 1]) kernel = tf.cast(kernel, dtype=tf.float32) image_filter = tf.nn.conv2d(input=image, filters=kernel, strides=1, padding='SAME') image_detect = tf.nn.relu(image_filter) image_condense = tf.nn.pool(input=image_detect, window_shape=(2, 2), pooling_type='MAX', strides=(2, 2), padding='SAME') plt.axis('off') plt.axis('off') plt.axis('off') plt.axis('off') import numpy as np import tensorflow as tf import matplotlib.pyplot as plt plt.rc('figure', autolayout=True) plt.rc('axes', labelweight='bold', labelsize='large', titleweight='bold', titlesize=18, titlepad=10) plt.rc('image', cmap='magma') tf.config.run_functions_eagerly(True) image_path = '../input/computer-vision-resources/car_illus.jpg' image = tf.io.read_file(image_path) image = tf.io.decode_jpeg(image, channels=1) image = tf.image.resize(image, size=[400, 400]) random_kernel = tf.constant([[1, 2, 3], [-1, -2, -3], [0, 0, 0]]) edge_detect_kernel = tf.constant([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]) bottom_sobel_kernel = tf.constant([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) emboss_kernel = tf.constant([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]) sharpen_kernel = tf.constant([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) print('\nRANDOM KERNEL:\n') show_image_with_filter(image, random_kernel) print('\nEDGE DETECT KERNEL:\n') show_image_with_filter(image, edge_detect_kernel) print('\nBOTTOM SOBEL KERNEL:\n') show_image_with_filter(image, bottom_sobel_kernel) print('\nEMBOSS KERNEL:\n') show_image_with_filter(image, emboss_kernel) print('\nSHARPEN KERNEL:\n') show_image_with_filter(image, sharpen_kernel)
code
32068077/cell_24
[ "text_plain_output_1.png" ]
import cv2 import os import random import tensorflow from imgaug import augmenters as iaa import numpy as np import time import random from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import os from sklearn.utils.multiclass import unique_labels import cv2 import matplotlib.pyplot as plt import seaborn as sn import tensorflow layers = tensorflow.keras.layers BatchNormalization = tensorflow.keras.layers.BatchNormalization Conv2D = tensorflow.keras.layers.Conv2D Flatten = tensorflow.keras.layers.Flatten MaxPooling2D = tensorflow.keras.layers.MaxPooling2D Dropout = tensorflow.keras.layers.Dropout Dense = tensorflow.keras.layers.Dense ImageDataGenerator = tensorflow.keras.preprocessing.image.ImageDataGenerator Sequential = tensorflow.keras.Sequential TensorBoard = tensorflow.keras.callbacks.TensorBoard ModelCheckpoint = tensorflow.keras.callbacks.ModelCheckpoint Adam = tensorflow.keras.optimizers.Adam regularizers = tensorflow.keras.regularizers categorical_crossentropy = tensorflow.keras.losses K = tensorflow.keras.backend plot_model = tensorflow.keras.utils.plot_model from nltk.corpus import words os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' DATADIR = '../input/lse-alphabet/train_data' CATEGORIES = ['A_PD', 'A_PF', 'B', 'C', 'CH', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'LL', 'M', 'N', 'Ñ', 'O', 'P', 'Q', 'R', 'RR', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'nothing'] TEST_DIR = '../input/lse-alphabet/test_data' NUM_CATEGORIES = 32 def create_training_data(DIR): """This function is run for each model in order to get the training data from the filepath and convert it into array format""" training_data = [] for category in CATEGORIES: path = os.path.join(DIR, category) class_num = CATEGORIES.index(category) for img in os.listdir(path): try: img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_COLOR) new_array = cv2.resize(img_array, (64, 64)) final_img = cv2.cvtColor(new_array, cv2.COLOR_BGR2RGB) training_data.append([final_img, class_num]) seq = iaa.Sequential([iaa.Multiply((0.8, 1.2), per_channel=0.2), iaa.Crop(px=(0, 16)), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 0.5)))]) final_img_aug = seq.augment_images([final_img]) training_data.append([final_img, class_num]) training_data.append([final_img_aug[0], class_num]) except Exception as e: pass return training_data def additional_augmenation(image): randomValue = random.randint(1, 10) if randomValue == 9: aug = iaa.GaussianBlur(sigma=(0, 0.5)) return aug.augment_image(image) elif randomValue == 8: aug = iaa.Multiply((0.8, 1.2), per_channel=0.2) return aug.augment_image(image) elif randomValue == 7: aug = iaa.Crop(px=(0, 16)) return aug.augment_image(image) else: return image input_shape = (64, 64, 3) training_data = create_training_data(DATADIR) print(len(training_data)) random.shuffle(training_data)
code
18109621/cell_4
[ "text_plain_output_1.png" ]
from bq_helper import BigQueryHelper bq_assistant = BigQueryHelper('patents-public-data', 'worldbank_wdi') bq_assistant.list_tables() bq_assistant.head('wdi_2016', num_rows=10)
code
18109621/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import bq_helper import bq_helper from bq_helper import BigQueryHelper wdi = bq_helper.BigQueryHelper(active_project='patents-public-data', dataset_name='worldbank_wdi')
code
18109621/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from bq_helper import BigQueryHelper import pandas as pd bq_assistant = BigQueryHelper('patents-public-data', 'worldbank_wdi') bq_assistant.list_tables() bq_assistant.table_schema('wdi_2016') import pandas as pd pd.get_option('max_colwidth') pd.set_option('max_colwidth', 500) query1 = '\nSELECT year, country_code,country_name, indicator_code, indicator_name, indicator_value\nFROM `patents-public-data.worldbank_wdi.wdi_2016`\nwhere country_code in ("GRC", "GBR", "FRA", "ITA", "BEL", "CHN","CYP","DEU","EMU","MKD","PRT","TUR","USA", "DNK")\n and year>=2014 \n and indicator_code not like ("per_%") \n and indicator_code not like ("DC.DAC.%") \n and indicator_code not like ("DT.%") \nORDER BY year DESC, indicator_code\n-- LIMIT 200;\n ' bq_assistant.estimate_query_size(query1)
code
18109621/cell_3
[ "text_html_output_1.png" ]
from bq_helper import BigQueryHelper bq_assistant = BigQueryHelper('patents-public-data', 'worldbank_wdi') bq_assistant.list_tables()
code
18109621/cell_14
[ "text_plain_output_1.png" ]
import bq_helper import bq_helper from bq_helper import BigQueryHelper wdi = bq_helper.BigQueryHelper(active_project='patents-public-data', dataset_name='worldbank_wdi') query1 = '\nSELECT year, country_code,country_name, indicator_code, indicator_name, indicator_value\nFROM `patents-public-data.worldbank_wdi.wdi_2016`\nwhere country_code in ("GRC", "GBR", "FRA", "ITA", "BEL", "CHN","CYP","DEU","EMU","MKD","PRT","TUR","USA", "DNK")\n and year>=2014 \n and indicator_code not like ("per_%") \n and indicator_code not like ("DC.DAC.%") \n and indicator_code not like ("DT.%") \nORDER BY year DESC, indicator_code\n-- LIMIT 200;\n ' response1 = wdi.query_to_pandas(query1) base = 'http://test.org.newsmap/wdi-ontology/' countryCode = base + '#countryCode' countryName = base + '#countryName' WDIcode = base + '#WDIcode' WDIyear = base + '#WDIyear' WDIname = base + '#WDIname' WDIdescription = base + '#WDIdescription' WDIvalue = base + '#WDIvalue' changeLineStr = 'LLL' doubleQuotes = '_DQ_' response1['tuple'] = '' response1.tuple = '<' + base + response1.country_code + '_' + response1.indicator_code + '_yearhere> ' + changeLineStr response1.tuple = response1.tuple + '<' + countryCode + '> ' + doubleQuotes + response1.country_code + doubleQuotes + '; ' + changeLineStr response1.tuple = response1.tuple + '<' + countryName + '> ' + doubleQuotes + response1.country_name + doubleQuotes + '; ' + changeLineStr response1.tuple = response1.tuple + '<' + WDIcode + '> ' + doubleQuotes + response1.indicator_code + doubleQuotes + '; ' + changeLineStr response1.tuple = response1.tuple + '<' + WDIyear + '> ' + 'yearhere; ' + changeLineStr response1.tuple = response1.tuple + '<' + WDIname + '> ' + doubleQuotes + response1.indicator_name + doubleQuotes + '; ' + changeLineStr response1.tuple = response1.tuple + '<' + WDIvalue + '> _DQ_valuehere_DQ_^^<http://www.w3.org/2001/XMLSchema#float> . ' + changeLineStr response1.shape df = response1.copy() df = df[['year', 'indicator_value', 'tuple']] df.to_excel('kaggle_wdidata.xlsx', index=False) df = df[(df['country_name'] == 'Greece') & (df['year'] == 2014) & (df['indicator_code'] == 'SL.UEM.TOTL.ZS')] df = df[['year', 'indicator_value', 'tuple']] df.head(10)
code
50211059/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns
code
50211059/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub
code
50211059/cell_20
[ "text_html_output_1.png" ]
from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr() df1 = df.T df1 from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='hamming') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='euclidean') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim
code
50211059/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr()
code
50211059/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.head(2)
code
50211059/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from tqdm import tqdm import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50211059/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns
code
50211059/cell_18
[ "text_html_output_1.png" ]
from sklearn.metrics.pairwise import pairwise_distances import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr() df1 = df.T df1 from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='hamming') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim
code
50211059/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique()
code
50211059/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr()
code
50211059/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr() df1 = df.T df1
code
50211059/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd
code