path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
90118084/cell_22 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv')
columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale']
values = data.iloc[1:, :].values
data = pd.DataFrame(values, columns=columns)
for col in columns[2:]:
data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float')
data.sample(5)
countries = {val: df for val, df in data.groupby('Country')}
def repeated_measures_effect_size(country, col1, col2):
col1, col2 = (countries[country][col1], countries[country][col2])
m1, m2 = (np.mean(col1), np.mean(col2))
s1, s2 = (np.std(col1), np.std(col2))
r = col1.corr(col2)
s_z = np.sqrt(s1 ** 2 + s2 ** 2 - 2 * r * s1 * s2)
s_rm = s_z / np.sqrt(2 * (1 - r))
return (m1 - m2) / s_rm
effect_sizes_dying = {c: repeated_measures_effect_size(c, 'ProbDyingMale', 'ProbDyingFemale') for c in countries}
effect_sizes_dying = dict(sorted(effect_sizes_dying.items(), key=lambda x: x[1]))
for c in reversed(list(effect_sizes_dying.keys())[-5:]):
print(c) | code |
90118084/cell_27 | [
"image_output_1.png"
] | from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def visualize_word_counts(counts):
wc = WordCloud(max_font_size=130, min_font_size=25, colormap='tab20', background_color='white', prefer_horizontal=0.95, width=2100, height=700, random_state=0)
cloud = wc.generate_from_frequencies(counts)
plt.axis('off')
data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv')
columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale']
values = data.iloc[1:, :].values
data = pd.DataFrame(values, columns=columns)
for col in columns[2:]:
data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float')
data.sample(5)
countries = {val: df for val, df in data.groupby('Country')}
def repeated_measures_effect_size(country, col1, col2):
col1, col2 = (countries[country][col1], countries[country][col2])
m1, m2 = (np.mean(col1), np.mean(col2))
s1, s2 = (np.std(col1), np.std(col2))
r = col1.corr(col2)
s_z = np.sqrt(s1 ** 2 + s2 ** 2 - 2 * r * s1 * s2)
s_rm = s_z / np.sqrt(2 * (1 - r))
return (m1 - m2) / s_rm
plt.xticks(np.arange(-10, 41, 5))
country_gender_dying_corr = {}
country_gender_suicide_corr = {}
for val, df in data.groupby('Country'):
corr_gender_dying = df['ProbDyingMale'].corr(df['ProbDyingFemale'])
corr_gender_suicide = df['SuicideMale'].corr(df['SuicideFemale'])
country_gender_dying_corr[val] = corr_gender_dying
country_gender_suicide_corr[val] = corr_gender_suicide
plt.figure(figsize=(15, 5))
plt.hist(country_gender_dying_corr.values(), bins=20, alpha=0.4, label='dying')
plt.hist(country_gender_suicide_corr.values(), bins=20, alpha=0.4, label='suicide')
plt.legend()
plt.grid()
plt.show() | code |
33105771/cell_4 | [
"text_plain_output_1.png"
] | import nltk
import os
import pandas as pd
from datetime import datetime, date, timedelta
import numpy as np
import re
import os
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
from sklearn.model_selection import cross_val_score, StratifiedShuffleSplit, train_test_split, GroupShuffleSplit
from langdetect import detect
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from keras.wrappers.scikit_learn import KerasClassifier
from textblob import TextBlob
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' | code |
33105771/cell_6 | [
"text_plain_output_1.png"
] | from langdetect import detect
import pandas as pd
npis_csv = '/kaggle/input/covid19-challenges/npi_canada.csv'
raw_data = pd.read_csv(npis_csv, encoding='ISO-8859-1')
df = raw_data.dropna(how='any', subset=['start_date', 'region', 'intervention_category'])
df['region'] = df['region'].replace('Newfoundland', 'Newfoundland and Labrador')
num_rows_removed = len(raw_data) - len(df)
regions = list(set(df.region.values))
num_cats = list(set(df.intervention_category.values))
num_interventions = len(num_cats)
df['start_date'] = pd.to_datetime(df['start_date'], format='%Y-%m-%d')
earliest_start_date = df['start_date'].min()
latest_start_date = df['start_date'].max()
num_days = latest_start_date - earliest_start_date
merged_tweets_csv = '/kaggle/input/npi-twitterverse-april-30/tweets_to_intervention_category.source_urls.tsv'
colnames = ['npi_record_id', 'intervention_category', 'oxford_government_response_category', 'source_url', 'id', 'conversation_id', 'created_at', 'date', 'time', 'timezone', 'user_id', 'username', 'name', 'place', 'tweet', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count', 'likes_count', 'hashtags', 'cashtags', 'link', 'retweet', 'quote_url', 'video', 'near', 'geo', 'source', 'user_rt_id', 'user_rt', 'retweet_id', 'reply_to', 'retweet_date', 'translate', 'trans_src', 'trans_dest']
tweets_df = pd.read_csv(merged_tweets_csv, encoding='utf-8', error_bad_lines=False, engine='python', names=colnames)
tweets_df = tweets_df.dropna(how='any', subset=['npi_record_id', 'intervention_category', 'tweet'])
data = []
for index, row in tweets_df.iterrows():
tweet = row['tweet'].strip()
if tweet != '':
language = ''
try:
language = detect(tweet)
except:
language = 'error'
if language == 'en':
data.append([row['intervention_category'], tweet])
tweets_df_en = pd.DataFrame(data, columns=['intervention_category', 'tweet'])
print('Number of non-english tweets = {}'.format(len(tweets_df) - len(tweets_df_en)))
print('Number of tweets collected = {}'.format(len(tweets_df_en))) | code |
33105771/cell_19 | [
"text_plain_output_1.png"
] | # download sentiment map
!wget https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1048/Emoji_Sentiment_Data_v1.0.csv | code |
33105771/cell_8 | [
"text_html_output_2.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"text_html_output_3.png"
] | ex1 = "Here's a wrap of the latest coronavirus news in Canada: 77 cases, one death, an outbreak in a B.C. nursing home and Ottawa asks provinces about their critical supply gaps. https://www.theglobeandmail.com/canada/article-bc-records-canadas-first-coronavirus-death/"
ex2 = 'B.C. records Canadaβs first coronavirus death http://dlvr.it/RRZPGL pic.twitter.com/pn8T4yumQJ'
print('Example 1 = {}'.format(ex1))
print('Example 2 = {}'.format(ex2)) | code |
33105771/cell_3 | [
"text_plain_output_1.png"
] | # download necessary packages
!pip install langdetect
!pip install emoji | code |
33105771/cell_17 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from langdetect import detect
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from textblob import TextBlob
import nltk
import nltk
import os
import pandas as pd
import re
import re
import pandas as pd
from datetime import datetime, date, timedelta
import numpy as np
import re
import os
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
from sklearn.model_selection import cross_val_score, StratifiedShuffleSplit, train_test_split, GroupShuffleSplit
from langdetect import detect
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from keras.wrappers.scikit_learn import KerasClassifier
from textblob import TextBlob
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
npis_csv = '/kaggle/input/covid19-challenges/npi_canada.csv'
raw_data = pd.read_csv(npis_csv, encoding='ISO-8859-1')
df = raw_data.dropna(how='any', subset=['start_date', 'region', 'intervention_category'])
df['region'] = df['region'].replace('Newfoundland', 'Newfoundland and Labrador')
num_rows_removed = len(raw_data) - len(df)
regions = list(set(df.region.values))
num_cats = list(set(df.intervention_category.values))
num_interventions = len(num_cats)
df['start_date'] = pd.to_datetime(df['start_date'], format='%Y-%m-%d')
earliest_start_date = df['start_date'].min()
latest_start_date = df['start_date'].max()
num_days = latest_start_date - earliest_start_date
merged_tweets_csv = '/kaggle/input/npi-twitterverse-april-30/tweets_to_intervention_category.source_urls.tsv'
colnames = ['npi_record_id', 'intervention_category', 'oxford_government_response_category', 'source_url', 'id', 'conversation_id', 'created_at', 'date', 'time', 'timezone', 'user_id', 'username', 'name', 'place', 'tweet', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count', 'likes_count', 'hashtags', 'cashtags', 'link', 'retweet', 'quote_url', 'video', 'near', 'geo', 'source', 'user_rt_id', 'user_rt', 'retweet_id', 'reply_to', 'retweet_date', 'translate', 'trans_src', 'trans_dest']
tweets_df = pd.read_csv(merged_tweets_csv, encoding='utf-8', error_bad_lines=False, engine='python', names=colnames)
tweets_df = tweets_df.dropna(how='any', subset=['npi_record_id', 'intervention_category', 'tweet'])
data = []
for index, row in tweets_df.iterrows():
tweet = row['tweet'].strip()
if tweet != '':
language = ''
try:
language = detect(tweet)
except:
language = 'error'
if language == 'en':
data.append([row['intervention_category'], tweet])
tweets_df_en = pd.DataFrame(data, columns=['intervention_category', 'tweet'])
import re
import nltk
nltk.download('punkt')
def tweet_preprocess(text):
"""Return tokenized text with
rsemoved URLs, usernames, hashtags, weird characters, repeated
characters, stop words, and numbers
"""
text = text.lower()
text = re.sub('((www\\.[^\\s]+)|(https?://[^\\s]+))', 'URL', text)
text = re.sub('@[A-Za-z0-9]+', 'USER', text)
text = re.sub('#([^\\s]+)', '\\1', text)
text = re.sub('[^a-zA-Z0-9-*. ]', ' ', text)
words = word_tokenize(text)
ignore = set(stopwords.words('english'))
more_ignore = {'at', 'and', 'also', 'or', 'http', 'ca', 'www', 'https', 'com', 'twitter', 'html', 'news', 'link', 'positive', 'first', 'First', 'confirmed', 'confirm', 'confirms'}
ignore.update(more_ignore)
cleaned_words_tokens = [w for w in words if w not in ignore]
cleaned_words_tokens = [w for w in cleaned_words_tokens if w.isalpha()]
return cleaned_words_tokens
def run_sentiment_analysis(tweets_df):
tweets_df['sentiment'] = 0
for index, row in tweets_df.iterrows():
tokens = tweet_preprocess(row['tweet'])
clean_text = ' '.join(tokens)
analysis = TextBlob(row['tweet'])
analysis_after_clean = TextBlob(clean_text)
run_sentiment_analysis(tweets_df_en[:5]) | code |
33105771/cell_14 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import nltk
import nltk
import os
import re
import re
import pandas as pd
from datetime import datetime, date, timedelta
import numpy as np
import re
import os
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
from sklearn.model_selection import cross_val_score, StratifiedShuffleSplit, train_test_split, GroupShuffleSplit
from langdetect import detect
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from keras.wrappers.scikit_learn import KerasClassifier
from textblob import TextBlob
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
import re
import nltk
nltk.download('punkt')
def tweet_preprocess(text):
"""Return tokenized text with
rsemoved URLs, usernames, hashtags, weird characters, repeated
characters, stop words, and numbers
"""
text = text.lower()
text = re.sub('((www\\.[^\\s]+)|(https?://[^\\s]+))', 'URL', text)
text = re.sub('@[A-Za-z0-9]+', 'USER', text)
text = re.sub('#([^\\s]+)', '\\1', text)
text = re.sub('[^a-zA-Z0-9-*. ]', ' ', text)
words = word_tokenize(text)
ignore = set(stopwords.words('english'))
more_ignore = {'at', 'and', 'also', 'or', 'http', 'ca', 'www', 'https', 'com', 'twitter', 'html', 'news', 'link', 'positive', 'first', 'First', 'confirmed', 'confirm', 'confirms'}
ignore.update(more_ignore)
cleaned_words_tokens = [w for w in words if w not in ignore]
cleaned_words_tokens = [w for w in cleaned_words_tokens if w.isalpha()]
return cleaned_words_tokens | code |
33105771/cell_22 | [
"text_plain_output_1.png"
] | from langdetect import detect
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from textblob import TextBlob
import emoji
import nltk
import nltk
import os
import pandas as pd
import plotly.graph_objects as go
import re
import re
import pandas as pd
from datetime import datetime, date, timedelta
import numpy as np
import re
import os
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
from sklearn.model_selection import cross_val_score, StratifiedShuffleSplit, train_test_split, GroupShuffleSplit
from langdetect import detect
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from keras.wrappers.scikit_learn import KerasClassifier
from textblob import TextBlob
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
npis_csv = '/kaggle/input/covid19-challenges/npi_canada.csv'
raw_data = pd.read_csv(npis_csv, encoding='ISO-8859-1')
df = raw_data.dropna(how='any', subset=['start_date', 'region', 'intervention_category'])
df['region'] = df['region'].replace('Newfoundland', 'Newfoundland and Labrador')
num_rows_removed = len(raw_data) - len(df)
regions = list(set(df.region.values))
num_cats = list(set(df.intervention_category.values))
num_interventions = len(num_cats)
df['start_date'] = pd.to_datetime(df['start_date'], format='%Y-%m-%d')
earliest_start_date = df['start_date'].min()
latest_start_date = df['start_date'].max()
num_days = latest_start_date - earliest_start_date
merged_tweets_csv = '/kaggle/input/npi-twitterverse-april-30/tweets_to_intervention_category.source_urls.tsv'
colnames = ['npi_record_id', 'intervention_category', 'oxford_government_response_category', 'source_url', 'id', 'conversation_id', 'created_at', 'date', 'time', 'timezone', 'user_id', 'username', 'name', 'place', 'tweet', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count', 'likes_count', 'hashtags', 'cashtags', 'link', 'retweet', 'quote_url', 'video', 'near', 'geo', 'source', 'user_rt_id', 'user_rt', 'retweet_id', 'reply_to', 'retweet_date', 'translate', 'trans_src', 'trans_dest']
tweets_df = pd.read_csv(merged_tweets_csv, encoding='utf-8', error_bad_lines=False, engine='python', names=colnames)
tweets_df = tweets_df.dropna(how='any', subset=['npi_record_id', 'intervention_category', 'tweet'])
data = []
for index, row in tweets_df.iterrows():
tweet = row['tweet'].strip()
if tweet != '':
language = ''
try:
language = detect(tweet)
except:
language = 'error'
if language == 'en':
data.append([row['intervention_category'], tweet])
tweets_df_en = pd.DataFrame(data, columns=['intervention_category', 'tweet'])
import re
import nltk
nltk.download('punkt')
def tweet_preprocess(text):
"""Return tokenized text with
rsemoved URLs, usernames, hashtags, weird characters, repeated
characters, stop words, and numbers
"""
text = text.lower()
text = re.sub('((www\\.[^\\s]+)|(https?://[^\\s]+))', 'URL', text)
text = re.sub('@[A-Za-z0-9]+', 'USER', text)
text = re.sub('#([^\\s]+)', '\\1', text)
text = re.sub('[^a-zA-Z0-9-*. ]', ' ', text)
words = word_tokenize(text)
ignore = set(stopwords.words('english'))
more_ignore = {'at', 'and', 'also', 'or', 'http', 'ca', 'www', 'https', 'com', 'twitter', 'html', 'news', 'link', 'positive', 'first', 'First', 'confirmed', 'confirm', 'confirms'}
ignore.update(more_ignore)
cleaned_words_tokens = [w for w in words if w not in ignore]
cleaned_words_tokens = [w for w in cleaned_words_tokens if w.isalpha()]
return cleaned_words_tokens
def run_sentiment_analysis(tweets_df):
tweets_df['sentiment'] = 0
for index, row in tweets_df.iterrows():
tokens = tweet_preprocess(row['tweet'])
clean_text = ' '.join(tokens)
analysis = TextBlob(row['tweet'])
analysis_after_clean = TextBlob(clean_text)
import emoji
emoji_sent_csv = 'Emoji_Sentiment_Data_v1.0.csv'
emoji_data = pd.read_csv(emoji_sent_csv, encoding='ISO-8859-1')
def extract_emojis(str):
return ''.join((c for c in str if c in emoji.UNICODE_EMOJI))
def calc_emoji_sent(e):
e_uc = '0x{:X}'.format(ord(e)).lower()
count_pos = 0
count_neg = 0
count_neutral = 0
sr = emoji_data.loc[emoji_data['Unicode codepoint'] == e_uc.lower()]
score = -100
if not sr.empty:
oc = int(sr['Occurrences'].astype(int))
num_pos = int(sr['Positive'].astype(int))
num_neut = int(sr['Neutral'].astype(int))
num_neg = int(sr['Negative'].astype(int))
score = 1 * num_pos / oc + -1 * num_neg / oc + 0 * num_neut / oc
return score
def run_sentiment_analysis_mod(tweets_df):
tweets_df['sentiment_score'] = 0.0
tweets_df['sentiment_class'] = ''
for index, row in tweets_df.iterrows():
tokens = tweet_preprocess(row['tweet'])
clean_text = ' '.join(tokens)
analysis = TextBlob(row['tweet'])
analysis_after_clean = TextBlob(clean_text)
c_score = analysis_after_clean.sentiment[0]
emojis_detected = extract_emojis(row['tweet'])
avg_emoji_sent_score = 0
emoji_counts = 0
if emojis_detected:
for e in emojis_detected:
em_sent_score = calc_emoji_sent(e)
if em_sent_score == -100:
continue
avg_emoji_sent_score += em_sent_score
emoji_counts += 1
if emoji_counts > 0:
avg_emoji_sent_score = avg_emoji_sent_score / emoji_counts
score = 0.0
label = 'NEUTRAL'
if avg_emoji_sent_score > 0.1:
score = avg_emoji_sent_score
label = 'POSITIVE'
elif avg_emoji_sent_score < -0.1:
score = avg_emoji_sent_score
label = 'NEGATIVE'
else:
score = analysis_after_clean.sentiment[0]
if score > 0.25:
label = 'POSITIVE'
elif score < -0.25:
label = 'NEGATIVE'
tweets_df.at[index, 'sentiment_score'] = score
tweets_df.at[index, 'sentiment_class'] = label
'print("=============================")\n print(row["intervention_category"] + "\n")\n print(row[\'tweet\'])\n print(clean_text)\n print("Score (no clean) = {}".format(analysis.sentiment[0]))\n print("Score (clean) = {}".format(c_score))\n print("Final Score = {}".format(score))\n print(label)'
return tweets_df
mod_tweets_df = run_sentiment_analysis_mod(tweets_df)
import plotly.graph_objects as go
import plotly
def split_data_by_class(tweets_df):
total_tweets_by_cat = tweets_df.groupby('intervention_category')['id'].count().reset_index(name='count').sort_values('intervention_category', ascending=False)
counts = tweets_df.groupby(['intervention_category', 'sentiment_class'])['id'].count().reset_index(name='count').sort_values('intervention_category', ascending=False)
counts['proportion'] = 0.0
for index, row in counts.iterrows():
total_tweets = int(total_tweets_by_cat.loc[total_tweets_by_cat['intervention_category'] == row['intervention_category']]['count'].astype(int))
counts.at[index, 'proportion'] = row['count'] / total_tweets
y = counts['intervention_category'].unique().tolist()
fill_data = []
for ic in y:
for sc in ['POSITIVE', 'NEUTRAL', 'NEGATIVE']:
subset = counts[(counts.sentiment_class == sc) & (counts.intervention_category == ic)]
if subset.empty:
fill_data.append([ic, sc, 0, 0.0])
fill_data_df = pd.DataFrame(fill_data, columns=['intervention_category', 'sentiment_class', 'count', 'proportion'])
full_counts = counts.append(fill_data_df).sort_values('intervention_category', ascending=False)
return (full_counts, y)
def plot(full_counts, y, measure):
THRESH = 50
total_tweets_by_cat = tweets_df.groupby('intervention_category')['id'].count().reset_index(name='count').sort_values('intervention_category', ascending=False)
if measure == 'proportion':
y = total_tweets_by_cat[total_tweets_by_cat['count'] > THRESH]['intervention_category'].unique().tolist()
full_counts = full_counts[full_counts.intervention_category.isin(y)]
pos_counts = full_counts.loc[full_counts['sentiment_class'] == 'POSITIVE']
neg_counts = full_counts.loc[full_counts['sentiment_class'] == 'NEGATIVE']
neut_counts = full_counts.loc[full_counts['sentiment_class'] == 'NEUTRAL']
print('Mean {} for positive class: {}'.format(measure, round(pos_counts[measure].mean(), 2)))
print('Mean {} for negative class: {}'.format(measure, round(neg_counts[measure].mean(), 2)))
print('Range {} for positive class: {}-{}'.format(measure, round(pos_counts[measure].min(), 2), round(pos_counts[measure].max(), 2)))
print('Range {} for negative class: {}-{}'.format(measure, round(neg_counts[measure].min(), 2), round(neg_counts[measure].max(), 2)))
fig = go.Figure()
fig.add_trace(go.Bar(y=y, x=pos_counts[measure], name='Positive', orientation='h', marker=dict(color='rgba(90, 191,165, 1.0)', line=dict(color='rgba(255, 255, 255, 1.0)', width=1))))
fig.add_trace(go.Bar(y=y, x=neg_counts[measure], name='Negative', orientation='h', marker=dict(color='rgba(230, 130, 130, 1.0)', line=dict(color='rgba(255, 255, 255, 1.0)', width=1))))
fig.add_trace(go.Bar(y=y, x=neut_counts[measure], name='Neutral', orientation='h', marker=dict(color='rgba(190, 203, 200, 1.0)', line=dict(color='rgba(255, 255, 255, 1.0)', width=1))))
fig.update_layout(width=800, height=1200, barmode='stack', template='plotly_white', bargap=0.5)
fig.show()
full_counts, y = split_data_by_class(mod_tweets_df)
plot(full_counts, y, 'proportion')
plot(full_counts, y, 'count') | code |
33105771/cell_10 | [
"text_plain_output_1.png"
] | from textblob import TextBlob
ex1 = "Here's a wrap of the latest coronavirus news in Canada: 77 cases, one death, an outbreak in a B.C. nursing home and Ottawa asks provinces about their critical supply gaps. https://www.theglobeandmail.com/canada/article-bc-records-canadas-first-coronavirus-death/"
ex2 = 'B.C. records Canadaβs first coronavirus death http://dlvr.it/RRZPGL pic.twitter.com/pn8T4yumQJ'
ex1_tb = TextBlob(ex1)
ex1_ss = ex1_tb.sentiment[0]
print('Example 1 has score={}'.format(ex1_ss))
ex2_tb = TextBlob(ex2)
ex2_ss = ex2_tb.sentiment[0]
print('Example 2 has score={}'.format(ex2_ss)) | code |
33105771/cell_12 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from textblob import TextBlob
ex = 'first coronavirus death'
ex_tb = TextBlob(ex)
ex_ss = ex_tb.sentiment[0]
print('{} with score={}'.format(ex, ex_ss))
ex = 'coronavirus death'
ex_tb = TextBlob(ex)
ex_ss = ex_tb.sentiment[0]
print('{} with score={}'.format(ex, ex_ss)) | code |
33105771/cell_5 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
npis_csv = '/kaggle/input/covid19-challenges/npi_canada.csv'
raw_data = pd.read_csv(npis_csv, encoding='ISO-8859-1')
df = raw_data.dropna(how='any', subset=['start_date', 'region', 'intervention_category'])
df['region'] = df['region'].replace('Newfoundland', 'Newfoundland and Labrador')
num_rows_removed = len(raw_data) - len(df)
print('Number of rows removed: {}'.format(num_rows_removed))
regions = list(set(df.region.values))
print('Number of unique regions: {}'.format(len(regions)))
num_cats = list(set(df.intervention_category.values))
num_interventions = len(num_cats)
print('Number of unique intervention categories: {}'.format(len(num_cats)))
df['start_date'] = pd.to_datetime(df['start_date'], format='%Y-%m-%d')
earliest_start_date = df['start_date'].min()
latest_start_date = df['start_date'].max()
num_days = latest_start_date - earliest_start_date
print('Analyzing from {} to {} ({} days)'.format(earliest_start_date.date(), latest_start_date.date(), num_days))
print('DONE READING DATA') | code |
318372/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
post = pd.read_sql_query('SELECT * FROM post', con)
comment = pd.read_sql_query('SELECT * FROM comment', con)
like = pd.read_sql_query('SELECT * FROM like', con)
rmember = pd.read_sql_query('SELECT distinct id as rid, name rname FROM member', con)
comment = pd.merge(comment, rmember, left_on='rid', right_on='rid', how='left')
comment.gid = comment.gid.map({'117291968282998': 'EPH', '25160801076': 'UCT', '1443890352589739': 'FSZ'})
comment['gid'].value_counts() | code |
318372/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
post = pd.read_sql_query('SELECT * FROM post', con)
comment = pd.read_sql_query('SELECT * FROM comment', con)
like = pd.read_sql_query('SELECT * FROM like', con)
rmember = pd.read_sql_query('SELECT distinct id as rid, name rname FROM member', con)
comment = pd.merge(comment, rmember, left_on='rid', right_on='rid', how='left')
comment.gid = comment.gid.map({'117291968282998': 'EPH', '25160801076': 'UCT', '1443890352589739': 'FSZ'})
comment['gid'].value_counts()
comment[(comment.gid == 'EPH') & (comment.rid == '')]['name'].value_counts().head(10) | code |
318372/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
post = pd.read_sql_query('SELECT * FROM post', con)
comment = pd.read_sql_query('SELECT * FROM comment', con)
like = pd.read_sql_query('SELECT * FROM like', con)
rmember = pd.read_sql_query('SELECT distinct id as rid, name rname FROM member', con)
comment = pd.merge(comment, rmember, left_on='rid', right_on='rid', how='left')
comment.gid = comment.gid.map({'117291968282998': 'EPH', '25160801076': 'UCT', '1443890352589739': 'FSZ'})
comment['gid'].value_counts()
comment[(comment.gid == 'EPH') & (comment.rid != '')]['rname'].value_counts().head(10) | code |
318372/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
post = pd.read_sql_query('SELECT * FROM post', con)
comment = pd.read_sql_query('SELECT * FROM comment', con)
like = pd.read_sql_query('SELECT * FROM like', con)
rmember = pd.read_sql_query('SELECT distinct id as rid, name rname FROM member', con)
comment = pd.merge(comment, rmember, left_on='rid', right_on='rid', how='left')
comment.head(4) | code |
73081016/cell_13 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
def lemmatize_all_types(word):
word = wnl.lemmatize(word, 'a')
word = wnl.lemmatize(word, 'v')
word = wnl.lemmatize(word, 'n')
return word
def clean(text):
text = re.sub('http.*?([ ]|\\|\\|\\||$)', '', text).lower()
text = re.sub('(:|;).', '', text)
text = re.sub('[' + re.escape(str_punc) + ']', '', text)
text = re.sub('(\\[|\\()*\\d+(\\]|\\))*', '', text)
text = re.sub('[βββ\\.ββ¦β]', '', text)
text = list(map(lemmatize_all_types, text.split()))
text = [word for word in text if word not in engstopwords]
text = ' '.join(text)
return text
dataset.posts = pd.Series(dataset.posts.apply(clean))
dataset.index = dataset['type']
posts_vectorized = cv.fit_transform(dataset.posts)
dtm = pd.DataFrame(data=posts_vectorized.toarray(), columns=cv.get_feature_names())
dtm.index = dataset['type']
dtm.iloc[:, -20000:-20016:-1]
dtmT = dtm.transpose()
dtmT.iloc[-20000:-20016:-1, :]
cloud = []
for personality in dtmT.columns:
topWords = list(dtmT[personality].sort_values(ascending=False).head(n_common_words).index)
cloud.append({personality: topWords})
for index, personality in enumerate(dtmT.columns):
wc.generate(dataset.posts[personality])
plt.imshow(wc, interpolation='bilinear')
plt.title(personality)
plt.savefig(personality + '.png') | code |
73081016/cell_4 | [
"image_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
dataset.head(16) | code |
73081016/cell_8 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
def lemmatize_all_types(word):
word = wnl.lemmatize(word, 'a')
word = wnl.lemmatize(word, 'v')
word = wnl.lemmatize(word, 'n')
return word
def clean(text):
text = re.sub('http.*?([ ]|\\|\\|\\||$)', '', text).lower()
text = re.sub('(:|;).', '', text)
text = re.sub('[' + re.escape(str_punc) + ']', '', text)
text = re.sub('(\\[|\\()*\\d+(\\]|\\))*', '', text)
text = re.sub('[βββ\\.ββ¦β]', '', text)
text = list(map(lemmatize_all_types, text.split()))
text = [word for word in text if word not in engstopwords]
text = ' '.join(text)
return text
dataset.posts = pd.Series(dataset.posts.apply(clean))
dataset.index = dataset['type']
posts_vectorized = cv.fit_transform(dataset.posts)
dtm = pd.DataFrame(data=posts_vectorized.toarray(), columns=cv.get_feature_names())
dtm.index = dataset['type']
dtm.iloc[:, -20000:-20016:-1] | code |
73081016/cell_15 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
def lemmatize_all_types(word):
word = wnl.lemmatize(word, 'a')
word = wnl.lemmatize(word, 'v')
word = wnl.lemmatize(word, 'n')
return word
def clean(text):
text = re.sub('http.*?([ ]|\\|\\|\\||$)', '', text).lower()
text = re.sub('(:|;).', '', text)
text = re.sub('[' + re.escape(str_punc) + ']', '', text)
text = re.sub('(\\[|\\()*\\d+(\\]|\\))*', '', text)
text = re.sub('[βββ\\.ββ¦β]', '', text)
text = list(map(lemmatize_all_types, text.split()))
text = [word for word in text if word not in engstopwords]
text = ' '.join(text)
return text
dataset.posts = pd.Series(dataset.posts.apply(clean))
dataset.index = dataset['type']
posts_vectorized = cv.fit_transform(dataset.posts)
dtm = pd.DataFrame(data=posts_vectorized.toarray(), columns=cv.get_feature_names())
dtm.index = dataset['type']
dtm.iloc[:, -20000:-20016:-1]
dtmT = dtm.transpose()
dtmT.iloc[-20000:-20016:-1, :]
cloud = []
for personality in dtmT.columns:
topWords = list(dtmT[personality].sort_values(ascending=False).head(n_common_words).index)
cloud.append({personality: topWords})
for index, personality in enumerate(dtmT.columns):
wc.generate(dataset.posts[personality])
n_of_types = 15
shared_words = []
all_words = []
for index, personality in enumerate(dtmT.columns):
all_words.append(cloud[index][personality])
unique_words = np.unique(np.array(all_words))
for word in unique_words:
counter = 0
for index, personality in enumerate(dtmT.columns):
if word in cloud[index][personality]:
counter += 1
if counter >= n_of_types:
shared_words.append(word)
shared_words | code |
73081016/cell_10 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
def lemmatize_all_types(word):
word = wnl.lemmatize(word, 'a')
word = wnl.lemmatize(word, 'v')
word = wnl.lemmatize(word, 'n')
return word
def clean(text):
text = re.sub('http.*?([ ]|\\|\\|\\||$)', '', text).lower()
text = re.sub('(:|;).', '', text)
text = re.sub('[' + re.escape(str_punc) + ']', '', text)
text = re.sub('(\\[|\\()*\\d+(\\]|\\))*', '', text)
text = re.sub('[βββ\\.ββ¦β]', '', text)
text = list(map(lemmatize_all_types, text.split()))
text = [word for word in text if word not in engstopwords]
text = ' '.join(text)
return text
dataset.posts = pd.Series(dataset.posts.apply(clean))
dataset.index = dataset['type']
posts_vectorized = cv.fit_transform(dataset.posts)
dtm = pd.DataFrame(data=posts_vectorized.toarray(), columns=cv.get_feature_names())
dtm.index = dataset['type']
dtm.iloc[:, -20000:-20016:-1]
dtmT = dtm.transpose()
dtmT.iloc[-20000:-20016:-1, :] | code |
73081016/cell_12 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from wordcloud import WordCloud
import json
import matplotlib.pyplot as plt
import pandas as pd
import re
import string
n_common_words = 50
wnl = WordNetLemmatizer()
engstopwords = stopwords.words('english')
engstopwordsV2 = re.sub('[' + re.escape(string.punctuation) + ']', '', ' '.join(engstopwords)).split()
with open('../input/mbtiadditionalwords/additional-stopwords.json') as file:
additional_stopwords = json.load(file)
engstopwords.extend(additional_stopwords)
engstopwords = set(engstopwords).union(set(engstopwordsV2))
str_punc = string.punctuation
filename = '../input/mbti-type/mbti_1.csv'
cv = CountVectorizer(stop_words='english')
plt.rcParams['figure.dpi'] = 300
wc = WordCloud(stopwords=engstopwords, background_color='white', colormap='Dark2', max_font_size=150, random_state=42, width=800, height=400)
dataset = pd.read_csv(filename)
dataset = dataset.groupby(['type'])['posts'].apply(lambda x: '. '.join(x)).reset_index()
def lemmatize_all_types(word):
word = wnl.lemmatize(word, 'a')
word = wnl.lemmatize(word, 'v')
word = wnl.lemmatize(word, 'n')
return word
def clean(text):
text = re.sub('http.*?([ ]|\\|\\|\\||$)', '', text).lower()
text = re.sub('(:|;).', '', text)
text = re.sub('[' + re.escape(str_punc) + ']', '', text)
text = re.sub('(\\[|\\()*\\d+(\\]|\\))*', '', text)
text = re.sub('[βββ\\.ββ¦β]', '', text)
text = list(map(lemmatize_all_types, text.split()))
text = [word for word in text if word not in engstopwords]
text = ' '.join(text)
return text
dataset.posts = pd.Series(dataset.posts.apply(clean))
dataset.index = dataset['type']
posts_vectorized = cv.fit_transform(dataset.posts)
dtm = pd.DataFrame(data=posts_vectorized.toarray(), columns=cv.get_feature_names())
dtm.index = dataset['type']
dtm.iloc[:, -20000:-20016:-1]
dtmT = dtm.transpose()
dtmT.iloc[-20000:-20016:-1, :]
cloud = []
for personality in dtmT.columns:
topWords = list(dtmT[personality].sort_values(ascending=False).head(n_common_words).index)
cloud.append({personality: topWords})
cloud[11] | code |
34144563/cell_4 | [
"text_plain_output_4.png",
"text_plain_output_6.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
a = 100
b = 100
dim_mesh = (a - 1) * (b - 1)
bias_bo = True
bias_bo_g = True
bias_bo_d = True
train_samples = 1200
end_samples = 1600
path = '../input/2stage-simon/f_set_nonl.npy'
ffine_all = 10000 * np.load(path)
ffine = ffine_all[:train_samples]
nb_samples = np.shape(ffine)[0]
nb_times = np.shape(ffine)[1]
fcoarse_reshape = np.reshape(ffine, (nb_samples, nb_times, a - 1, b - 1))
fcoarse_reshape_torch_before = torch.tensor(fcoarse_reshape, dtype=torch.float32, device=device)
ffine_test = ffine_all[train_samples:end_samples]
nb_samples_test = np.shape(ffine_test)[0]
nb_times_test = np.shape(ffine_test)[1]
fcoarse_reshape_test = np.reshape(ffine_test, (nb_samples_test, nb_times_test, a - 1, b - 1))
fcoarse_reshape_test_torch_before = torch.tensor(fcoarse_reshape_test, dtype=torch.float32, device=device)
path = '../input/cem100/cembasis_10.npy'
_R_ = np.load(path)
Rt = np.transpose(_R_)
print('Rt shape', np.shape(Rt))
RtFh = []
for jx in tqdm(range(nb_samples)):
RtFh_t = []
for ix in range(nb_times):
RtFh_t.append(np.matmul(Rt, ffine[jx, ix, :]))
RtFh.append(RtFh_t)
print('np.shape(RtFh): R^t*F_h', np.shape(RtFh))
RtFh = np.array(RtFh)
RtFh0 = RtFh[:, :, 0::3]
Rtfh0_torch = torch.tensor(RtFh0, dtype=torch.float32, device=device)
print('Rtfh0_torch', Rtfh0_torch.size())
nb_model_phy0 = Rtfh0_torch.size()[-1]
print('nb_model_phy0', nb_model_phy0)
RtFh1 = RtFh[:, :, 1::3]
Rtfh1_torch = torch.tensor(RtFh1, dtype=torch.float32, device=device)
print('Rtf1torch', Rtfh1_torch.size())
nb_model_phy1 = Rtfh1_torch.size()[-1]
print('nb_model_phy1', nb_model_phy1)
RtFh2 = RtFh[:, :, 2::3]
Rtfh2_torch = torch.tensor(RtFh2, dtype=torch.float32, device=device)
print('Rtfh2_torch', Rtfh2_torch.size())
nb_model_phy2 = Rtfh2_torch.size()[-1]
print('nb_model_phy2', nb_model_phy2)
Rtfh_torch = torch.tensor(RtFh, dtype=torch.float32, device=device)
print('Rtfh_torch', Rtfh_torch.size())
nb_model_phy = Rtfh_torch.size()[-1]
print('nb_model_phy', nb_model_phy)
RtFh_test = []
for jx in tqdm(range(nb_samples_test)):
RtFh_t = []
for ix in range(nb_times_test):
RtFh_t.append(np.matmul(Rt, ffine_test[jx, ix, :]))
RtFh_test.append(RtFh_t)
print('np.shape(RtFh_test): R^t*F_h', np.shape(RtFh_test))
RtFh_test = np.array(RtFh_test)
RtFh_test0 = RtFh_test[:, :, 0::3]
Rtfh0_torch_test = torch.tensor(RtFh_test0, dtype=torch.float32, device=device)
print('Rtfh0_torch_test', Rtfh0_torch_test.size())
nb_model_phy0_test = Rtfh0_torch_test.size()[-1]
print('nb_model_phy0_test', nb_model_phy0_test)
RtFh_test1 = RtFh_test[:, :, 1::3]
Rtfh1_torch_test = torch.tensor(RtFh_test1, dtype=torch.float32, device=device)
print('Rtfh1_torch_test', Rtfh1_torch_test.size())
nb_model_phy1_test = Rtfh1_torch_test.size()[-1]
print('nb_model_phy1_test', nb_model_phy1_test)
invRtR = LA.inv(np.matmul(Rt, _R_))
path = '../input/2stage-simon/sol_set_nonl.txt'
u_f_all = 10000 * pd.read_csv(path, sep=' ', header=None).values
print('u_f_all', np.shape(u_f_all))
u_f = u_f_all[:train_samples]
print('u_f', np.shape(u_f))
u_H = []
for ix in range(nb_samples):
u_H.append(np.matmul(invRtR, np.matmul(Rt, u_f[ix])))
u_H = np.array(u_H)
print('u_H', np.shape(u_H))
nb_rdm = np.shape(u_H)[1]
print('nb_rdm', nb_rdm)
u_f_test = u_f_all[train_samples:end_samples]
print('u_f_test', np.shape(u_f_test))
u_H_test = []
for ix in range(nb_samples_test):
u_H_test.append(np.matmul(invRtR, np.matmul(Rt, u_f_test[ix])))
u_H_test = np.array(u_H_test)
print('u_H_test', np.shape(u_H_test))
nb_rdm_test = np.shape(u_H_test)[1]
print('nb_rdm_test', nb_rdm_test) | code |
34144563/cell_6 | [
"text_plain_output_1.png"
] | from torch import nn, optim
from torch.nn.functional import softmax
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
nb_takes = 15
nb_reduced = int(300 / nb_takes)
nb_takes_phy = nb_takes
nb_reduced_phy = nb_reduced
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
a = 100
b = 100
dim_mesh = (a - 1) * (b - 1)
bias_bo = True
bias_bo_g = True
bias_bo_d = True
train_samples = 1200
end_samples = 1600
path = '../input/2stage-simon/f_set_nonl.npy'
ffine_all = 10000 * np.load(path)
ffine = ffine_all[:train_samples]
nb_samples = np.shape(ffine)[0]
nb_times = np.shape(ffine)[1]
fcoarse_reshape = np.reshape(ffine, (nb_samples, nb_times, a - 1, b - 1))
fcoarse_reshape_torch_before = torch.tensor(fcoarse_reshape, dtype=torch.float32, device=device)
ffine_test = ffine_all[train_samples:end_samples]
nb_samples_test = np.shape(ffine_test)[0]
nb_times_test = np.shape(ffine_test)[1]
fcoarse_reshape_test = np.reshape(ffine_test, (nb_samples_test, nb_times_test, a - 1, b - 1))
fcoarse_reshape_test_torch_before = torch.tensor(fcoarse_reshape_test, dtype=torch.float32, device=device)
path = '../input/cem100/cembasis_10.npy'
_R_ = np.load(path)
Rt = np.transpose(_R_)
RtFh = []
for jx in tqdm(range(nb_samples)):
RtFh_t = []
for ix in range(nb_times):
RtFh_t.append(np.matmul(Rt, ffine[jx, ix, :]))
RtFh.append(RtFh_t)
RtFh = np.array(RtFh)
RtFh0 = RtFh[:, :, 0::3]
Rtfh0_torch = torch.tensor(RtFh0, dtype=torch.float32, device=device)
nb_model_phy0 = Rtfh0_torch.size()[-1]
RtFh1 = RtFh[:, :, 1::3]
Rtfh1_torch = torch.tensor(RtFh1, dtype=torch.float32, device=device)
nb_model_phy1 = Rtfh1_torch.size()[-1]
RtFh2 = RtFh[:, :, 2::3]
Rtfh2_torch = torch.tensor(RtFh2, dtype=torch.float32, device=device)
nb_model_phy2 = Rtfh2_torch.size()[-1]
Rtfh_torch = torch.tensor(RtFh, dtype=torch.float32, device=device)
nb_model_phy = Rtfh_torch.size()[-1]
RtFh_test = []
for jx in tqdm(range(nb_samples_test)):
RtFh_t = []
for ix in range(nb_times_test):
RtFh_t.append(np.matmul(Rt, ffine_test[jx, ix, :]))
RtFh_test.append(RtFh_t)
RtFh_test = np.array(RtFh_test)
RtFh_test0 = RtFh_test[:, :, 0::3]
Rtfh0_torch_test = torch.tensor(RtFh_test0, dtype=torch.float32, device=device)
nb_model_phy0_test = Rtfh0_torch_test.size()[-1]
RtFh_test1 = RtFh_test[:, :, 1::3]
Rtfh1_torch_test = torch.tensor(RtFh_test1, dtype=torch.float32, device=device)
nb_model_phy1_test = Rtfh1_torch_test.size()[-1]
invRtR = LA.inv(np.matmul(Rt, _R_))
path = '../input/2stage-simon/sol_set_nonl.txt'
u_f_all = 10000 * pd.read_csv(path, sep=' ', header=None).values
u_f = u_f_all[:train_samples]
u_H = []
for ix in range(nb_samples):
u_H.append(np.matmul(invRtR, np.matmul(Rt, u_f[ix])))
u_H = np.array(u_H)
nb_rdm = np.shape(u_H)[1]
u_f_test = u_f_all[train_samples:end_samples]
u_H_test = []
for ix in range(nb_samples_test):
u_H_test.append(np.matmul(invRtR, np.matmul(Rt, u_f_test[ix])))
u_H_test = np.array(u_H_test)
nb_rdm_test = np.shape(u_H_test)[1]
class OneHeadAttention(nn.Module):
def __init__(self, d_model, d_reduced, bo):
super().__init__()
self.v_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
self.q_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
self.k_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
def forward(self, vv):
v = self.v_linear(vv)
k = self.k_linear(vv)
q = self.q_linear(vv)
qkt = torch.matmul(q, torch.transpose(k, 1, 2))
sm_qkt = softmax(qkt, dim=-1)
out = torch.matmul(sm_qkt, v)
return out
model = OneHeadAttention(nb_model_phy, nb_reduced_phy, True)
def init_weights(m):
if type(m) == nn.Linear:
m.bias.data.uniform_(-1 / 100000, 1 / 100000)
model.apply(init_weights)
out = model(Rtfh_torch)
np.shape(out)
nb_heads = 6
class MultiHeads(nn.Module):
def __init__(self, d_model, d_reduced, d_head, bo):
super().__init__()
self.head1 = OneHeadAttention(d_model, d_reduced, bo)
self.head2 = OneHeadAttention(d_model, d_reduced, bo)
self.head3 = OneHeadAttention(d_model, d_reduced, bo)
self.head4 = OneHeadAttention(d_model, d_reduced, bo)
self.head5 = OneHeadAttention(d_model, d_reduced, bo)
self.head6 = OneHeadAttention(d_model, d_reduced, bo)
self.linear = nn.Linear(d_reduced * d_head, d_reduced, bias=bias_bo).cuda()
def forward(self, v):
out1 = self.head1(v)
out2 = self.head2(v)
out3 = self.head3(v)
out4 = self.head4(v)
out5 = self.head5(v)
out6 = self.head6(v)
concat_out = torch.cat((out1, out2, out3, out4, out5, out6), dim=-1)
out = self.linear(concat_out)
return out
def init_weights(m):
if type(m) == nn.Linear:
m.bias.data.uniform_(-1 / 100000, 1 / 100000)
model = MultiHeads(nb_model_phy, nb_reduced_phy, nb_heads, True)
model.apply(init_weights)
out = model(Rtfh_torch)
print(out.size()) | code |
34144563/cell_2 | [
"text_plain_output_1.png"
] | nb_takes = 15
nb_reduced = int(300 / nb_takes)
print(nb_takes, nb_reduced)
nb_takes_phy = nb_takes
nb_reduced_phy = nb_reduced | code |
34144563/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
a = 100
b = 100
dim_mesh = (a - 1) * (b - 1)
bias_bo = True
bias_bo_g = True
bias_bo_d = True
train_samples = 1200
end_samples = 1600
path = '../input/2stage-simon/f_set_nonl.npy'
ffine_all = 10000 * np.load(path)
print('ffine_all', np.shape(ffine_all))
ffine = ffine_all[:train_samples]
print('ffine', np.shape(ffine))
nb_samples = np.shape(ffine)[0]
nb_times = np.shape(ffine)[1]
fcoarse_reshape = np.reshape(ffine, (nb_samples, nb_times, a - 1, b - 1))
print('fcoarse_reshape', np.shape(fcoarse_reshape))
fcoarse_reshape_torch_before = torch.tensor(fcoarse_reshape, dtype=torch.float32, device=device)
print('fcoarse_reshape_torch_before', np.shape(fcoarse_reshape_torch_before))
ffine_test = ffine_all[train_samples:end_samples]
print('ffine_test', np.shape(ffine_test))
nb_samples_test = np.shape(ffine_test)[0]
nb_times_test = np.shape(ffine_test)[1]
fcoarse_reshape_test = np.reshape(ffine_test, (nb_samples_test, nb_times_test, a - 1, b - 1))
fcoarse_reshape_test_torch_before = torch.tensor(fcoarse_reshape_test, dtype=torch.float32, device=device)
print('fcoarse_reshape_test_torch_before', np.shape(fcoarse_reshape_test_torch_before)) | code |
34144563/cell_5 | [
"text_plain_output_1.png"
] | from torch import nn, optim
from torch.nn.functional import softmax
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
nb_takes = 15
nb_reduced = int(300 / nb_takes)
nb_takes_phy = nb_takes
nb_reduced_phy = nb_reduced
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
a = 100
b = 100
dim_mesh = (a - 1) * (b - 1)
bias_bo = True
bias_bo_g = True
bias_bo_d = True
train_samples = 1200
end_samples = 1600
path = '../input/2stage-simon/f_set_nonl.npy'
ffine_all = 10000 * np.load(path)
ffine = ffine_all[:train_samples]
nb_samples = np.shape(ffine)[0]
nb_times = np.shape(ffine)[1]
fcoarse_reshape = np.reshape(ffine, (nb_samples, nb_times, a - 1, b - 1))
fcoarse_reshape_torch_before = torch.tensor(fcoarse_reshape, dtype=torch.float32, device=device)
ffine_test = ffine_all[train_samples:end_samples]
nb_samples_test = np.shape(ffine_test)[0]
nb_times_test = np.shape(ffine_test)[1]
fcoarse_reshape_test = np.reshape(ffine_test, (nb_samples_test, nb_times_test, a - 1, b - 1))
fcoarse_reshape_test_torch_before = torch.tensor(fcoarse_reshape_test, dtype=torch.float32, device=device)
path = '../input/cem100/cembasis_10.npy'
_R_ = np.load(path)
Rt = np.transpose(_R_)
RtFh = []
for jx in tqdm(range(nb_samples)):
RtFh_t = []
for ix in range(nb_times):
RtFh_t.append(np.matmul(Rt, ffine[jx, ix, :]))
RtFh.append(RtFh_t)
RtFh = np.array(RtFh)
RtFh0 = RtFh[:, :, 0::3]
Rtfh0_torch = torch.tensor(RtFh0, dtype=torch.float32, device=device)
nb_model_phy0 = Rtfh0_torch.size()[-1]
RtFh1 = RtFh[:, :, 1::3]
Rtfh1_torch = torch.tensor(RtFh1, dtype=torch.float32, device=device)
nb_model_phy1 = Rtfh1_torch.size()[-1]
RtFh2 = RtFh[:, :, 2::3]
Rtfh2_torch = torch.tensor(RtFh2, dtype=torch.float32, device=device)
nb_model_phy2 = Rtfh2_torch.size()[-1]
Rtfh_torch = torch.tensor(RtFh, dtype=torch.float32, device=device)
nb_model_phy = Rtfh_torch.size()[-1]
RtFh_test = []
for jx in tqdm(range(nb_samples_test)):
RtFh_t = []
for ix in range(nb_times_test):
RtFh_t.append(np.matmul(Rt, ffine_test[jx, ix, :]))
RtFh_test.append(RtFh_t)
RtFh_test = np.array(RtFh_test)
RtFh_test0 = RtFh_test[:, :, 0::3]
Rtfh0_torch_test = torch.tensor(RtFh_test0, dtype=torch.float32, device=device)
nb_model_phy0_test = Rtfh0_torch_test.size()[-1]
RtFh_test1 = RtFh_test[:, :, 1::3]
Rtfh1_torch_test = torch.tensor(RtFh_test1, dtype=torch.float32, device=device)
nb_model_phy1_test = Rtfh1_torch_test.size()[-1]
invRtR = LA.inv(np.matmul(Rt, _R_))
path = '../input/2stage-simon/sol_set_nonl.txt'
u_f_all = 10000 * pd.read_csv(path, sep=' ', header=None).values
u_f = u_f_all[:train_samples]
u_H = []
for ix in range(nb_samples):
u_H.append(np.matmul(invRtR, np.matmul(Rt, u_f[ix])))
u_H = np.array(u_H)
nb_rdm = np.shape(u_H)[1]
u_f_test = u_f_all[train_samples:end_samples]
u_H_test = []
for ix in range(nb_samples_test):
u_H_test.append(np.matmul(invRtR, np.matmul(Rt, u_f_test[ix])))
u_H_test = np.array(u_H_test)
nb_rdm_test = np.shape(u_H_test)[1]
class OneHeadAttention(nn.Module):
def __init__(self, d_model, d_reduced, bo):
super().__init__()
self.v_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
self.q_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
self.k_linear = nn.Linear(d_model, d_reduced, bias=bias_bo).cuda()
def forward(self, vv):
v = self.v_linear(vv)
k = self.k_linear(vv)
q = self.q_linear(vv)
qkt = torch.matmul(q, torch.transpose(k, 1, 2))
sm_qkt = softmax(qkt, dim=-1)
out = torch.matmul(sm_qkt, v)
return out
model = OneHeadAttention(nb_model_phy, nb_reduced_phy, True)
def init_weights(m):
if type(m) == nn.Linear:
m.bias.data.uniform_(-1 / 100000, 1 / 100000)
model.apply(init_weights)
out = model(Rtfh_torch)
np.shape(out) | code |
74059064/cell_13 | [
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
train_gen = ImageDataGenerator(rescale=1.0 / RESCALE, shear_range=SHEAR_RANGE, vertical_flip=VERTICAL_FLIP, horizontal_flip=HORIZONTAL_FLIP, zoom_range=ZOOM_RANGE, validation_split=VALIDATION_SPLIT)
train_set = train_gen.flow_from_directory(TRAIN_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE) | code |
74059064/cell_25 | [
"image_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
normal_img = cv2.imread(NORMAL_DIR)
pneumonia_img = cv2.imread(PNEUMONIA_DIR)
normal_img = cv2.resize(normal_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
pneumonia_img = cv2.resize(pneumonia_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
train_gen = ImageDataGenerator(rescale=1.0 / RESCALE, shear_range=SHEAR_RANGE, vertical_flip=VERTICAL_FLIP, horizontal_flip=HORIZONTAL_FLIP, zoom_range=ZOOM_RANGE, validation_split=VALIDATION_SPLIT)
train_set = train_gen.flow_from_directory(TRAIN_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
val_gen = ImageDataGenerator(rescale=1.0 / RESCALE)
val_set = val_gen.flow_from_directory(VAL_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=CONV1_FILTERS, kernel_size=CONV1_KERNEL, input_shape=[TARGET_WIDTH, TARGET_HEIGHT, COLOR_CHANNEL]))
model.add(tf.keras.layers.Activation(CONV1_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL1_SIZE, strides=POOL1_STRIDE))
model.add(tf.keras.layers.Conv2D(filters=CONV2_FILTERS, kernel_size=CONV2_KERNEL))
model.add(tf.keras.layers.Activation(CONV2_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL2_SIZE, strides=POOL2_STRIDE))
model.add(tf.keras.layers.Dropout(DROPOUT))
model.add(tf.keras.layers.Conv2D(filters=CONV3_FILTERS, kernel_size=CONV3_KERNEL))
model.add(tf.keras.layers.Activation(CONV3_ACTIVATION))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=FC_UNITS, activation=FC_ACTIVATION))
model.add(tf.keras.layers.Dense(units=OUTPUT_UNITS, activation=OUTPUT_ACTIVATION))
model.compile(optimizer=OPTIMIZER, loss=LOSS_CLASS, metrics=[AUC_METRICS, ACCURACY_METRICS, RECALL_METRICS])
model.summary()
hist = model.fit(x=train_set, validation_data=val_set, epochs=EPOCH)
key_list = []
for key in hist.history.keys():
key_list.append(key)
sample_img = cv2.imread(TEST_IMAGE_DIR)
sample_img = cv2.resize(sample_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
plt.imshow(sample_img)
plt.title(PNEUMONIA_TITLE)
plt.show() | code |
74059064/cell_6 | [
"text_plain_output_1.png"
] | import cv2
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
normal_img = cv2.imread(NORMAL_DIR)
pneumonia_img = cv2.imread(PNEUMONIA_DIR)
print('Normal: {} Pneumonia: {}'.format(normal_img.shape, pneumonia_img.shape)) | code |
74059064/cell_19 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
train_gen = ImageDataGenerator(rescale=1.0 / RESCALE, shear_range=SHEAR_RANGE, vertical_flip=VERTICAL_FLIP, horizontal_flip=HORIZONTAL_FLIP, zoom_range=ZOOM_RANGE, validation_split=VALIDATION_SPLIT)
train_set = train_gen.flow_from_directory(TRAIN_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
val_gen = ImageDataGenerator(rescale=1.0 / RESCALE)
val_set = val_gen.flow_from_directory(VAL_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=CONV1_FILTERS, kernel_size=CONV1_KERNEL, input_shape=[TARGET_WIDTH, TARGET_HEIGHT, COLOR_CHANNEL]))
model.add(tf.keras.layers.Activation(CONV1_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL1_SIZE, strides=POOL1_STRIDE))
model.add(tf.keras.layers.Conv2D(filters=CONV2_FILTERS, kernel_size=CONV2_KERNEL))
model.add(tf.keras.layers.Activation(CONV2_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL2_SIZE, strides=POOL2_STRIDE))
model.add(tf.keras.layers.Dropout(DROPOUT))
model.add(tf.keras.layers.Conv2D(filters=CONV3_FILTERS, kernel_size=CONV3_KERNEL))
model.add(tf.keras.layers.Activation(CONV3_ACTIVATION))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=FC_UNITS, activation=FC_ACTIVATION))
model.add(tf.keras.layers.Dense(units=OUTPUT_UNITS, activation=OUTPUT_ACTIVATION))
model.compile(optimizer=OPTIMIZER, loss=LOSS_CLASS, metrics=[AUC_METRICS, ACCURACY_METRICS, RECALL_METRICS])
model.summary()
hist = model.fit(x=train_set, validation_data=val_set, epochs=EPOCH) | code |
74059064/cell_18 | [
"text_plain_output_1.png"
] | import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=CONV1_FILTERS, kernel_size=CONV1_KERNEL, input_shape=[TARGET_WIDTH, TARGET_HEIGHT, COLOR_CHANNEL]))
model.add(tf.keras.layers.Activation(CONV1_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL1_SIZE, strides=POOL1_STRIDE))
model.add(tf.keras.layers.Conv2D(filters=CONV2_FILTERS, kernel_size=CONV2_KERNEL))
model.add(tf.keras.layers.Activation(CONV2_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL2_SIZE, strides=POOL2_STRIDE))
model.add(tf.keras.layers.Dropout(DROPOUT))
model.add(tf.keras.layers.Conv2D(filters=CONV3_FILTERS, kernel_size=CONV3_KERNEL))
model.add(tf.keras.layers.Activation(CONV3_ACTIVATION))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=FC_UNITS, activation=FC_ACTIVATION))
model.add(tf.keras.layers.Dense(units=OUTPUT_UNITS, activation=OUTPUT_ACTIVATION))
model.compile(optimizer=OPTIMIZER, loss=LOSS_CLASS, metrics=[AUC_METRICS, ACCURACY_METRICS, RECALL_METRICS])
model.summary() | code |
74059064/cell_28 | [
"image_output_1.png"
] | from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import numpy as np # linear algebra
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
train_gen = ImageDataGenerator(rescale=1.0 / RESCALE, shear_range=SHEAR_RANGE, vertical_flip=VERTICAL_FLIP, horizontal_flip=HORIZONTAL_FLIP, zoom_range=ZOOM_RANGE, validation_split=VALIDATION_SPLIT)
train_set = train_gen.flow_from_directory(TRAIN_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
val_gen = ImageDataGenerator(rescale=1.0 / RESCALE)
val_set = val_gen.flow_from_directory(VAL_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=CONV1_FILTERS, kernel_size=CONV1_KERNEL, input_shape=[TARGET_WIDTH, TARGET_HEIGHT, COLOR_CHANNEL]))
model.add(tf.keras.layers.Activation(CONV1_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL1_SIZE, strides=POOL1_STRIDE))
model.add(tf.keras.layers.Conv2D(filters=CONV2_FILTERS, kernel_size=CONV2_KERNEL))
model.add(tf.keras.layers.Activation(CONV2_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL2_SIZE, strides=POOL2_STRIDE))
model.add(tf.keras.layers.Dropout(DROPOUT))
model.add(tf.keras.layers.Conv2D(filters=CONV3_FILTERS, kernel_size=CONV3_KERNEL))
model.add(tf.keras.layers.Activation(CONV3_ACTIVATION))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=FC_UNITS, activation=FC_ACTIVATION))
model.add(tf.keras.layers.Dense(units=OUTPUT_UNITS, activation=OUTPUT_ACTIVATION))
model.compile(optimizer=OPTIMIZER, loss=LOSS_CLASS, metrics=[AUC_METRICS, ACCURACY_METRICS, RECALL_METRICS])
model.summary()
hist = model.fit(x=train_set, validation_data=val_set, epochs=EPOCH)
test_sample = image.load_img(TEST_IMAGE_DIR, target_size=(TARGET_WIDTH, TARGET_HEIGHT))
test_sample = image.img_to_array(test_sample)
test_sample = np.expand_dims(test_sample, axis=0)
result = model.predict(test_sample)
if result[0][0] == 1:
print(PNEUMONIA_TITLE)
else:
print(NORMAL_TITLE) | code |
74059064/cell_14 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
val_gen = ImageDataGenerator(rescale=1.0 / RESCALE)
val_set = val_gen.flow_from_directory(VAL_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE) | code |
74059064/cell_22 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
normal_img = cv2.imread(NORMAL_DIR)
pneumonia_img = cv2.imread(PNEUMONIA_DIR)
normal_img = cv2.resize(normal_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
pneumonia_img = cv2.resize(pneumonia_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
train_gen = ImageDataGenerator(rescale=1.0 / RESCALE, shear_range=SHEAR_RANGE, vertical_flip=VERTICAL_FLIP, horizontal_flip=HORIZONTAL_FLIP, zoom_range=ZOOM_RANGE, validation_split=VALIDATION_SPLIT)
train_set = train_gen.flow_from_directory(TRAIN_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
val_gen = ImageDataGenerator(rescale=1.0 / RESCALE)
val_set = val_gen.flow_from_directory(VAL_DIR, batch_size=BATCH_SIZE, target_size=(TARGET_WIDTH, TARGET_HEIGHT), class_mode=CLASS_MODE)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=CONV1_FILTERS, kernel_size=CONV1_KERNEL, input_shape=[TARGET_WIDTH, TARGET_HEIGHT, COLOR_CHANNEL]))
model.add(tf.keras.layers.Activation(CONV1_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL1_SIZE, strides=POOL1_STRIDE))
model.add(tf.keras.layers.Conv2D(filters=CONV2_FILTERS, kernel_size=CONV2_KERNEL))
model.add(tf.keras.layers.Activation(CONV2_ACTIVATION))
model.add(tf.keras.layers.MaxPool2D(pool_size=POOL2_SIZE, strides=POOL2_STRIDE))
model.add(tf.keras.layers.Dropout(DROPOUT))
model.add(tf.keras.layers.Conv2D(filters=CONV3_FILTERS, kernel_size=CONV3_KERNEL))
model.add(tf.keras.layers.Activation(CONV3_ACTIVATION))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=FC_UNITS, activation=FC_ACTIVATION))
model.add(tf.keras.layers.Dense(units=OUTPUT_UNITS, activation=OUTPUT_ACTIVATION))
model.compile(optimizer=OPTIMIZER, loss=LOSS_CLASS, metrics=[AUC_METRICS, ACCURACY_METRICS, RECALL_METRICS])
model.summary()
hist = model.fit(x=train_set, validation_data=val_set, epochs=EPOCH)
key_list = []
for key in hist.history.keys():
key_list.append(key)
plt.figure(figsize=(20, 3))
plt.subplot(1, 4, 1)
plt.suptitle(SUPTITLE)
plt.ylabel(LOSS_LABEL)
plt.plot(hist.history[key_list[0]], color='b', label=TRAIN_LOSS_LABEL)
plt.plot(hist.history[key_list[4]], color='r', label=VALIDATION_LOSS_LABEL)
plt.legend(loc=UPPER_RIGHT)
plt.subplot(1, 4, 2)
plt.ylabel(ACCURACY_LABEL)
plt.plot(hist.history[key_list[2]], color='b', label=TRAIN_ACCURACY_LABEL)
plt.plot(hist.history[key_list[6]], color='r', label=VALIDATION_ACCURACY_LABEL)
plt.legend(loc=LOWER_RIGHT)
plt.subplot(1, 4, 3)
plt.ylabel(AUC_LABEL)
plt.plot(hist.history[key_list[1]], color='b', label=TRAIN_AUC_LABEL)
plt.plot(hist.history[key_list[5]], color='r', label=VALIDATION_AUC_LABEL)
plt.legend(loc=LOWER_RIGHT)
plt.subplot(1, 4, 4)
plt.ylabel(RECALL_LABEL)
plt.plot(hist.history[key_list[3]], color='b', label=TRAIN_RECALL_LABEL)
plt.plot(hist.history[key_list[7]], color='r', label=VALIDATION_RECALL_LABEL)
plt.legend(loc=LOWER_RIGHT)
plt.show() | code |
74059064/cell_10 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
ROOT = '/kaggle/input/covid19-xray-dataset-train-test-sets/xray_dataset_covid19/'
TRAIN_DIR = ROOT + 'train'
TEST_IMAGE_DIR = '/kaggle/input/covid19-test-sample/pneumonia_test_1.jpg'
VAL_DIR = ROOT + 'test'
NORMAL_DIR = ROOT + 'train/NORMAL/IM-0101-0001.jpeg'
PNEUMONIA_DIR = ROOT + 'train/PNEUMONIA/B59DD164-51D5-40DF-A926-6A42DD52EBE8.jpeg'
RESIZE_WIDTH = 256
RESIZE_HEIGHT = 256
NORMAL_TITLE = 'Normal'
PNEUMONIA_TITLE = 'Pneumonia'
BATCH_SIZE = 32
TARGET_WIDTH = 64
TARGET_HEIGHT = 64
CLASS_MODE = 'binary'
RESCALE = 255
SHEAR_RANGE = 0.25
VERTICAL_FLIP = False
HORIZONTAL_FLIP = True
ZOOM_RANGE = 0.25
VALIDATION_SPLIT = 0.15
EPOCH = 20
SUPTITLE = 'Train vs Validation'
LOSS_LABEL = 'Loss'
ACCURACY_LABEL = 'Accuracy'
AUC_LABEL = 'ROC-AUC'
RECALL_LABEL = 'Recall'
TRAIN_LOSS_LABEL = 'Training Loss'
VALIDATION_LOSS_LABEL = 'Validation Loss'
TRAIN_ACCURACY_LABEL = 'Training Accuracy'
VALIDATION_ACCURACY_LABEL = 'Validation Accuracy'
TRAIN_AUC_LABEL = 'Training AUC'
VALIDATION_AUC_LABEL = 'Validation AUC'
TRAIN_RECALL_LABEL = 'Training Recall'
VALIDATION_RECALL_LABEL = 'Validation Recall'
UPPER_RIGHT = 'upper right'
LOWER_RIGHT = 'lower right'
COLOR_CHANNEL = 3
CONV1_FILTERS = 48
CONV1_KERNEL = 3
CONV1_ACTIVATION = 'relu'
POOL1_SIZE = 3
POOL1_STRIDE = 1
CONV2_FILTERS = 32
CONV2_KERNEL = 3
CONV2_ACTIVATION = 'relu'
DROPOUT = 0.3
POOL2_SIZE = 2
POOL2_STRIDE = 1
CONV3_FILTERS = 16
CONV3_KERNEL = 3
CONV3_ACTIVATION = 'relu'
FC_ACTIVATION = 'relu'
FC_UNITS = 128
OUTPUT_ACTIVATION = 'sigmoid'
OUTPUT_UNITS = 1
OPTIMIZER = 'adam'
LOSS_CLASS = 'binary_crossentropy'
ACCURACY_METRICS = 'accuracy'
AUC_METRICS = tf.keras.metrics.AUC()
RECALL_METRICS = tf.keras.metrics.Recall()
normal_img = cv2.imread(NORMAL_DIR)
pneumonia_img = cv2.imread(PNEUMONIA_DIR)
normal_img = cv2.resize(normal_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
pneumonia_img = cv2.resize(pneumonia_img, (RESIZE_WIDTH, RESIZE_HEIGHT))
plt.subplot(1, 2, 1)
plt.imshow(normal_img)
plt.title(NORMAL_TITLE)
plt.subplot(1, 2, 2)
plt.imshow(pneumonia_img)
plt.title(PNEUMONIA_TITLE)
plt.show() | code |
90111632/cell_9 | [
"image_output_1.png"
] | from nltk.corpus import stopwords
from textblob import Word
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import tweepy
consumer_key = 'w3M2j4hfO3ByQlROB3W05ooH0'
consumer_secret = 'JmkPXnxlTKV3u5Fnd3xUMor3QF7MIFVJmonXxTN8okLebupXhk'
access_token = '1358404783477043201-A3U7lU8ZvTATIBchtrG5x94nauprT8'
access_token_secret = 'e4F74LVCQ7BWHZ0HPPTF4Tz1laeFJ0a341LPcLQ3jpqvX'
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = api.search_tweets(q='BTC', lang='en', count=200)
def hashtag_df(tweets):
import pandas as pd
id_list = [tweet.id for tweet in tweets]
dataframe = pd.DataFrame(id_list, columns=['id'])
dataframe['user'] = [tweet.author.screen_name for tweet in tweets]
dataframe['text'] = [tweet.text for tweet in tweets]
dataframe['hashtags'] = [tweet.entities.get('hashtags') for tweet in tweets]
return dataframe
df = hashtag_df(tweets)
df = df.drop_duplicates('user', keep='first')
df.drop('id', axis=1, inplace=True)
df.index = df['user']
df.drop('user', axis=1, inplace=True)
df['text'] = df['text'].apply(lambda x: ' '.join((x.lower() for x in x.split())))
df['text'] = df['text'].str.replace('[^\\w\\s]', '')
df['text'] = df['text'].str.replace('\\d', '')
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
sw = stopwords.words('english')
df['text'] = df['text'].apply(lambda x: ' '.join((x for x in x.split() if x not in sw)))
from textblob import Word
nltk.download('wordnet')
df['text'] = df['text'].apply(lambda x: ' '.join([Word(word).lemmatize() for word in x.split()]))
df['text'] = df['text'].str.replace('rt', '')
freq_df = df['text'].apply(lambda x: pd.value_counts(x.split(' '))).sum(axis=0).reset_index()
freq_df.columns = ['Words', 'Frequency']
freq_df = freq_df.sort_values(by='Frequency', ascending=False)
freq_df = freq_df[freq_df.Frequency > freq_df.Frequency.mean() + freq_df.Frequency.std()]
plt.figure(figsize=(10, 10))
sns.set(font_scale=1)
sns.barplot(x='Frequency', y='Words', data=freq_df.sort_values(by='Frequency', ascending=False))
plt.title('Frequency')
plt.tight_layout()
plt.show() | code |
90111632/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import tweepy
consumer_key = 'w3M2j4hfO3ByQlROB3W05ooH0'
consumer_secret = 'JmkPXnxlTKV3u5Fnd3xUMor3QF7MIFVJmonXxTN8okLebupXhk'
access_token = '1358404783477043201-A3U7lU8ZvTATIBchtrG5x94nauprT8'
access_token_secret = 'e4F74LVCQ7BWHZ0HPPTF4Tz1laeFJ0a341LPcLQ3jpqvX'
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = api.search_tweets(q='BTC', lang='en', count=200)
def hashtag_df(tweets):
import pandas as pd
id_list = [tweet.id for tweet in tweets]
dataframe = pd.DataFrame(id_list, columns=['id'])
dataframe['user'] = [tweet.author.screen_name for tweet in tweets]
dataframe['text'] = [tweet.text for tweet in tweets]
dataframe['hashtags'] = [tweet.entities.get('hashtags') for tweet in tweets]
return dataframe
df = hashtag_df(tweets)
df = df.drop_duplicates('user', keep='first')
df.drop('id', axis=1, inplace=True)
df.index = df['user']
df.drop('user', axis=1, inplace=True)
df.head() | code |
90111632/cell_1 | [
"text_plain_output_1.png"
] | !pip install tweepy | code |
90111632/cell_7 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from textblob import Word
import nltk
import pandas as pd
import pandas as pd
import tweepy
consumer_key = 'w3M2j4hfO3ByQlROB3W05ooH0'
consumer_secret = 'JmkPXnxlTKV3u5Fnd3xUMor3QF7MIFVJmonXxTN8okLebupXhk'
access_token = '1358404783477043201-A3U7lU8ZvTATIBchtrG5x94nauprT8'
access_token_secret = 'e4F74LVCQ7BWHZ0HPPTF4Tz1laeFJ0a341LPcLQ3jpqvX'
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = api.search_tweets(q='BTC', lang='en', count=200)
def hashtag_df(tweets):
import pandas as pd
id_list = [tweet.id for tweet in tweets]
dataframe = pd.DataFrame(id_list, columns=['id'])
dataframe['user'] = [tweet.author.screen_name for tweet in tweets]
dataframe['text'] = [tweet.text for tweet in tweets]
dataframe['hashtags'] = [tweet.entities.get('hashtags') for tweet in tweets]
return dataframe
df = hashtag_df(tweets)
df = df.drop_duplicates('user', keep='first')
df.drop('id', axis=1, inplace=True)
df.index = df['user']
df.drop('user', axis=1, inplace=True)
df['text'] = df['text'].apply(lambda x: ' '.join((x.lower() for x in x.split())))
df['text'] = df['text'].str.replace('[^\\w\\s]', '')
df['text'] = df['text'].str.replace('\\d', '')
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
sw = stopwords.words('english')
df['text'] = df['text'].apply(lambda x: ' '.join((x for x in x.split() if x not in sw)))
from textblob import Word
nltk.download('wordnet')
df['text'] = df['text'].apply(lambda x: ' '.join([Word(word).lemmatize() for word in x.split()]))
df['text'] = df['text'].str.replace('rt', '') | code |
90111632/cell_8 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from textblob import Word
import nltk
import pandas as pd
import pandas as pd
import tweepy
consumer_key = 'w3M2j4hfO3ByQlROB3W05ooH0'
consumer_secret = 'JmkPXnxlTKV3u5Fnd3xUMor3QF7MIFVJmonXxTN8okLebupXhk'
access_token = '1358404783477043201-A3U7lU8ZvTATIBchtrG5x94nauprT8'
access_token_secret = 'e4F74LVCQ7BWHZ0HPPTF4Tz1laeFJ0a341LPcLQ3jpqvX'
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
tweets = api.search_tweets(q='BTC', lang='en', count=200)
def hashtag_df(tweets):
import pandas as pd
id_list = [tweet.id for tweet in tweets]
dataframe = pd.DataFrame(id_list, columns=['id'])
dataframe['user'] = [tweet.author.screen_name for tweet in tweets]
dataframe['text'] = [tweet.text for tweet in tweets]
dataframe['hashtags'] = [tweet.entities.get('hashtags') for tweet in tweets]
return dataframe
df = hashtag_df(tweets)
df = df.drop_duplicates('user', keep='first')
df.drop('id', axis=1, inplace=True)
df.index = df['user']
df.drop('user', axis=1, inplace=True)
df['text'] = df['text'].apply(lambda x: ' '.join((x.lower() for x in x.split())))
df['text'] = df['text'].str.replace('[^\\w\\s]', '')
df['text'] = df['text'].str.replace('\\d', '')
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
sw = stopwords.words('english')
df['text'] = df['text'].apply(lambda x: ' '.join((x for x in x.split() if x not in sw)))
from textblob import Word
nltk.download('wordnet')
df['text'] = df['text'].apply(lambda x: ' '.join([Word(word).lemmatize() for word in x.split()]))
df['text'] = df['text'].str.replace('rt', '')
freq_df = df['text'].apply(lambda x: pd.value_counts(x.split(' '))).sum(axis=0).reset_index()
freq_df.columns = ['Words', 'Frequency']
freq_df = freq_df.sort_values(by='Frequency', ascending=False)
freq_df = freq_df[freq_df.Frequency > freq_df.Frequency.mean() + freq_df.Frequency.std()]
freq_df.head() | code |
17135958/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from PIL import Image
from keras import optimizers
from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l1,l2,l1_l2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import xml.etree.ElementTree as ET
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
def bounding_box(image):
bpath = root_annots + str(breed_map[image.split('_')[0]]) + '/' + str(image.split('.')[0])
tree = ET.parse(bpath)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
return (xmin, ymin, xmax, ymax)
num_rows = 5
num_cols = 9
num_images_to_show = num_rows * num_cols
selected_images = np.random.choice(all_images, size=num_images_to_show, replace=False)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
plt.axis('off')
num_images_in_dataset = 16384
image_dimention = 64
resize_shape = (image_dimention, image_dimention)
selected_images = np.random.choice(all_images, size=num_images_in_dataset, replace=False)
image_dataset_4D_matrix = np.zeros((image_dimention, image_dimention, 3, num_images_in_dataset), dtype=np.uint8)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
resized_image = tform.resize(np.array(cropped_image), resize_shape, preserve_range=True).astype(np.uint8)
image_dataset_4D_matrix[:, :, :, k] = resized_image
from keras.models import Model
from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.layers.normalization import BatchNormalization
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.regularizers import l1, l2, l1_l2
from keras import optimizers
kernel_reg = 1e-07
activity_reg = 1e-07
input_image = Input(shape=(64, 64, 3), name='input_image')
x = Conv2D(32, (3, 3), activation='relu', padding='valid', name='encoder_conv1')(input_image)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool1')(x)
x = BatchNormalization(name='batchnorm_2')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='valid', name='encoder_conv2')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool2')(x)
x = BatchNormalization(name='batchnorm_3')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv3')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool3')(x)
x = BatchNormalization(name='batchnorm_4')(x)
x = Conv2D(1024, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv4')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool4')(x)
x = BatchNormalization(name='batchnorm_5')(x)
x = Conv2D(2048, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv5')(x)
x = MaxPooling2D((3, 3), padding='same', name='encoder_pool5')(x)
x = BatchNormalization(name='batchnorm_6')(x)
image_representation = Conv2D(2048, (1, 1), activation='relu', kernel_regularizer=l2(kernel_reg), activity_regularizer=l1(activity_reg), name='encoder_fc6')(x)
image_representation = GaussianDropout(rate=0.1)(image_representation)
image_representation = GaussianNoise(stddev=0.1)(image_representation)
encoder = Model(input_image, image_representation, name='encoder')
external_image_representation = Input(shape=(1, 1, 2048), name='extenral_image_rep')
x = UpSampling2D((5, 5))(external_image_representation)
x = BatchNormalization(name='decoder_BN_1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv1')(x)
x = UpSampling2D((3, 3), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv2')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_3')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv3')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_4')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv4')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_5')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv5')(x)
output_image = Conv2D(3, (3, 3), activation='linear', padding='same', name='generated_image')(x)
decoder = Model(external_image_representation, output_image, name='decoder')
autoencoder = Model(input_image, decoder(encoder(input_image)))
autoencoder.summary()
image_dataset_4D_matrix
normlized_X = image_dataset_4D_matrix.astype(np.float32)
normlized_X = normlized_X - normlized_X.mean(axis=3, keepdims=True)
normlized_X = normlized_X / normlized_X.std(axis=3, keepdims=True)
normlized_X = np.transpose(normlized_X, [3, 0, 1, 2])
num_epochs = 64
batch_size = 32
learning_rate = 0.0003
loss_to_use = 'mse'
optimizer_to_use = optimizers.Nadam(lr=learning_rate)
autoencoder.compile(optimizer=optimizer_to_use, loss=loss_to_use)
history = autoencoder.fit(x=normlized_X, y=normlized_X, batch_size=batch_size, epochs=num_epochs, validation_split=0.125) | code |
17135958/cell_4 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import xml.etree.ElementTree as ET
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
def bounding_box(image):
bpath = root_annots + str(breed_map[image.split('_')[0]]) + '/' + str(image.split('.')[0])
tree = ET.parse(bpath)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
return (xmin, ymin, xmax, ymax)
num_rows = 5
num_cols = 9
num_images_to_show = num_rows * num_cols
selected_images = np.random.choice(all_images, size=num_images_to_show, replace=False)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
plt.axis('off')
num_images_in_dataset = 16384
image_dimention = 64
resize_shape = (image_dimention, image_dimention)
selected_images = np.random.choice(all_images, size=num_images_in_dataset, replace=False)
image_dataset_4D_matrix = np.zeros((image_dimention, image_dimention, 3, num_images_in_dataset), dtype=np.uint8)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
resized_image = tform.resize(np.array(cropped_image), resize_shape, preserve_range=True).astype(np.uint8)
image_dataset_4D_matrix[:, :, :, k] = resized_image
print('finished collecting dataset') | code |
17135958/cell_6 | [
"text_plain_output_1.png"
] | from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l1,l2,l1_l2
from keras.models import Model
from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.layers.normalization import BatchNormalization
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.regularizers import l1, l2, l1_l2
from keras import optimizers
kernel_reg = 1e-07
activity_reg = 1e-07
input_image = Input(shape=(64, 64, 3), name='input_image')
x = Conv2D(32, (3, 3), activation='relu', padding='valid', name='encoder_conv1')(input_image)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool1')(x)
x = BatchNormalization(name='batchnorm_2')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='valid', name='encoder_conv2')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool2')(x)
x = BatchNormalization(name='batchnorm_3')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv3')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool3')(x)
x = BatchNormalization(name='batchnorm_4')(x)
x = Conv2D(1024, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv4')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool4')(x)
x = BatchNormalization(name='batchnorm_5')(x)
x = Conv2D(2048, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv5')(x)
x = MaxPooling2D((3, 3), padding='same', name='encoder_pool5')(x)
x = BatchNormalization(name='batchnorm_6')(x)
image_representation = Conv2D(2048, (1, 1), activation='relu', kernel_regularizer=l2(kernel_reg), activity_regularizer=l1(activity_reg), name='encoder_fc6')(x)
image_representation = GaussianDropout(rate=0.1)(image_representation)
image_representation = GaussianNoise(stddev=0.1)(image_representation)
encoder = Model(input_image, image_representation, name='encoder')
external_image_representation = Input(shape=(1, 1, 2048), name='extenral_image_rep')
x = UpSampling2D((5, 5))(external_image_representation)
x = BatchNormalization(name='decoder_BN_1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv1')(x)
x = UpSampling2D((3, 3), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv2')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_3')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv3')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_4')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv4')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_5')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv5')(x)
output_image = Conv2D(3, (3, 3), activation='linear', padding='same', name='generated_image')(x)
decoder = Model(external_image_representation, output_image, name='decoder')
autoencoder = Model(input_image, decoder(encoder(input_image)))
autoencoder.summary() | code |
17135958/cell_2 | [
"image_output_1.png"
] | import glob
import os
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
print(f'Total images : {len(all_images)}')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
print(f'Total annotation : {len(annotation)}')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
print(f'Total Breeds : {len(breed_map)}') | code |
17135958/cell_8 | [
"text_plain_output_1.png"
] | from PIL import Image
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import xml.etree.ElementTree as ET
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
def bounding_box(image):
bpath = root_annots + str(breed_map[image.split('_')[0]]) + '/' + str(image.split('.')[0])
tree = ET.parse(bpath)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
return (xmin, ymin, xmax, ymax)
num_rows = 5
num_cols = 9
num_images_to_show = num_rows * num_cols
selected_images = np.random.choice(all_images, size=num_images_to_show, replace=False)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
plt.axis('off')
num_images_in_dataset = 16384
image_dimention = 64
resize_shape = (image_dimention, image_dimention)
selected_images = np.random.choice(all_images, size=num_images_in_dataset, replace=False)
image_dataset_4D_matrix = np.zeros((image_dimention, image_dimention, 3, num_images_in_dataset), dtype=np.uint8)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
resized_image = tform.resize(np.array(cropped_image), resize_shape, preserve_range=True).astype(np.uint8)
image_dataset_4D_matrix[:, :, :, k] = resized_image
image_dataset_4D_matrix
normlized_X = image_dataset_4D_matrix.astype(np.float32)
print(normlized_X.shape)
normlized_X = normlized_X - normlized_X.mean(axis=3, keepdims=True)
print(normlized_X.shape)
normlized_X = normlized_X / normlized_X.std(axis=3, keepdims=True)
print(normlized_X.shape)
normlized_X = np.transpose(normlized_X, [3, 0, 1, 2])
print(normlized_X.shape) | code |
17135958/cell_3 | [
"text_plain_output_1.png"
] | from PIL import Image
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import xml.etree.ElementTree as ET
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
def bounding_box(image):
bpath = root_annots + str(breed_map[image.split('_')[0]]) + '/' + str(image.split('.')[0])
tree = ET.parse(bpath)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
return (xmin, ymin, xmax, ymax)
num_rows = 5
num_cols = 9
num_images_to_show = num_rows * num_cols
selected_images = np.random.choice(all_images, size=num_images_to_show, replace=False)
plt.figure(figsize=(30, 16))
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
plt.subplot(num_rows, num_cols, k + 1)
plt.imshow(cropped_image)
plt.axis('off') | code |
17135958/cell_10 | [
"text_plain_output_1.png"
] | from PIL import Image
from keras import optimizers
from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l1,l2,l1_l2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import xml.etree.ElementTree as ET
root_images = '../input/all-dogs/all-dogs/'
root_annots = '../input/annotation/Annotation/'
all_images = os.listdir('../input/all-dogs/all-dogs/')
breeds = glob.glob('../input/annotation/Annotation/*')
annotation = []
for b in breeds:
annotation += glob.glob(b + '/*')
breed_map = {}
for annot in annotation:
breed = annot.split('/')[-2]
index = breed.split('-')[0]
breed_map.setdefault(index, breed)
def bounding_box(image):
bpath = root_annots + str(breed_map[image.split('_')[0]]) + '/' + str(image.split('.')[0])
tree = ET.parse(bpath)
root = tree.getroot()
objects = root.findall('object')
for o in objects:
bndbox = o.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
return (xmin, ymin, xmax, ymax)
num_rows = 5
num_cols = 9
num_images_to_show = num_rows * num_cols
selected_images = np.random.choice(all_images, size=num_images_to_show, replace=False)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
plt.axis('off')
num_images_in_dataset = 16384
image_dimention = 64
resize_shape = (image_dimention, image_dimention)
selected_images = np.random.choice(all_images, size=num_images_in_dataset, replace=False)
image_dataset_4D_matrix = np.zeros((image_dimention, image_dimention, 3, num_images_in_dataset), dtype=np.uint8)
for k, image_filename in enumerate(selected_images):
bbox = bounding_box(image_filename)
orig_image = Image.open(os.path.join(root_images, image_filename))
cropped_image = orig_image.crop(bbox)
resized_image = tform.resize(np.array(cropped_image), resize_shape, preserve_range=True).astype(np.uint8)
image_dataset_4D_matrix[:, :, :, k] = resized_image
from keras.models import Model
from keras.layers import Input, Dropout, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.layers.normalization import BatchNormalization
from keras.layers.noise import GaussianNoise, GaussianDropout
from keras.regularizers import l1, l2, l1_l2
from keras import optimizers
kernel_reg = 1e-07
activity_reg = 1e-07
input_image = Input(shape=(64, 64, 3), name='input_image')
x = Conv2D(32, (3, 3), activation='relu', padding='valid', name='encoder_conv1')(input_image)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool1')(x)
x = BatchNormalization(name='batchnorm_2')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='valid', name='encoder_conv2')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool2')(x)
x = BatchNormalization(name='batchnorm_3')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv3')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool3')(x)
x = BatchNormalization(name='batchnorm_4')(x)
x = Conv2D(1024, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv4')(x)
x = MaxPooling2D((2, 2), padding='same', name='encoder_pool4')(x)
x = BatchNormalization(name='batchnorm_5')(x)
x = Conv2D(2048, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='encoder_conv5')(x)
x = MaxPooling2D((3, 3), padding='same', name='encoder_pool5')(x)
x = BatchNormalization(name='batchnorm_6')(x)
image_representation = Conv2D(2048, (1, 1), activation='relu', kernel_regularizer=l2(kernel_reg), activity_regularizer=l1(activity_reg), name='encoder_fc6')(x)
image_representation = GaussianDropout(rate=0.1)(image_representation)
image_representation = GaussianNoise(stddev=0.1)(image_representation)
encoder = Model(input_image, image_representation, name='encoder')
external_image_representation = Input(shape=(1, 1, 2048), name='extenral_image_rep')
x = UpSampling2D((5, 5))(external_image_representation)
x = BatchNormalization(name='decoder_BN_1')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv1')(x)
x = UpSampling2D((3, 3), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_2')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv2')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_3')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='valid', kernel_regularizer=l2(kernel_reg), name='decoder_conv3')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_4')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv4')(x)
x = UpSampling2D((2, 2), interpolation='bilinear')(x)
x = BatchNormalization(name='decoder_BN_5')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(kernel_reg), name='decoder_conv5')(x)
output_image = Conv2D(3, (3, 3), activation='linear', padding='same', name='generated_image')(x)
decoder = Model(external_image_representation, output_image, name='decoder')
autoencoder = Model(input_image, decoder(encoder(input_image)))
autoencoder.summary()
image_dataset_4D_matrix
normlized_X = image_dataset_4D_matrix.astype(np.float32)
normlized_X = normlized_X - normlized_X.mean(axis=3, keepdims=True)
normlized_X = normlized_X / normlized_X.std(axis=3, keepdims=True)
normlized_X = np.transpose(normlized_X, [3, 0, 1, 2])
num_epochs = 64
batch_size = 32
learning_rate = 0.0003
loss_to_use = 'mse'
optimizer_to_use = optimizers.Nadam(lr=learning_rate)
autoencoder.compile(optimizer=optimizer_to_use, loss=loss_to_use)
history = autoencoder.fit(x=normlized_X, y=normlized_X, batch_size=batch_size, epochs=num_epochs, validation_split=0.125)
epoch_number = np.arange(1, num_epochs + 1)
plt.figure(figsize=(12, 6))
plt.plot(epoch_number, history.history['loss'], 'b')
plt.plot(epoch_number, history.history['val_loss'], 'g')
plt.legend(['train', 'valid'], fontsize=18) | code |
130000382/cell_13 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from collections import Counter
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
csv = pd.read_csv('/kaggle/input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv')
csv = csv.rename(columns={'Review': 'review', 'Rating': 'rating'})
csv['rating'] = csv['rating'] - 1
reviews = csv['review'].tolist()
ratings = csv['rating'].tolist()
features = {}
top200 = sorted(features, key=features.get, reverse=True)[:1000]
top400 = sorted(features, key=features.get, reverse=True)[:400]
train_test_split = 0.8
reviews_train = reviews[:round(train_test_split * len(reviews))]
reviews_test = reviews[round(train_test_split * len(reviews)):]
ratings_train = ratings[:round(train_test_split * len(ratings))]
ratings_test = ratings[round(train_test_split * len(ratings)):]
M200 = []
M400 = []
for review in reviews_train:
c = Counter([review[i:i + 3] for i in range(len(review) - 2)])
M200.append([c[g3] for g3 in top200])
M400.append([c[g3] for g3 in top400])
M200 = np.array(M200)
M400 = np.array(M400)
M200_test = []
M400_test = []
for review in reviews_test:
c = Counter([review[i:i + 3] for i in range(len(review) - 2)])
M200_test.append([c[g3] for g3 in top200])
M400_test.append([c[g3] for g3 in top400])
M200_test = np.array(M200_test)
M400_test = np.array(M400_test)
M200_test.shape | code |
130000382/cell_2 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import os
from collections import Counter
from sklearn import preprocessing
import torch
from torch import nn
from torchvision import transforms, datasets | code |
130000382/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
130000382/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
csv = pd.read_csv('/kaggle/input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv')
csv = csv.rename(columns={'Review': 'review', 'Rating': 'rating'})
csv['rating'] = csv['rating'] - 1
reviews = csv['review'].tolist()
ratings = csv['rating'].tolist()
features = {}
train_test_split = 0.8
reviews_train = reviews[:round(train_test_split * len(reviews))]
reviews_test = reviews[round(train_test_split * len(reviews)):]
ratings_train = ratings[:round(train_test_split * len(ratings))]
ratings_test = ratings[round(train_test_split * len(ratings)):]
print('Train: {} reviews, {} ratings'.format(len(reviews_train), len(ratings_train)))
print('Test: {} reviews, {} ratings'.format(len(reviews_test), len(ratings_test))) | code |
130000382/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
csv = pd.read_csv('/kaggle/input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv')
csv = csv.rename(columns={'Review': 'review', 'Rating': 'rating'})
csv['rating'] = csv['rating'] - 1
print('Length: {}'.format(len(csv)))
csv.head(10) | code |
130000382/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from collections import Counter
from sklearn import preprocessing
from torch import nn
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
csv = pd.read_csv('/kaggle/input/trip-advisor-hotel-reviews/tripadvisor_hotel_reviews.csv')
csv = csv.rename(columns={'Review': 'review', 'Rating': 'rating'})
csv['rating'] = csv['rating'] - 1
reviews = csv['review'].tolist()
ratings = csv['rating'].tolist()
features = {}
top200 = sorted(features, key=features.get, reverse=True)[:1000]
top400 = sorted(features, key=features.get, reverse=True)[:400]
train_test_split = 0.8
reviews_train = reviews[:round(train_test_split * len(reviews))]
reviews_test = reviews[round(train_test_split * len(reviews)):]
ratings_train = ratings[:round(train_test_split * len(ratings))]
ratings_test = ratings[round(train_test_split * len(ratings)):]
M200 = []
M400 = []
for review in reviews_train:
c = Counter([review[i:i + 3] for i in range(len(review) - 2)])
M200.append([c[g3] for g3 in top200])
M400.append([c[g3] for g3 in top400])
M200 = np.array(M200)
M400 = np.array(M400)
M200_test = []
M400_test = []
for review in reviews_test:
c = Counter([review[i:i + 3] for i in range(len(review) - 2)])
M200_test.append([c[g3] for g3 in top200])
M400_test.append([c[g3] for g3 in top400])
M200_test = np.array(M200_test)
M400_test = np.array(M400_test)
scl = preprocessing.StandardScaler()
M200_s = torch.tensor(scl.fit_transform(M200))
M400_s = torch.tensor(scl.fit_transform(M400))
M200_test_s = torch.tensor(scl.fit_transform(M200_test))
M400_test_s = torch.tensor(scl.fit_transform(M400_test))
ratings_train = torch.tensor(ratings_train).long()
ratings_test = torch.tensor(ratings_test).long()
model200 = nn.Sequential(nn.Linear(1000, 512), nn.ReLU(), nn.Dropout(0.8), nn.Linear(512, 32), nn.ReLU(), nn.Dropout(0.8), nn.Linear(32, 5))
learning_rate = 0.001
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model200.parameters(), lr=learning_rate)
epochs = 200
for epoch in range(epochs):
model200.train()
pred = model200(M200_s.float())
loss = loss_fn(pred, ratings_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model200.eval()
if epoch % 30 == 0:
train = (model200(M200_s.data.float()).argmax(1) == ratings_train).sum().item() / len(M200)
test = (model200(M200_test_s.data.float()).argmax(1) == ratings_test).sum().item() / len(M200_test)
print('Epoch {}.'.format(epoch + 1))
print('Loss: {:.3f}'.format(loss.item()))
print('Train Score: {:.3f}'.format(train))
print('Test Score: {:.3f}\n'.format(test)) | code |
106201252/cell_4 | [
"text_plain_output_1.png"
] | from scipy.sparse import csr_matrix
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
train_data = pd.read_csv('../input/digit-recognizer/train.csv')
test_data = pd.read_csv('../input/digit-recognizer/test.csv')
train_size = round(0.8 * len(train_data))
val_size = round(0.2 * len(train_data))
train_features = train_data[:train_size]
val_features = train_data[train_size:]
train_labels = train_features.pop('label')
val_labels = val_features.pop('label')
model = KNeighborsClassifier(n_neighbors=3)
train_matrix = csr_matrix(train_features.values)
model.fit(train_matrix, train_labels.values)
print('Accuracy:')
print(model.score(val_features.values, val_labels.values)) | code |
106201252/cell_3 | [
"text_plain_output_1.png"
] | from scipy.sparse import csr_matrix
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
train_data = pd.read_csv('../input/digit-recognizer/train.csv')
test_data = pd.read_csv('../input/digit-recognizer/test.csv')
train_size = round(0.8 * len(train_data))
val_size = round(0.2 * len(train_data))
train_features = train_data[:train_size]
val_features = train_data[train_size:]
train_labels = train_features.pop('label')
val_labels = val_features.pop('label')
model = KNeighborsClassifier(n_neighbors=3)
train_matrix = csr_matrix(train_features.values)
model.fit(train_matrix, train_labels.values) | code |
106201252/cell_5 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"image_output_5.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from scipy.sparse import csr_matrix
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
import pandas as pd
import random
train_data = pd.read_csv('../input/digit-recognizer/train.csv')
test_data = pd.read_csv('../input/digit-recognizer/test.csv')
train_size = round(0.8 * len(train_data))
val_size = round(0.2 * len(train_data))
train_features = train_data[:train_size]
val_features = train_data[train_size:]
train_labels = train_features.pop('label')
val_labels = val_features.pop('label')
model = KNeighborsClassifier(n_neighbors=3)
train_matrix = csr_matrix(train_features.values)
model.fit(train_matrix, train_labels.values)
def show_image(img):
plt.figure()
plt.imshow(img, cmap=plt.cm.binary)
plt.colorbar()
plt.grid(False)
plt.show()
def predict(model, image_num):
image = test_data.iloc[image_num, 0:].values.reshape(28, 28)
image_matrix = csr_matrix(test_data.iloc[image_num, 0:].values)
class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
prediction = model.predict(image_matrix)
print('Prediction: ' + str(prediction[0]))
show_image(image)
def make_n_predictions(model, n):
for i in range(n):
random_image = random.randint(0, 27999)
predict(model, random_image)
make_n_predictions(model, 5) | code |
122251379/cell_13 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF | code |
122251379/cell_9 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
X = A - B
X | code |
122251379/cell_20 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop()
A.pop() | code |
122251379/cell_26 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop()
A.pop()
A.remove(100)
H = A.discard(4)
H
A.update(B)
A | code |
122251379/cell_2 | [
"text_plain_output_1.png"
] | s = set()
type(s)
s = {'INDIA', 'SRILANKA', 'PAKISTAN'}
type(s) | code |
122251379/cell_19 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop() | code |
122251379/cell_1 | [
"text_plain_output_1.png"
] | s = set()
type(s) | code |
122251379/cell_7 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D | code |
122251379/cell_18 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A | code |
122251379/cell_28 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop()
A.pop()
A.remove(100)
H = A.discard(4)
H
A.update(B)
A.clear()
A | code |
122251379/cell_16 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A | code |
122251379/cell_24 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop()
A.pop()
A.remove(100)
H = A.discard(4)
H
A | code |
122251379/cell_14 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
sym_dif = B ^ A
sym_dif | code |
122251379/cell_22 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF
SYM_DIF = A.symmetric_difference(B)
SYM_DIF
A.add(100)
A.pop()
A.pop()
A.remove(100)
A | code |
122251379/cell_10 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
Y = B - A
Y | code |
122251379/cell_12 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C
D = A.union(B)
D = A | B
D = B | A
D
SYM_DIF = A ^ B
SYM_DIF | code |
122251379/cell_5 | [
"text_plain_output_1.png"
] | A = {1, 2, 3, 4}
B = {3, 4, 5, 6}
C = A.intersection(B)
C = A & B
C | code |
2001469/cell_9 | [
"image_output_1.png"
] | from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
files_listing = test_data.PassengerId
test_labels = pd.read_csv('../input/gender_submission.csv')
labels_test = test_labels.values
labels_test = labels_test[:, 1]
test_data = test_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
test_data.Age = test_data.Age.fillna(np.mean(train_data.Age))
test_data.Sex = test_data.Sex.apply(lambda x: 1 if x == 'male' else 0)
test_data = test_data.values
test_data = test_data[:, 1:]
features_test = test_data
train_data = train_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
train_data['Age'] = train_data['Age'].fillna(np.mean(train_data.Age))
train_data['Sex'] = train_data['Sex'].apply(lambda x: 1 if x == 'male' else 0)
features_all = train_data.values
labels_all = features_all[:, 1]
features_all = features_all[:, 2:]
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
classifiers = [KNeighborsClassifier(), AdaBoostClassifier(), RandomForestClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), GradientBoostingClassifier(), DecisionTreeClassifier()]
uni, cnt = np.unique(labels_test, return_counts=True)
res_cols = ['Name', 'Accuracy']
result = pd.DataFrame(columns=res_cols)
for clf in classifiers:
clf.fit(features_all, labels_all)
name = clf.__class__.__name__
pred_train = clf.predict(features_test)
acc = accuracy_score(labels_test, pred_train)
frame = pd.DataFrame([[name, acc * 100]], columns=res_cols)
result = result.append(frame)
classifiers = [LinearSVC(), NuSVC(), SVC(kernel='rbf', C=0.25), SVC(kernel='linear', C=0.25), SVC(kernel='rbf', C=1), SVC(kernel='linear', C=1), SVC(kernel='rbf', C=5), SVC(kernel='linear', C=5)]
uni, cnt = np.unique(labels_test, return_counts=True)
print('Actual Value of the result ', dict(zip(uni, cnt)))
for clf in classifiers:
clf.fit(features_all, labels_all)
print('-' * 50)
print(name)
pred_train = clf.predict(features_test)
acc = accuracy_score(labels_test, pred_train)
print('Result ->', acc * 100, '%')
print('-' * 50) | code |
2001469/cell_6 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
files_listing = test_data.PassengerId
test_labels = pd.read_csv('../input/gender_submission.csv')
labels_test = test_labels.values
labels_test = labels_test[:, 1]
test_data = test_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
test_data.Age = test_data.Age.fillna(np.mean(train_data.Age))
test_data.Sex = test_data.Sex.apply(lambda x: 1 if x == 'male' else 0)
test_data = test_data.values
test_data = test_data[:, 1:]
features_test = test_data
train_data = train_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
train_data['Age'] = train_data['Age'].fillna(np.mean(train_data.Age))
train_data['Sex'] = train_data['Sex'].apply(lambda x: 1 if x == 'male' else 0)
train_data.head() | code |
2001469/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2001469/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
files_listing = test_data.PassengerId
test_labels = pd.read_csv('../input/gender_submission.csv')
labels_test = test_labels.values
labels_test = labels_test[:, 1]
test_data = test_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
test_data.Age = test_data.Age.fillna(np.mean(train_data.Age))
test_data.Sex = test_data.Sex.apply(lambda x: 1 if x == 'male' else 0)
test_data = test_data.values
test_data = test_data[:, 1:]
features_test = test_data
train_data = train_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
train_data['Age'] = train_data['Age'].fillna(np.mean(train_data.Age))
train_data['Sex'] = train_data['Sex'].apply(lambda x: 1 if x == 'male' else 0)
features_all = train_data.values
labels_all = features_all[:, 1]
features_all = features_all[:, 2:]
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
classifiers = [KNeighborsClassifier(), AdaBoostClassifier(), RandomForestClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), GradientBoostingClassifier(), DecisionTreeClassifier()]
uni, cnt = np.unique(labels_test, return_counts=True)
res_cols = ['Name', 'Accuracy']
result = pd.DataFrame(columns=res_cols)
print('Actual Value of the result ', dict(zip(uni, cnt)))
for clf in classifiers:
clf.fit(features_all, labels_all)
print('-' * 50)
name = clf.__class__.__name__
print(name)
pred_train = clf.predict(features_test)
acc = accuracy_score(labels_test, pred_train)
print('Result ->', acc * 100, '%')
frame = pd.DataFrame([[name, acc * 100]], columns=res_cols)
result = result.append(frame)
print('-' * 50) | code |
2001469/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
files_listing = test_data.PassengerId
test_labels = pd.read_csv('../input/gender_submission.csv')
train_data.head() | code |
2001469/cell_10 | [
"text_html_output_1.png"
] | from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns #Visualizations
train_data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
files_listing = test_data.PassengerId
test_labels = pd.read_csv('../input/gender_submission.csv')
labels_test = test_labels.values
labels_test = labels_test[:, 1]
test_data = test_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
test_data.Age = test_data.Age.fillna(np.mean(train_data.Age))
test_data.Sex = test_data.Sex.apply(lambda x: 1 if x == 'male' else 0)
test_data = test_data.values
test_data = test_data[:, 1:]
features_test = test_data
train_data = train_data.drop(['Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], axis=1)
train_data['Age'] = train_data['Age'].fillna(np.mean(train_data.Age))
train_data['Sex'] = train_data['Sex'].apply(lambda x: 1 if x == 'male' else 0)
features_all = train_data.values
labels_all = features_all[:, 1]
features_all = features_all[:, 2:]
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
classifiers = [KNeighborsClassifier(), AdaBoostClassifier(), RandomForestClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), GradientBoostingClassifier(), DecisionTreeClassifier()]
uni, cnt = np.unique(labels_test, return_counts=True)
res_cols = ['Name', 'Accuracy']
result = pd.DataFrame(columns=res_cols)
for clf in classifiers:
clf.fit(features_all, labels_all)
name = clf.__class__.__name__
pred_train = clf.predict(features_test)
acc = accuracy_score(labels_test, pred_train)
frame = pd.DataFrame([[name, acc * 100]], columns=res_cols)
result = result.append(frame)
sns.set_color_codes('muted')
sns.barplot(x='Accuracy', y='Name', data=result, color='g')
plt.xlabel('Accuracy')
plt.ylabel('Classifier Name')
plt.title('Accuracy Graph')
plt.show() | code |
73067530/cell_9 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
M = np.array([[1, 1, 1, 0, 0], [3, 3, 3, 0, 0], [4, 4, 4, 0, 0], [5, 5, 5, 0, 0], [0, 0, 0, 4, 4], [0, 0, 0, 5, 5], [0, 0, 0, 2, 2]])
d = pd.DataFrame(M, index=['Joe', 'Jim', 'John', 'Jack', 'Jill', 'Jenny', 'Jane'], columns=['Matrix', 'Alien', 'Star Wars', 'Casablanca', 'Titanic'])
Sigma = np.zeros((7, 5), dtype=float)
Sigma[:5, :5] = np.diag(S)
np.set_printoptions(precision=2)
U = U[:, 0:2]
print(f'U:\n{U}')
Sigma = np.zeros((2, 2), dtype=float)
Sigma[:2, :2] = np.diag(S[:2])
print(f'Sigma:\n{Sigma}')
Vt = Vt[0:2, :]
print(f'Vt:\n{Vt}')
print(f'Reconstructured data:\n {np.dot(U, np.dot(Sigma, Vt))}') | code |
73067530/cell_11 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
M = np.array([[1, 1, 1, 0, 0], [3, 3, 3, 0, 0], [4, 4, 4, 0, 0], [5, 5, 5, 0, 0], [0, 0, 0, 4, 4], [0, 0, 0, 5, 5], [0, 0, 0, 2, 2]])
d = pd.DataFrame(M, index=['Joe', 'Jim', 'John', 'Jack', 'Jill', 'Jenny', 'Jane'], columns=['Matrix', 'Alien', 'Star Wars', 'Casablanca', 'Titanic'])
Sigma = np.zeros((7, 5), dtype=float)
Sigma[:5, :5] = np.diag(S)
U = U[:, 0:2]
Sigma = np.zeros((2, 2), dtype=float)
Sigma[:2, :2] = np.diag(S[:2])
Vt = Vt[0:2, :]
q = np.array([4, 0, 0, 0, 0])
V = Vt.transpose()
print(f'Query: q={q}')
qV = np.dot(q, V)
print(f'Map to concept space: qV={qV}')
print(f'Map back to movie space by multiplying by Vt = {np.dot(qV, Vt)}') | code |
73067530/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
M = np.array([[1, 1, 1, 0, 0], [3, 3, 3, 0, 0], [4, 4, 4, 0, 0], [5, 5, 5, 0, 0], [0, 0, 0, 4, 4], [0, 0, 0, 5, 5], [0, 0, 0, 2, 2]])
d = pd.DataFrame(M, index=['Joe', 'Jim', 'John', 'Jack', 'Jill', 'Jenny', 'Jane'], columns=['Matrix', 'Alien', 'Star Wars', 'Casablanca', 'Titanic'])
np.set_printoptions(precision=2)
Sigma = np.zeros((7, 5), dtype=float)
Sigma[:5, :5] = np.diag(S)
print(f'Sigma:\n {Sigma}')
print('Reconstructured data: U * Sigma * Vt')
print(np.dot(U, np.dot(Sigma, Vt))) | code |
73067530/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
np.set_printoptions(precision=1)
M = np.array([[1, 1, 1, 0, 0], [3, 3, 3, 0, 0], [4, 4, 4, 0, 0], [5, 5, 5, 0, 0], [0, 0, 0, 4, 4], [0, 0, 0, 5, 5], [0, 0, 0, 2, 2]])
d = pd.DataFrame(M, index=['Joe', 'Jim', 'John', 'Jack', 'Jill', 'Jenny', 'Jane'], columns=['Matrix', 'Alien', 'Star Wars', 'Casablanca', 'Titanic'])
d.head(7) | code |
73067530/cell_5 | [
"text_plain_output_1.png"
] | from numpy.linalg import svd
import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
M = np.array([[1, 1, 1, 0, 0], [3, 3, 3, 0, 0], [4, 4, 4, 0, 0], [5, 5, 5, 0, 0], [0, 0, 0, 4, 4], [0, 0, 0, 5, 5], [0, 0, 0, 2, 2]])
d = pd.DataFrame(M, index=['Joe', 'Jim', 'John', 'Jack', 'Jill', 'Jenny', 'Jane'], columns=['Matrix', 'Alien', 'Star Wars', 'Casablanca', 'Titanic'])
from numpy.linalg import svd
U, S, Vt = svd(M, full_matrices=True)
print(f'U:\n{U}')
print(f'S used for building Sigma:\n{S}')
print(f'Vt (already transposed):\n{Vt}') | code |
89136755/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/osgdxaspectcapital/train.csv', index_col=0)
X_test = pd.read_csv('/kaggle/input/osgdxaspectcapital/test.csv', index_col=0)
X_train = train_df[[c for c in train_df if c != 'y']]
y_train = train_df['y'].values
sample = X_train.sample(n=1)
sample_market = sample['Market'].values[0]
sample_series = sample.iloc[:, 1:].T
sample_series.index = pd.to_datetime(sample_series.index, format='Time_%H_%M_%p').time
sample_series.plot() | code |
90117670/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment | code |
90117670/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
russian_equipment.dtypes | code |
90117670/cell_19 | [
"text_html_output_1.png"
] | from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
x_data = ['military auto', 'APC']
russian_personnel = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_personnel.csv', parse_dates=True)
russian_personnel
russian_personnel = russian_personnel.drop('personnel*', axis=1)
russian_personnel
from sklearn.impute import SimpleImputer
russian_personnel_copy = russian_personnel.drop('date', axis=1)
my_imputer = SimpleImputer()
imputed_data = pd.DataFrame(my_imputer.fit_transform(russian_personnel_copy))
imputed_data.columns = russian_personnel_copy.columns
imputed_data
russian_personnel_copy = russian_personnel.fillna(0)
russian_personnel_copy
plt.figure(figsize=(20, 6))
sns.lineplot(data=russian_personnel_copy, x='date', y='personnel')
plt.show() | code |
90117670/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90117670/cell_8 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
russian_equipment_no_day = russian_equipment.drop('day', axis=1)
russian_equipment_no_day.head()
sns.set_style('darkgrid')
plt.figure(figsize=(20, 9))
plt.title('Russian Equipment Losses')
plt.xlabel('Date')
plt.ylabel('Asset')
sns.lineplot(data=russian_equipment_no_day)
plt.show() | code |
90117670/cell_15 | [
"text_plain_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.impute import SimpleImputer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
russian_personnel = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_personnel.csv', parse_dates=True)
russian_personnel
russian_personnel = russian_personnel.drop('personnel*', axis=1)
russian_personnel
from sklearn.impute import SimpleImputer
russian_personnel_copy = russian_personnel.drop('date', axis=1)
my_imputer = SimpleImputer()
imputed_data = pd.DataFrame(my_imputer.fit_transform(russian_personnel_copy))
imputed_data.columns = russian_personnel_copy.columns
imputed_data | code |
90117670/cell_17 | [
"text_html_output_1.png"
] | from sklearn.impute import SimpleImputer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
russian_personnel = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_personnel.csv', parse_dates=True)
russian_personnel
russian_personnel = russian_personnel.drop('personnel*', axis=1)
russian_personnel
from sklearn.impute import SimpleImputer
russian_personnel_copy = russian_personnel.drop('date', axis=1)
my_imputer = SimpleImputer()
imputed_data = pd.DataFrame(my_imputer.fit_transform(russian_personnel_copy))
imputed_data.columns = russian_personnel_copy.columns
imputed_data
russian_personnel_copy = russian_personnel.fillna(0)
russian_personnel_copy | code |
90117670/cell_14 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
russian_personnel = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_personnel.csv', parse_dates=True)
russian_personnel
russian_personnel = russian_personnel.drop('personnel*', axis=1)
russian_personnel | code |
90117670/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(20, 9))
x_data = ['military auto', 'APC']
for vehicle in x_data:
sns.lmplot(data=russian_equipment_no_day, x=vehicle, y='tank')
plt.show() | code |
90117670/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
russian_equipment = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_equipment.csv', index_col='date', parse_dates=True)
russian_equipment
russian_personnel = pd.read_csv('../input/2022-ukraine-russian-war/russia_losses_personnel.csv', parse_dates=True)
russian_personnel | code |
2032867/cell_13 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
import warnings # We want to suppress warnings
warnings.filterwarnings('ignore')
HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv')
HRData.isnull().any()
hrdunique = HRData.nunique()
hrdunique = hrdunique.sort_values()
hrdunique
hrd = HRData.copy()
hrd.drop('Over18', axis=1, inplace=True)
hrd.drop('StandardHours', axis=1, inplace=True)
hrd.drop('EmployeeNumber', axis=1, inplace=True)
hrd.drop('EmployeeCount', axis=1, inplace=True)
hrd.groupby('Attrition').mean()
df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition'])
groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']])
groupby_DeptnAttrition.describe() | code |
2032867/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import warnings # We want to suppress warnings
warnings.filterwarnings('ignore')
HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv')
HRData.head() | code |
2032867/cell_23 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import warnings # We want to suppress warnings
warnings.filterwarnings('ignore')
HRData = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv')
HRData.isnull().any()
hrdunique = HRData.nunique()
hrdunique = hrdunique.sort_values()
hrdunique
hrd = HRData.copy()
hrd.drop('Over18', axis=1, inplace=True)
hrd.drop('StandardHours', axis=1, inplace=True)
hrd.drop('EmployeeNumber', axis=1, inplace=True)
hrd.drop('EmployeeCount', axis=1, inplace=True)
hrd.groupby('Attrition').mean()
df = pd.DataFrame(hrd, columns=['Gender', 'Department', 'Attrition'])
groupby_DeptnAttrition = df['Gender'].groupby([df['Department'], df['Attrition']])
num_bins = 30
sns.distplot(hrd['Age']) | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.