path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50211059/cell_24
[ "text_html_output_1.png" ]
from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr() df1 = df.T df1 from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='hamming') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='euclidean') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='manhattan') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='minkowski') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim
code
50211059/cell_14
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df['username'] = df['username'].astype(str) df['username'] = le.fit_transform(df['username']) df['status'] = df['status'].astype(str) df['status'] = le.fit_transform(df['status']) df['sex'] = df['sex'].astype(str) df['sex'] = le.fit_transform(df['sex']) df['orientation'] = df['orientation'].astype(str) df['orientation'] = le.fit_transform(df['orientation']) df['drinks'] = df['drinks'].astype(str) df['drinks'] = le.fit_transform(df['drinks']) df['drugs'] = df['drugs'].astype(str) df['drugs'] = le.fit_transform(df['drugs']) df['location'] = df['location'].astype(str) df['location'] = le.fit_transform(df['location']) df['pets'] = df['pets'].astype(str) df['pets'] = le.fit_transform(df['pets']) df['smokes'] = df['smokes'].astype(str) df['smokes'] = le.fit_transform(df['smokes']) df['language'] = df['language'].astype(str) df['language'] = le.fit_transform(df['language']) df['new_languages'] = df['new_languages'].astype(str) df['new_languages'] = le.fit_transform(df['new_languages']) df['body_profile'] = df['body_profile'].astype(str) df['body_profile'] = le.fit_transform(df['body_profile']) df['bio'] = df['bio'].astype(str) df['bio'] = le.fit_transform(df['bio']) df['interests'] = df['interests'].astype(str) df['interests'] = le.fit_transform(df['interests']) df['other_interests'] = df['other_interests'].astype(str) df['other_interests'] = le.fit_transform(df['other_interests']) df['location_preference'] = df['location_preference'].astype(str) df['location_preference'] = le.fit_transform(df['location_preference']) df['job'] = df['job'].astype(str) df['job'] = le.fit_transform(df['job']) df['dropped_out'] = df['dropped_out'].astype(str) df['dropped_out'] = le.fit_transform(df['dropped_out']) df
code
50211059/cell_22
[ "text_plain_output_1.png" ]
from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df.columns df.T.corr() df1 = df.T df1 from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='hamming') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='euclidean') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(df1.T, metric='manhattan') jac_sim = pd.DataFrame(jac_sim, index=df1.columns, columns=df1.columns) jac_sim
code
50211059/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data df_data.corr() df_data.columns df_data.other_interests.unique() df = df_data df_uid = df[['user_id']] df['user_id'] = df['user_id'].apply(lambda x: x.split('fffe')[1]) df
code
50211059/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_sd = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample dataset.csv') df_sd df_sub = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/sample submission.csv') df_sub df_data = pd.read_csv('/kaggle/input/hacker-earth-love-in-the-screens/data.csv') df_data
code
17099534/cell_13
[ "text_plain_output_1.png" ]
from tensorflow.keras import Model from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import os import tensorflow as tf def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=32, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=20, class_mode='categorical', target_size=(image_width, image_height)) from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() from tensorflow.keras import Model first_layer = vgg16.get_layer(index=0) last_layer = vgg16.get_layer(index=-1) vgg16_partical = Model(inputs=first_layer.input, outputs=last_layer.output) from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16_partical, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary() model_using_vgg16.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) history = model_using_vgg16.fit_generator(train_generator, validation_data=test_generator, epochs=15) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.figure() plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss')
code
17099534/cell_9
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from tensorflow.keras import Model from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() from tensorflow.keras import Model first_layer = vgg16.get_layer(index=0) last_layer = vgg16.get_layer(index=-1) print(last_layer.output_shape) vgg16_partical = Model(inputs=first_layer.input, outputs=last_layer.output)
code
17099534/cell_4
[ "text_plain_output_1.png" ]
import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' print(os.listdir(train_dir))
code
17099534/cell_7
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=32, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=20, class_mode='categorical', target_size=(image_width, image_height))
code
17099534/cell_8
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary()
code
17099534/cell_3
[ "text_plain_output_1.png" ]
import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) list_files('../input')
code
17099534/cell_10
[ "text_plain_output_1.png" ]
from tensorflow.keras import Model from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization import tensorflow as tf from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() from tensorflow.keras import Model first_layer = vgg16.get_layer(index=0) last_layer = vgg16.get_layer(index=-1) vgg16_partical = Model(inputs=first_layer.input, outputs=last_layer.output) from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16_partical, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary()
code
17099534/cell_12
[ "text_plain_output_1.png" ]
from tensorflow.keras import Model from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import tensorflow as tf def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=32, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=20, class_mode='categorical', target_size=(image_width, image_height)) from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() from tensorflow.keras import Model first_layer = vgg16.get_layer(index=0) last_layer = vgg16.get_layer(index=-1) vgg16_partical = Model(inputs=first_layer.input, outputs=last_layer.output) from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16_partical, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary() model_using_vgg16.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) history = model_using_vgg16.fit_generator(train_generator, validation_data=test_generator, epochs=15)
code
17099534/cell_5
[ "text_plain_output_1.png" ]
import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' print(os.listdir(test_dir))
code
16120091/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns """ now for the structures """ structures.columns """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') train['scalar_coupling_constant'].plot.hist(bins=35)
code
16120091/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') """ now for the structures """ structures.columns print(structures['molecule_name'].nunique()) print(structures['atom_index'].nunique()) print(structures['atom'].nunique()) print('x y z :') print(structures['x'].nunique()) print(structures['y'].nunique()) print(structures['z'].nunique())
code
16120091/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns print(train['id'].nunique()) print(train['molecule_name'].nunique()) print(train['id'].nunique() - train.shape[0])
code
16120091/cell_19
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns """ now for the structures """ structures.columns """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') byAtom = all_data.groupby('atom')['scalar_coupling_constant'].agg('mean') print(byAtom) '\nthis is wierd, the F atom is very dieffrent from all others.\n'
code
16120091/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os print(os.listdir('../input'))
code
16120091/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns Fig, axarr = plt.subplots(2, 2, figsize=(12, 8)) Plt1 = train['atom_index_0'].plot.hist(ax=axarr[0][0]) Plt2 = train['atom_index_1'].plot.hist(ax=axarr[0][1]) Plt3 = train['type'].value_counts().plot.hist(ax=axarr[1][0]) Plt3 = train['scalar_coupling_constant'].plot.hist(ax=axarr[1][1], bins=50)
code
16120091/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns """ now for the structures """ structures.columns """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') byType = train.groupby('type')['scalar_coupling_constant'].agg('median') print(byType)
code
16120091/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') """ now for the structures """ structures.columns
code
16120091/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns Fig, axarr= plt.subplots(2, 2, figsize=(12,8)) # define a grid with 2 rows, 1 columns - two #plots all in all insinde axarr Plt1 = train["atom_index_0"].plot.hist(ax = axarr[0][0]) Plt2 = train["atom_index_1"].plot.hist(ax = axarr[0][1]) Plt3 = train["type"].value_counts().plot.hist(ax = axarr[1][0]) Plt3 = train["scalar_coupling_constant"].plot.hist(ax = axarr[1][1], bins =50) """ now for the structures """ structures.columns Fig, axarr= plt.subplots(2, 2, figsize=(12,8)) # define a grid with 2 rows, 1 columns - two #plots all in all insinde axarr Plt1 = structures["molecule_name"].value_counts().plot.hist(ax = axarr[0][0], bins=50) Plt2 = structures["atom_index"].plot.hist(ax = axarr[0][1]) Plt3 = structures["atom"].value_counts().plot.hist(ax = axarr[1][1]) """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') """ there is a huge peack around the 0 of this constant. but I do not think these are na values or outliers. lets now check if the train and test appeare to be from the same distrebution or not. """ structures_train = structures.loc[structures['molecule_name'].isin(train['molecule_name'])] structures_test = structures.loc[structures['molecule_name'].isin(test['molecule_name'])] """ so !! lets see what can I check.. # train: id, molecule_name, atom_index_0, atom_index_1, type, scalar_coupling_constant # test : id, molecule_name, atom_index_0, atom_index_1, type # structures_train: 'molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' # structures_test: 'molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' """ '\n1. type - is there roughly the same type distrebution in both ?\n2. atom - are there roughly the same atom distrebution in both ?\n3. x ?\n4. y ?\n5. z ?\n' Fig, axarr = plt.subplots(1, 2, figsize=(12, 8)) Plt1 = train['type'].value_counts().plot.hist(ax=axarr[0]) Plt2 = test['type'].value_counts().plot.hist(ax=axarr[1])
code
16120091/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns Fig, axarr= plt.subplots(2, 2, figsize=(12,8)) # define a grid with 2 rows, 1 columns - two #plots all in all insinde axarr Plt1 = train["atom_index_0"].plot.hist(ax = axarr[0][0]) Plt2 = train["atom_index_1"].plot.hist(ax = axarr[0][1]) Plt3 = train["type"].value_counts().plot.hist(ax = axarr[1][0]) Plt3 = train["scalar_coupling_constant"].plot.hist(ax = axarr[1][1], bins =50) """ now for the structures """ structures.columns Fig, axarr= plt.subplots(2, 2, figsize=(12,8)) # define a grid with 2 rows, 1 columns - two #plots all in all insinde axarr Plt1 = structures["molecule_name"].value_counts().plot.hist(ax = axarr[0][0], bins=50) Plt2 = structures["atom_index"].plot.hist(ax = axarr[0][1]) Plt3 = structures["atom"].value_counts().plot.hist(ax = axarr[1][1]) """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') """ there is a huge peack around the 0 of this constant. but I do not think these are na values or outliers. lets now check if the train and test appeare to be from the same distrebution or not. """ structures_train = structures.loc[structures['molecule_name'].isin(train['molecule_name'])] structures_test = structures.loc[structures['molecule_name'].isin(test['molecule_name'])] """ so !! lets see what can I check.. # train: id, molecule_name, atom_index_0, atom_index_1, type, scalar_coupling_constant # test : id, molecule_name, atom_index_0, atom_index_1, type # structures_train: 'molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' # structures_test: 'molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' """ """ 1. type - is there roughly the same type distrebution in both ? 2. atom - are there roughly the same atom distrebution in both ? 3. x ? 4. y ? 5. z ? """ #1 type - is there roughly the same type distrebution in both ? Fig, axarr= plt.subplots(1, 2, figsize=(12,8)) Plt1 = train["type"].value_counts().plot.hist(ax = axarr[0]) Plt2 = test["type"].value_counts().plot.hist(ax = axarr[1]) Fig, axarr = plt.subplots(1, 2, figsize=(12, 8)) Plt1 = structures_train['atom'].value_counts().plot.hist(ax=axarr[0]) Plt2 = structures_test['atom'].value_counts().plot.hist(ax=axarr[1])
code
16120091/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') print(train.isna().sum().sum()) print(structures.isna().sum().sum())
code
16120091/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns """ now for the structures """ structures.columns """ looking for outliers. soo.. we are dealing with: molecule_name', 'atom_index', 'atom', 'x', 'y', 'z' - Structres. 'id', 'molecule_name', 'atom_index_0', 'atom_index_1', 'type','scalar_coupling_constant' """ sample_data = train.sample(500) all_data = pd.merge(sample_data, structures, how='left', on='molecule_name') """ there is a huge peack around the 0 of this constant. but I do not think these are na values or outliers. lets now check if the train and test appeare to be from the same distrebution or not. """ print(test.columns) structures_train = structures.loc[structures['molecule_name'].isin(train['molecule_name'])] structures_test = structures.loc[structures['molecule_name'].isin(test['molecule_name'])] print(structures_train.shape) print(structures_test.shape)
code
16120091/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns Fig, axarr= plt.subplots(2, 2, figsize=(12,8)) # define a grid with 2 rows, 1 columns - two #plots all in all insinde axarr Plt1 = train["atom_index_0"].plot.hist(ax = axarr[0][0]) Plt2 = train["atom_index_1"].plot.hist(ax = axarr[0][1]) Plt3 = train["type"].value_counts().plot.hist(ax = axarr[1][0]) Plt3 = train["scalar_coupling_constant"].plot.hist(ax = axarr[1][1], bins =50) """ now for the structures """ structures.columns Fig, axarr = plt.subplots(2, 2, figsize=(12, 8)) Plt1 = structures['molecule_name'].value_counts().plot.hist(ax=axarr[0][0], bins=50) Plt2 = structures['atom_index'].plot.hist(ax=axarr[0][1]) Plt3 = structures['atom'].value_counts().plot.hist(ax=axarr[1][1])
code
16120091/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) """ In this notebook I will see what I can do - EDA-wise without the additional data. I do that because it is not available for us in the test, might be we an regenaerate them - but for now, the basic data is what I want to focus on. """ test = pd.read_csv('../input/test.csv') train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') train.columns
code
1007811/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
X_train.info()
code
1007811/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
y_train = X_train['Survived'].copy() X_train.drop('Survived', axis=1, inplace=True) print(y_train.head()) print(X_train.info())
code
1007811/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) X = pd.read_csv('../input/train.csv', index_col=0) y = X_train['Survived'].copy() X.drop('Survived', axis=1, inplace=True) print(X.head()) print(y.head())
code
1007811/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1007811/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.pipeline import Pipeline pipe = Pipeline([()])
code
1007811/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
X_train.head()
code
2041588/cell_13
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys() top_states = state_without_null[(state_without_null.RegionName == 'NewYork') | (state_without_null.RegionName == 'Washington') | (state_without_null.RegionName == 'Connecticut') | (state_without_null.RegionName == 'Maryland') | (state_without_null.RegionName == 'NewJersey') | (state_without_null.RegionName == 'Alaska') | (state_without_null.RegionName == 'Massachusetts') | (state_without_null.RegionName == 'California') | (state_without_null.RegionName == 'Hawaii') | (state_without_null.RegionName == 'DistrictofColumbia')] pd.pivot_table(top_states, index='Date', columns='RegionName', values='ZHVIPerSqft_AllHomes').head(2)
code
2041588/cell_9
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year plt.subplots(figsize=(14, 6)) state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') plt.title('Top States with Most Home Values According to Zillow', fontsize=25) plt.xlabel('States') plt.ylabel('dollar amount')
code
2041588/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys()
code
2041588/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv')
code
2041588/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys() top_states = state_without_null[(state_without_null.RegionName == 'NewYork') | (state_without_null.RegionName == 'Washington') | (state_without_null.RegionName == 'Connecticut') | (state_without_null.RegionName == 'Maryland') | (state_without_null.RegionName == 'NewJersey') | (state_without_null.RegionName == 'Alaska') | (state_without_null.RegionName == 'Massachusetts') | (state_without_null.RegionName == 'California') | (state_without_null.RegionName == 'Hawaii') | (state_without_null.RegionName == 'DistrictofColumbia')] pd.pivot_table(state_without_null, index='Date', columns='RegionName', values='ZHVIPerSqft_AllHomes') city_time_series.Date = pd.to_datetime(city_time_series.Date) city_time_series.columns
code
2041588/cell_15
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys() top_states = state_without_null[(state_without_null.RegionName == 'NewYork') | (state_without_null.RegionName == 'Washington') | (state_without_null.RegionName == 'Connecticut') | (state_without_null.RegionName == 'Maryland') | (state_without_null.RegionName == 'NewJersey') | (state_without_null.RegionName == 'Alaska') | (state_without_null.RegionName == 'Massachusetts') | (state_without_null.RegionName == 'California') | (state_without_null.RegionName == 'Hawaii') | (state_without_null.RegionName == 'DistrictofColumbia')] pd.pivot_table(state_without_null, index='Date', columns='RegionName', values='ZHVIPerSqft_AllHomes')
code
2041588/cell_17
[ "text_html_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys() top_states = state_without_null[(state_without_null.RegionName == 'NewYork') | (state_without_null.RegionName == 'Washington') | (state_without_null.RegionName == 'Connecticut') | (state_without_null.RegionName == 'Maryland') | (state_without_null.RegionName == 'NewJersey') | (state_without_null.RegionName == 'Alaska') | (state_without_null.RegionName == 'Massachusetts') | (state_without_null.RegionName == 'California') | (state_without_null.RegionName == 'Hawaii') | (state_without_null.RegionName == 'DistrictofColumbia')] pd.pivot_table(state_without_null, index='Date', columns='RegionName', values='ZHVIPerSqft_AllHomes') city_time_series.Date = pd.to_datetime(city_time_series.Date) city_time_series.head()
code
2041588/cell_14
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).keys() top_states = state_without_null[(state_without_null.RegionName == 'NewYork') | (state_without_null.RegionName == 'Washington') | (state_without_null.RegionName == 'Connecticut') | (state_without_null.RegionName == 'Maryland') | (state_without_null.RegionName == 'NewJersey') | (state_without_null.RegionName == 'Alaska') | (state_without_null.RegionName == 'Massachusetts') | (state_without_null.RegionName == 'California') | (state_without_null.RegionName == 'Hawaii') | (state_without_null.RegionName == 'DistrictofColumbia')] pd.pivot_table(top_states, index='Date', columns='RegionName', values='ZHVIPerSqft_AllHomes').plot(kind='line', figsize=(20, 15), legend=True) plt.xlabel('Year', fontsize=15) plt.ylabel('per sqft', fontsize=15) plt.title('Changes is price overtime for top ten expensive states', fontsize=24)
code
2041588/cell_10
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') cities_crosswalk = pd.read_csv('../input/cities_crosswalk.csv') city_time_series = pd.read_csv('../input/City_time_series.csv') county_time_series = pd.read_csv('../input/County_time_series.csv') metro_time_series = pd.read_csv('../input/Metro_time_series.csv') neighborhood_time_series = pd.read_csv('../input/Neighborhood_time_series.csv') state_time_series = pd.read_csv('../input/State_time_series.csv') zip_time_series = pd.read_csv('../input/Zip_time_series.csv') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZHVI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year state_without_null.groupby(state_without_null.RegionName)['ZHVI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') state_time_series.Date = pd.to_datetime(state_time_series.Date) state_without_null = state_time_series.dropna(subset=['ZRI_AllHomes'], how='any') state_without_null.Date = state_without_null.Date.dt.year plt.subplots(figsize=(14, 6)) state_without_null.groupby(state_without_null.RegionName)['ZRI_AllHomes'].mean().sort_values().tail(10).plot(kind='bar') plt.title('Top States with Most Rent Values According to Zillow', fontsize=25) plt.xlabel('States') plt.ylabel('dollar amount')
code
2041588/cell_5
[ "text_html_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) import matplotlib.pyplot as plt plt.style.use('fivethirtyeight')
code
32071028/cell_9
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertForQuestionAnswering from wasabi import msg import json import os import pandas as pd import time import torch import pandas as pd import json import os meta_path = '/kaggle/input/CORD-19-research-challenge/metadata.csv' def get_data_texts(): meta_data = pd.read_csv(meta_path, low_memory=True) paperID2year = {} for _, meta_row in meta_data.iterrows(): if pd.notnull(meta_row['pmcid']): paperID2year[meta_row['pmcid']] = meta_row['publish_time'] if pd.notnull(meta_row['sha']): paper_ids = meta_row['sha'].split('; ') for paper_id in paper_ids: paperID2year[paper_id] = meta_row['publish_time'] data_text = {} index2paperID = {} index2paperPath = {} i = 0 for dirname, _, filenames in os.walk('/kaggle/input/CORD-19-research-challenge'): for filename in filenames: paper_path = os.path.join(dirname, filename) if paper_path[-4:] != 'json': continue with open(paper_path) as json_file: article_data = json.load(json_file) paper_date = paperID2year.get(article_data['paper_id'], None) if paper_date: if paper_date[0:4] == '2020': data_text[article_data['paper_id']] = ' '.join([d['text'] for d in article_data['body_text']]) index2paperID[i] = article_data['paper_id'] index2paperPath[i] = paper_path i += 1 return (data_text, index2paperID, index2paperPath) data_text, index2paperID, index2paperPath = get_data_texts() from transformers import BertTokenizer, BertForQuestionAnswering from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import torch from wasabi import msg import time class QuestionCovid: def __init__(self, TOKENIZER, MODEL, index2paperID, index2paperPath): self.TOKENIZER = TOKENIZER self.MODEL = MODEL self.index2paperID = index2paperID self.index2paperPath = index2paperPath def fit(self, data_text): self.TFIDF_VECTORIZER = TfidfVectorizer() with msg.loading(' Fitting TFIDF'): start = time.time() self.TFIDF_VECTORIZER.fit(data_text.values()) msg.good(' TFIDF fitted - Took {:.2f}s'.format(time.time() - start)) with msg.loading(' Creating Articles matrix'): start = time.time() self.ARTICLES_MATRIX = self.TFIDF_VECTORIZER.transform(data_text.values()) msg.good(' Article matrix created - Took {:.2f}s'.format(time.time() - start)) def get_answer(self, text, question): input_text = '[CLS] ' + question + ' [SEP] ' + text + ' [SEP]' input_ids = self.TOKENIZER.encode(input_text) token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] start_scores, end_scores = self.MODEL(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = self.TOKENIZER.convert_ids_to_tokens(input_ids) answer = ' '.join(all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]) score = round(start_scores.max().item(), 2) return (answer, score) def predict(self, question): query = self.TFIDF_VECTORIZER.transform([question + ' covid']) best_matches = sorted([(i, c) for i, c in enumerate(cosine_similarity(query, self.ARTICLES_MATRIX).ravel())], key=lambda x: x[1], reverse=True) for i, tfidf_score in best_matches[:5]: best_score = 0 best_answer = 'No answer' best_text = 'No snippet' paper_path = self.index2paperPath[i] with open(paper_path) as json_file: article_data = json.load(json_file) text = ' '.join([d['text'] for d in article_data['body_text']]) sentences = text.split('.') n = 3 sentences_grouped = ['.'.join(sentences[i:i + n]) for i in range(0, len(sentences), n)] for subtext in sentences_grouped: answer, score = self.get_answer(subtext, question) if score > best_score: best_score = score best_answer = answer best_text = subtext yield (self.index2paperID[i], best_answer, best_score, best_text, tfidf_score) TOKENIZER = BertTokenizer.from_pretrained('bert-base-uncased') MODEL = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') covid_q = QuestionCovid(TOKENIZER, MODEL, index2paperID, index2paperPath) covid_q.fit(data_text)
code
32071028/cell_8
[ "text_plain_output_1.png" ]
from transformers import BertTokenizer, BertForQuestionAnswering TOKENIZER = BertTokenizer.from_pretrained('bert-base-uncased') MODEL = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
code
32071028/cell_16
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertForQuestionAnswering from wasabi import msg import json import os import pandas as pd import time import torch import pandas as pd import json import os meta_path = '/kaggle/input/CORD-19-research-challenge/metadata.csv' def get_data_texts(): meta_data = pd.read_csv(meta_path, low_memory=True) paperID2year = {} for _, meta_row in meta_data.iterrows(): if pd.notnull(meta_row['pmcid']): paperID2year[meta_row['pmcid']] = meta_row['publish_time'] if pd.notnull(meta_row['sha']): paper_ids = meta_row['sha'].split('; ') for paper_id in paper_ids: paperID2year[paper_id] = meta_row['publish_time'] data_text = {} index2paperID = {} index2paperPath = {} i = 0 for dirname, _, filenames in os.walk('/kaggle/input/CORD-19-research-challenge'): for filename in filenames: paper_path = os.path.join(dirname, filename) if paper_path[-4:] != 'json': continue with open(paper_path) as json_file: article_data = json.load(json_file) paper_date = paperID2year.get(article_data['paper_id'], None) if paper_date: if paper_date[0:4] == '2020': data_text[article_data['paper_id']] = ' '.join([d['text'] for d in article_data['body_text']]) index2paperID[i] = article_data['paper_id'] index2paperPath[i] = paper_path i += 1 return (data_text, index2paperID, index2paperPath) data_text, index2paperID, index2paperPath = get_data_texts() from transformers import BertTokenizer, BertForQuestionAnswering from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import torch from wasabi import msg import time class QuestionCovid: def __init__(self, TOKENIZER, MODEL, index2paperID, index2paperPath): self.TOKENIZER = TOKENIZER self.MODEL = MODEL self.index2paperID = index2paperID self.index2paperPath = index2paperPath def fit(self, data_text): self.TFIDF_VECTORIZER = TfidfVectorizer() with msg.loading(' Fitting TFIDF'): start = time.time() self.TFIDF_VECTORIZER.fit(data_text.values()) msg.good(' TFIDF fitted - Took {:.2f}s'.format(time.time() - start)) with msg.loading(' Creating Articles matrix'): start = time.time() self.ARTICLES_MATRIX = self.TFIDF_VECTORIZER.transform(data_text.values()) msg.good(' Article matrix created - Took {:.2f}s'.format(time.time() - start)) def get_answer(self, text, question): input_text = '[CLS] ' + question + ' [SEP] ' + text + ' [SEP]' input_ids = self.TOKENIZER.encode(input_text) token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] start_scores, end_scores = self.MODEL(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = self.TOKENIZER.convert_ids_to_tokens(input_ids) answer = ' '.join(all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]) score = round(start_scores.max().item(), 2) return (answer, score) def predict(self, question): query = self.TFIDF_VECTORIZER.transform([question + ' covid']) best_matches = sorted([(i, c) for i, c in enumerate(cosine_similarity(query, self.ARTICLES_MATRIX).ravel())], key=lambda x: x[1], reverse=True) for i, tfidf_score in best_matches[:5]: best_score = 0 best_answer = 'No answer' best_text = 'No snippet' paper_path = self.index2paperPath[i] with open(paper_path) as json_file: article_data = json.load(json_file) text = ' '.join([d['text'] for d in article_data['body_text']]) sentences = text.split('.') n = 3 sentences_grouped = ['.'.join(sentences[i:i + n]) for i in range(0, len(sentences), n)] for subtext in sentences_grouped: answer, score = self.get_answer(subtext, question) if score > best_score: best_score = score best_answer = answer best_text = subtext yield (self.index2paperID[i], best_answer, best_score, best_text, tfidf_score) TOKENIZER = BertTokenizer.from_pretrained('bert-base-uncased') MODEL = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') covid_q = QuestionCovid(TOKENIZER, MODEL, index2paperID, index2paperPath) covid_q.fit(data_text) challenge_tasks = [{'task': 'What is known about transmission, incubation, and environmental stability?', 'questions': ['Is the virus transmitted by aerosol, droplets, food, close contact, fecal matter, or water?', 'How long is the incubation period for the virus?', 'Can the virus be transmitted asymptomatically or during the incubation period?', 'How does weather, heat, and humidity affect the tramsmission of 2019-nCoV?', 'How long can the 2019-nCoV virus remain viable on common surfaces?']}, {'task': 'What do we know about COVID-19 risk factors?', 'questions': ['What risk factors contribute to the severity of 2019-nCoV?', 'How does hypertension affect patients?', 'How does heart disease affect patients?', 'How does copd affect patients?', 'How does smoking affect patients?', 'How does pregnancy affect patients?', 'What is the fatality rate of 2019-nCoV?', 'What public health policies prevent or control the spread of 2019-nCoV?']}, {'task': 'What do we know about virus genetics, origin, and evolution?', 'questions': ['Can animals transmit 2019-nCoV?', 'What animal did 2019-nCoV come from?', 'What real-time genomic tracking tools exist?', 'What geographic variations are there in the genome of 2019-nCoV?', 'What effors are being done in asia to prevent further outbreaks?']}, {'task': 'What do we know about vaccines and therapeutics?', 'questions': ['What drugs or therapies are being investigated?', 'Are anti-inflammatory drugs recommended?']}, {'task': 'What do we know about non-pharmaceutical interventions?', 'questions': ['Which non-pharmaceutical interventions limit tramsission?', 'What are most important barriers to compliance?']}, {'task': 'What has been published about medical care?', 'questions': ['How does extracorporeal membrane oxygenation affect 2019-nCoV patients?', 'What telemedicine and cybercare methods are most effective?', 'How is artificial intelligence being used in real time health delivery?', 'What adjunctive or supportive methods can help patients?']}, {'task': 'What do we know about diagnostics and surveillance?', 'questions': ['What diagnostic tests (tools) exist or are being developed to detect 2019-nCoV?']}, {'task': 'Other interesting questions', 'questions': ['What is the immune system response to 2019-nCoV?', 'Can personal protective equipment prevent the transmission of 2019-nCoV?', 'Can 2019-nCoV infect patients a second time?']}] question = 'How long is the incubation period for the virus?' with open('/kaggle/working/answers.jsonl', 'w') as f: for task_id, task in enumerate(challenge_tasks): task_question = task['task'] msg.text(f'Task {task_id}: {task_question}') questions = task['questions'] for question_id, question in enumerate(questions): with msg.loading(f'Answering question: {question}'): start = time.time() for i, (paper_id, answer, score, snippet, tfidf_score) in enumerate(covid_q.predict(question)): chunk = json.dumps({'task_id': task_id, 'task': task_question, 'question_id': question_id, 'question': question, 'paper_id': paper_id, 'answer': answer, 'snippet': snippet, 'bert_score': score, 'tfidf_score': tfidf_score}) f.write(chunk + '\n') msg.text('\n') msg.text(f'Answer {i}: {answer}') time_elapsed = time.time() - start msg.good(f'Question {question_id} answered - Took {time_elapsed}s')
code
32071028/cell_14
[ "text_plain_output_5.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertForQuestionAnswering from wasabi import msg import json import os import pandas as pd import time import torch import pandas as pd import json import os meta_path = '/kaggle/input/CORD-19-research-challenge/metadata.csv' def get_data_texts(): meta_data = pd.read_csv(meta_path, low_memory=True) paperID2year = {} for _, meta_row in meta_data.iterrows(): if pd.notnull(meta_row['pmcid']): paperID2year[meta_row['pmcid']] = meta_row['publish_time'] if pd.notnull(meta_row['sha']): paper_ids = meta_row['sha'].split('; ') for paper_id in paper_ids: paperID2year[paper_id] = meta_row['publish_time'] data_text = {} index2paperID = {} index2paperPath = {} i = 0 for dirname, _, filenames in os.walk('/kaggle/input/CORD-19-research-challenge'): for filename in filenames: paper_path = os.path.join(dirname, filename) if paper_path[-4:] != 'json': continue with open(paper_path) as json_file: article_data = json.load(json_file) paper_date = paperID2year.get(article_data['paper_id'], None) if paper_date: if paper_date[0:4] == '2020': data_text[article_data['paper_id']] = ' '.join([d['text'] for d in article_data['body_text']]) index2paperID[i] = article_data['paper_id'] index2paperPath[i] = paper_path i += 1 return (data_text, index2paperID, index2paperPath) data_text, index2paperID, index2paperPath = get_data_texts() from transformers import BertTokenizer, BertForQuestionAnswering from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import torch from wasabi import msg import time class QuestionCovid: def __init__(self, TOKENIZER, MODEL, index2paperID, index2paperPath): self.TOKENIZER = TOKENIZER self.MODEL = MODEL self.index2paperID = index2paperID self.index2paperPath = index2paperPath def fit(self, data_text): self.TFIDF_VECTORIZER = TfidfVectorizer() with msg.loading(' Fitting TFIDF'): start = time.time() self.TFIDF_VECTORIZER.fit(data_text.values()) msg.good(' TFIDF fitted - Took {:.2f}s'.format(time.time() - start)) with msg.loading(' Creating Articles matrix'): start = time.time() self.ARTICLES_MATRIX = self.TFIDF_VECTORIZER.transform(data_text.values()) msg.good(' Article matrix created - Took {:.2f}s'.format(time.time() - start)) def get_answer(self, text, question): input_text = '[CLS] ' + question + ' [SEP] ' + text + ' [SEP]' input_ids = self.TOKENIZER.encode(input_text) token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] start_scores, end_scores = self.MODEL(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = self.TOKENIZER.convert_ids_to_tokens(input_ids) answer = ' '.join(all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]) score = round(start_scores.max().item(), 2) return (answer, score) def predict(self, question): query = self.TFIDF_VECTORIZER.transform([question + ' covid']) best_matches = sorted([(i, c) for i, c in enumerate(cosine_similarity(query, self.ARTICLES_MATRIX).ravel())], key=lambda x: x[1], reverse=True) for i, tfidf_score in best_matches[:5]: best_score = 0 best_answer = 'No answer' best_text = 'No snippet' paper_path = self.index2paperPath[i] with open(paper_path) as json_file: article_data = json.load(json_file) text = ' '.join([d['text'] for d in article_data['body_text']]) sentences = text.split('.') n = 3 sentences_grouped = ['.'.join(sentences[i:i + n]) for i in range(0, len(sentences), n)] for subtext in sentences_grouped: answer, score = self.get_answer(subtext, question) if score > best_score: best_score = score best_answer = answer best_text = subtext yield (self.index2paperID[i], best_answer, best_score, best_text, tfidf_score) TOKENIZER = BertTokenizer.from_pretrained('bert-base-uncased') MODEL = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') covid_q = QuestionCovid(TOKENIZER, MODEL, index2paperID, index2paperPath) covid_q.fit(data_text) question = 'How long is the incubation period for the virus?' for i, (paper_id, answer, score, snippet, tfidf_score) in enumerate(covid_q.predict(question)): print(f'Answer {i}: {answer}') print(f'Text segment: {snippet}') print(f'Paper id: {paper_id}')
code
122264416/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) Aquifer_Petrignano.dropna(subset=['Depth_to_Groundwater_P25'], inplace=True) Lake_Bilancino.dropna(subset=['Flow_Rate'], inplace=True) Aquifer_Petrignano.describe()
code
122264416/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1)
code
122264416/cell_26
[ "text_html_output_1.png" ]
from datetime import datetime, date import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') def fillna_from_list(column, list_): """Function get column and list for replace missing values""" list_for_df = [] i = -1 for el in column: if el == -1000000: i += 1 list_for_df.append(list_.iloc[i + 1]) else: list_for_df.append(el) return list_for_df pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) Aquifer_Petrignano.dropna(subset=['Depth_to_Groundwater_P25'], inplace=True) Lake_Bilancino.dropna(subset=['Flow_Rate'], inplace=True) # To compelte the data, as naive method, we will use ffill f, ax = plt.subplots(nrows=7, ncols=1, figsize=(20, 50)) for i, column in enumerate(Aquifer_Petrignano.drop('Date', axis=1).columns): sns.lineplot(x=Aquifer_Petrignano['Date'], y=Aquifer_Petrignano[column], ax=ax[i], color='dodgerblue') ax[i].set_title('Feature: {}'.format(column), fontsize=14) ax[i].set_ylabel(ylabel=column, fontsize=14) ax[i].set_xlim([date(2006, 1, 1), date(2020, 6, 30)]) Aquifer_Petrignano.drop(['Depth_to_Groundwater_P24', 'Temperature_Petrignano'], axis=1, inplace=True) print('Max date from Aquifer Temperature:', max(Aquifer_Petrignano[Aquifer_Petrignano['Temperature_Bastia_Umbra'].isna() == False]['Date']), '\nMin data from Temperature:', min(Aquifer_Petrignano[Aquifer_Petrignano['Temperature_Bastia_Umbra'].isna() == False]['Date'])) print('Count days from Aquifer Temperature:', int((max(Aquifer_Petrignano[Aquifer_Petrignano['Temperature_Bastia_Umbra'].isna() == False]['Date']) - min(Aquifer_Petrignano[Aquifer_Petrignano['Temperature_Bastia_Umbra'].isna() == False]['Date'])) / np.timedelta64(1, 'D')))
code
122264416/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano.info()
code
122264416/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) print('Max date from Aquifer Petrignano:', max(Aquifer_Petrignano.Date), '\nMin data from AquiferPetrignano:', min(Aquifer_Petrignano.Date)) print('Count days from Aquifer Petrignano:', int((max(Aquifer_Petrignano.Date) - min(Aquifer_Petrignano.Date)) / np.timedelta64(1, 'D'))) print('Lenght data from Aquifer Petrignano:', len(Aquifer_Petrignano)) print('\nMax date from Lake Bilancino :', max(Lake_Bilancino.Date), '\nMin data from Lake Bilancino:', min(Lake_Bilancino.Date)) print('Count days from Lake Bilancino:', int((max(Lake_Bilancino.Date) - min(Lake_Bilancino.Date)) / np.timedelta64(1, 'D'))) print('Lenght data from Lake Bilancino:', len(Lake_Bilancino))
code
122264416/cell_8
[ "image_output_1.png" ]
import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Lake_Bilancino.info()
code
122264416/cell_15
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) msno.heatmap(Aquifer_Petrignano)
code
122264416/cell_16
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) msno.heatmap(Lake_Bilancino)
code
122264416/cell_24
[ "text_html_output_1.png" ]
from datetime import datetime, date import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') def fillna_from_list(column, list_): """Function get column and list for replace missing values""" list_for_df = [] i = -1 for el in column: if el == -1000000: i += 1 list_for_df.append(list_.iloc[i + 1]) else: list_for_df.append(el) return list_for_df pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) Aquifer_Petrignano.dropna(subset=['Depth_to_Groundwater_P25'], inplace=True) Lake_Bilancino.dropna(subset=['Flow_Rate'], inplace=True) f, ax = plt.subplots(nrows=7, ncols=1, figsize=(20, 50)) for i, column in enumerate(Aquifer_Petrignano.drop('Date', axis=1).columns): sns.lineplot(x=Aquifer_Petrignano['Date'], y=Aquifer_Petrignano[column], ax=ax[i], color='dodgerblue') ax[i].set_title('Feature: {}'.format(column), fontsize=14) ax[i].set_ylabel(ylabel=column, fontsize=14) ax[i].set_xlim([date(2006, 1, 1), date(2020, 6, 30)])
code
122264416/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano['Date'] = pd.to_datetime(Aquifer_Petrignano['Date'], format='%d/%m/%Y') Lake_Bilancino['Date'] = pd.to_datetime(Lake_Bilancino['Date'], format='%d/%m/%Y') pd.concat([pd.Series(Aquifer_Petrignano.isnull().sum()).rename_axis('Aquifer_Petrignano_features/target').to_frame('Missing Value Count').reset_index(), pd.Series(Lake_Bilancino.isnull().sum()).rename_axis('Lake_Bilancino_features/target').to_frame('Missing Value Count').reset_index()], axis=1) Aquifer_Petrignano.dropna(subset=['Depth_to_Groundwater_P25'], inplace=True) Lake_Bilancino.dropna(subset=['Flow_Rate'], inplace=True) Lake_Bilancino.describe()
code
122264416/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd Aquifer_Petrignano_input = pd.read_csv('../input/acea-water-prediction/Aquifer_Petrignano.csv') Lake_Bilancino_input = pd.read_csv('../input/acea-water-prediction/Lake_Bilancino.csv') Aquifer_Petrignano = Aquifer_Petrignano_input.copy() Lake_Bilancino = Lake_Bilancino_input.copy() Aquifer_Petrignano.head()
code
72063152/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) print('X_train data shape: ', X_train_scaled.shape) print('X_val data shape: ', X_val_scaled.shape) print('y_train shape: ', y_train.shape) print('y_val shape: ', y_val.shape)
code
72063152/cell_9
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub
code
72063152/cell_25
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) target_pred_lr = lr.predict(X_test_scaled) target_pred_lr
code
72063152/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.head()
code
72063152/cell_23
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) print('RMSE for Linear Regression Model: ', np.sqrt(mse(y_val, y_preds_lr)))
code
72063152/cell_33
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) target_pred_ridge = ridge.predict(X_test_scaled) sub_ridge = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_ridge['target'] = target_pred_ridge sub_ridge.to_csv('sub_ridge.csv', index=False) sub_ridge.head()
code
72063152/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') test.head()
code
72063152/cell_40
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) target_pred_for = for_reg.predict(X_test_scaled) target_pred_for
code
72063152/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) print('RMSE of Ridge Regression: ', np.sqrt(mse(y_val, y_preds_ridge)))
code
72063152/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) print('RMSE for Random Forest Regressor: ', np.sqrt(mse(y_val, y_preds_for)))
code
72063152/cell_41
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) sub_ridge = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) for_reg = RandomForestRegressor() for_reg.fit(X_train_scaled, y_train) y_preds_for = for_reg.predict(X_val_scaled) target_pred_for = for_reg.predict(X_test_scaled) target_pred_for sub_for = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_for['target'] = target_pred_for sub_for.head()
code
72063152/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') test.info()
code
72063152/cell_18
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_test.info()
code
72063152/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_train.head()
code
72063152/cell_16
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_train.info()
code
72063152/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] X_test.head()
code
72063152/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) print('RMSE for Decision Tree Regressor: ', np.sqrt(mse(y_val, y_preds_tree)))
code
72063152/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) target_pred_ridge = ridge.predict(X_test_scaled) target_pred_ridge
code
72063152/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) print('Training Data Shape: ', train.shape) print('Testing Data Shape: ', test.shape)
code
72063152/cell_27
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) target_pred_lr = lr.predict(X_test_scaled) sub_lr = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') sub_lr['target'] = target_pred_lr sub_lr.to_csv('sub_lr.csv', index=False) sub_lr.head()
code
72063152/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.info()
code
72063152/cell_36
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train = train.drop('id', axis=1) test = test.drop('id', axis=1) cols = test.columns X_train = train[cols] X_test = test.copy() y = train['target'] ss = StandardScaler() X_train_scaled = ss.fit_transform(X_train) X_test_scaled = ss.fit_transform(X_test) lr = LinearRegression() lr.fit(X_train_scaled, y_train) y_preds_lr = lr.predict(X_val_scaled) ridge = Ridge() ridge.fit(X_train_scaled, y_train) y_preds_ridge = ridge.predict(X_val_scaled) tree_reg = DecisionTreeRegressor() tree_reg.fit(X_train_scaled, y_train) y_preds_tree = tree_reg.predict(X_val_scaled) y_preds_tree
code
128012943/cell_42
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import OneHotEncoder from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures x_testfeatures = pd.DataFrame(x_test_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_testfeatures x_train_new = pd.concat([x_train, x_trainfeatures.set_axis(x_train.index)], axis=1) x_train_new x_train_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_train_new x_test_new = pd.concat([x_test, x_testfeatures.set_axis(x_test.index)], axis=1) x_test_new x_test_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_test_new from sklearn.ensemble import RandomForestRegressor RFR_model = RandomForestRegressor(n_estimators=100, criterion='squared_error', random_state=1, n_jobs=-1) RFR_model.fit(x_train_new, y_train) y_pred_RFR = RFR_model.predict(x_test_new) from sklearn import metrics from sklearn.tree import DecisionTreeRegressor DT_regressor = DecisionTreeRegressor(max_depth=10) DT_regressor.fit(x_train_new, y_train) y_pred_DT = DT_regressor.predict(x_test_new) print(metrics.r2_score(y_test, y_pred_DT))
code
128012943/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') ax = sns.lmplot(x='age', y='expenses', data=df_insure, hue='smoker', palette='Set1')
code
128012943/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') sns.displot(data=df_insure['expenses']) plt.show()
code
128012943/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure['smoker'].value_counts()
code
128012943/cell_25
[ "image_output_1.png" ]
x_train.head()
code
128012943/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure.head(5)
code
128012943/cell_34
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures x_testfeatures = pd.DataFrame(x_test_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_testfeatures x_train_new = pd.concat([x_train, x_trainfeatures.set_axis(x_train.index)], axis=1) x_train_new
code
128012943/cell_30
[ "image_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_train_array
code
128012943/cell_33
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures x_testfeatures = pd.DataFrame(x_test_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_testfeatures
code
128012943/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure.groupby('children')['expenses'].sum().plot(kind='bar') plt.ylabel('Insurance charges') plt.show()
code
128012943/cell_40
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures x_testfeatures = pd.DataFrame(x_test_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_testfeatures x_train_new = pd.concat([x_train, x_trainfeatures.set_axis(x_train.index)], axis=1) x_train_new x_train_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_train_new x_test_new = pd.concat([x_test, x_testfeatures.set_axis(x_test.index)], axis=1) x_test_new x_test_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_test_new from sklearn.linear_model import LinearRegression LR_model = LinearRegression() LR_model.fit(x_train_new, y_train) y_pred = LR_model.predict(x_test_new) r2_score(y_test, y_pred)
code
128012943/cell_26
[ "image_output_1.png" ]
x_train.shape
code
128012943/cell_41
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures x_testfeatures = pd.DataFrame(x_test_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_testfeatures x_train_new = pd.concat([x_train, x_trainfeatures.set_axis(x_train.index)], axis=1) x_train_new x_train_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_train_new x_test_new = pd.concat([x_test, x_testfeatures.set_axis(x_test.index)], axis=1) x_test_new x_test_new.drop(['sex', 'smoker', 'region'], axis=1, inplace=True) x_test_new from sklearn.ensemble import RandomForestRegressor RFR_model = RandomForestRegressor(n_estimators=100, criterion='squared_error', random_state=1, n_jobs=-1) RFR_model.fit(x_train_new, y_train) y_pred_RFR = RFR_model.predict(x_test_new) from sklearn import metrics print(metrics.r2_score(y_test, y_pred_RFR))
code
128012943/cell_2
[ "image_output_1.png" ]
import seaborn as sns import matplotlib.pyplot as plt sns.set() import warnings warnings.filterwarnings('ignore')
code
128012943/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure.groupby('region')['expenses'].sum().plot(kind='bar') plt.ylabel('Insurance charges') plt.show()
code
128012943/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128012943/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure.describe()
code
128012943/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') df_insure.groupby('region')['smoker'].count().plot(kind='bar') plt.ylabel('No. of smokers') plt.show()
code
128012943/cell_32
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_insure = pd.read_csv('/kaggle/input/medical-insurance/med-insurance.csv') x_train.shape x_test.shape from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(drop='first') x_train_array = ohe.fit_transform(x_train[['sex', 'smoker', 'region']]).toarray() x_test_array = ohe.transform(x_test[['sex', 'smoker', 'region']]).toarray() x_trainfeatures = pd.DataFrame(x_train_array, columns=['male', 'smokes', 'northwest', 'southeast', 'southwest']) x_trainfeatures
code