path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50216735/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') test.head()
code
50216735/cell_12
[ "text_plain_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB MNB = MultinomialNB() MNB.fit(X_train, Y_train)
code
50216735/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') test.head()
code
88097739/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/winter-olympic-medals-1924-2018/Winter_Olympic_Medals.csv') data.dtypes data_type = pd.DataFrame(data.dtypes).T.rename({0: 'Column Data Type:'}) data_type data.describe()
code
88097739/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/winter-olympic-medals-1924-2018/Winter_Olympic_Medals.csv') data.dtypes data_type = pd.DataFrame(data.dtypes).T.rename({0: 'Column Data Type:'}) data_type
code
88097739/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88097739/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/winter-olympic-medals-1924-2018/Winter_Olympic_Medals.csv') data.head()
code
88097739/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/winter-olympic-medals-1924-2018/Winter_Olympic_Medals.csv') data.dtypes
code
88097739/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/winter-olympic-medals-1924-2018/Winter_Olympic_Medals.csv') data.dtypes data_type = pd.DataFrame(data.dtypes).T.rename({0: 'Column Data Type:'}) data_type data.info()
code
17144256/cell_13
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_ df = df.drop('Embarked', axis=1) df_test = df_test.drop('Embarked', axis=1) df[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X.toarray()) df_test[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X_test.toarray()) features = ['Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S', 'nan'] X = df[features] X_test = df_test[features] y = df.Survived rf = RandomForestClassifier() rf.fit(X, y) y_pred = rf.predict(X_test) y_pred[:5]
code
17144256/cell_9
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_ df = df.drop('Embarked', axis=1) df_test = df_test.drop('Embarked', axis=1) df.head()
code
17144256/cell_4
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_
code
17144256/cell_2
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.head()
code
17144256/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder print(os.listdir('../input'))
code
17144256/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_ df = df.drop('Embarked', axis=1) df_test = df_test.drop('Embarked', axis=1) df[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X.toarray()) df_test[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X_test.toarray()) df_test.head()
code
17144256/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique()
code
17144256/cell_10
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_ df = df.drop('Embarked', axis=1) df_test = df_test.drop('Embarked', axis=1) df[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X.toarray()) df_test[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X_test.toarray()) submi_df = df_test['PassengerId'].to_frame() submi_df.head()
code
17144256/cell_12
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df['Sex'] = df.Sex.apply(lambda x: 1 if x == 'male' else 0) df_test['Sex'] = df_test.Sex.apply(lambda x: 1 if x == 'male' else 0) df['Embarked'] = df.Embarked.apply(lambda x: str(x)) df_test['Embarked'] = df_test.Embarked.apply(lambda x: str(x)) df.Age.fillna(29.699118, inplace=True) df_test.Age.fillna(29.699118, inplace=True) df_test.Fare.fillna(35, inplace=True) df.Embarked.unique() ohe = OneHotEncoder() X = ohe.fit_transform(df.Embarked.values.reshape(-1, 1)) X_test = ohe.transform(df_test.Embarked.values.reshape(-1, 1)) ohe.categories_ df = df.drop('Embarked', axis=1) df_test = df_test.drop('Embarked', axis=1) df[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X.toarray()) df_test[['C', 'Q', 'S', 'nan']] = pd.DataFrame(X_test.toarray()) features = ['Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S', 'nan'] X = df[features] X_test = df_test[features] y = df.Survived rf = RandomForestClassifier() rf.fit(X, y)
code
105205396/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) display_negative_values(internet_adoption, end_year=_2020)
code
105205396/cell_23
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) df_rank = {} for key_name in key_names: if key_name != average_monthly_internet_costs: df_rank[key_name] = df_list[key_name].rank(ascending=False).astype(int) df_rank[average_monthly_internet_costs] = df_list[average_monthly_internet_costs].rank(ascending=True).astype(int) df_rank_top_bottom = {} for key_name in key_names: df = df_rank[key_name] df_new = pd.DataFrame(columns=df.columns) index = [] for column in df.columns: df_temp = df[[column]].sort_values(column) sliced_df = pd.concat([]) df_new[column] = sliced_df.index index = sliced_df[column] df_new = df_new.set_index(index) df_new.index.name = 'rank' df_rank_top_bottom[key_name] = df_new caption_string = '{table}: Top 5 and Bottom 5 Rank of each year' table_name = internet_adoption df_rank_top_bottom[table_name].style.set_caption(caption_string.format(table=table_name)) table_name = average_monthly_internet_costs df_rank_top_bottom[table_name].style.set_caption(caption_string.format(table=table_name))
code
105205396/cell_6
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float)
code
105205396/cell_7
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) print('Original data') for key, df in df_list_orig.items(): print('{}: NaN {}, Shape {}'.format(key, df.isna().sum().sum(), df.shape)) print('-----------------------') print('Data after NaN removal') for key, df in df_list.items(): print('{}: NaN {}, Shape {}'.format(key, df.isna().sum().sum(), df.shape)) print('-----------------------') for key, df in df_list.items(): print('{}: Columns {}'.format(key, df.columns))
code
105205396/cell_15
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) display_negative_values(average_after_tax_wages)
code
105205396/cell_16
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) display_negative_values(GDP_per_capita)
code
105205396/cell_14
[ "text_plain_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) display_positive_values(average_monthly_internet_costs)
code
105205396/cell_22
[ "text_html_output_1.png" ]
import os import pandas as pd pathvals = ['/kaggle/input/internet-prices-datasets-for-analysis', './data'] fnames = ['average_after_tax_wages.csv', 'average_monthly_internet.csv', 'GDP_per_capita.csv', 'internet_adoption.csv'] average_monthly_internet = 'average_monthly_internet' average_monthly_internet_costs = 'average_monthly_internet_costs' average_after_tax_wages = 'average_after_tax_wages' GDP_per_capita = 'GDP_per_capita' internet_adoption = 'internet_adoption' key_names = [average_monthly_internet_costs, average_after_tax_wages, GDP_per_capita, internet_adoption] df_list = {} df_list_orig = {} path = '' for pathval in pathvals: if os.path.exists(pathval): path = pathval break for fname in fnames: df = pd.read_csv(os.path.join(path, fname)) key = fname[:-4] if key == average_monthly_internet: key = average_monthly_internet_costs df_list_orig[key] = df df_list[key] = df.dropna(axis=1, how='all') df_list[key].set_index('Country', inplace=True) df = df_list[GDP_per_capita] columns = df.columns for column in columns: df[column] = df[column].str.replace(',', '') df[column] = df[column].astype(float) change_from_13to20 = 'change_from_13to20' change_from_13to21 = 'change_from_13to21' change_from_13to20_pct = 'change_from_13to20_pct' change_from_13to21_pct = 'change_from_13to21_pct' _2013 = '2013' _2020 = '2020' _2021 = '2021' df_analysis = {} for key_name in key_names: df = df_list[key_name] df_new = pd.DataFrame(index=df.index, columns=[change_from_13to20, change_from_13to21, change_from_13to20_pct, change_from_13to21_pct]) df_new[change_from_13to20] = df[_2020] - df[_2013] df_new[change_from_13to20_pct] = (df[_2020] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to20_pct] = df_new[change_from_13to20_pct].round(decimals=2) if _2021 in df.columns: df_new[change_from_13to21] = df[_2021] - df[_2013] df_new[change_from_13to21_pct] = (df[_2021] - df[_2013]) / df[_2013] * 100 df_new[change_from_13to21_pct] = df_new[change_from_13to21_pct].round(decimals=2) df_analysis[key_name] = df_new caption_string_neg = '{table}: Negative Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' caption_string_pos = '{table}: Positive Changes from {start_year} to {end_year}. Size {shape}. <br> {additional}' format_dict_nopct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}'} format_dict_pct = {change_from_13to20: '{:.2f}', change_from_13to21: '{:.2f}', change_from_13to20_pct: '{:.2f}%', change_from_13to21_pct: '{:.2f}%'} def display_negative_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] < -5].sort_values(change_from_13to20_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to20] < -5].sort_values(change_from_13to20, ascending=True) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] < -5].sort_values(change_from_13to21_pct, ascending=True) else: df = df_temp[df_temp[change_from_13to21] < -5].sort_values(change_from_13to21, ascending=True) if format_dict is None: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_neg.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) def display_positive_values(table_name, df=df_analysis, end_year=_2021, format_dict=format_dict_pct, caption_additional=''): df_temp = df[table_name] if end_year == _2020: if change_from_13to20_pct in df_temp: df = df_temp[df_temp[change_from_13to20_pct] > 5].sort_values(change_from_13to20_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to20] > 5].sort_values(change_from_13to20, ascending=False) if end_year == _2021: if change_from_13to21_pct in df_temp: df = df_temp[df_temp[change_from_13to21_pct] > 5].sort_values(change_from_13to21_pct, ascending=False) else: df = df_temp[df_temp[change_from_13to21] > 5].sort_values(change_from_13to21, ascending=False) if format_dict is None: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)) else: return df.style.set_caption(caption_string_pos.format(table=table_name, start_year=_2013, end_year=end_year, shape=df.shape, additional=caption_additional)).format(format_dict) df_rank = {} for key_name in key_names: if key_name != average_monthly_internet_costs: df_rank[key_name] = df_list[key_name].rank(ascending=False).astype(int) df_rank[average_monthly_internet_costs] = df_list[average_monthly_internet_costs].rank(ascending=True).astype(int) df_rank_top_bottom = {} for key_name in key_names: df = df_rank[key_name] df_new = pd.DataFrame(columns=df.columns) index = [] for column in df.columns: df_temp = df[[column]].sort_values(column) sliced_df = pd.concat([]) df_new[column] = sliced_df.index index = sliced_df[column] df_new = df_new.set_index(index) df_new.index.name = 'rank' df_rank_top_bottom[key_name] = df_new caption_string = '{table}: Top 5 and Bottom 5 Rank of each year' table_name = internet_adoption df_rank_top_bottom[table_name].style.set_caption(caption_string.format(table=table_name))
code
32071401/cell_13
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() #Exploratory Data Analysis #Petal Length VS Petal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='x',color='#270c8c',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='o',color='#d5081e',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='>',color='#45aa53',label='Virginica',ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() plt.figure(figsize=(15, 10)) plt.subplot(2, 2, 1) sns.violinplot(x='Species', y='SepalLengthCm', palette='muted', inner='quartile', data=Iris) plt.subplot(2, 2, 2) sns.violinplot(x='Species', y='SepalWidthCm', palette='muted', inner='quartile', data=Iris) plt.subplot(2, 2, 3) sns.violinplot(x='Species', y='PetalLengthCm', palette='muted', inner='quartile', data=Iris) plt.subplot(2, 2, 4) sns.violinplot(x='Species', y='PetalWidthCm', palette='muted', inner='quartile', data=Iris) plt.show()
code
32071401/cell_4
[ "image_output_1.png" ]
import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) Iris.head(n=10)
code
32071401/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() #Exploratory Data Analysis #Petal Length VS Petal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='x',color='#270c8c',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='o',color='#d5081e',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='>',color='#45aa53',label='Virginica',ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() fig = plt.gcf() fig.set_size_inches(15, 9) Iris.plot.area(y=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'], alpha=0.5, figsize=(13, 9))
code
32071401/cell_2
[ "image_output_1.png" ]
import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) Iris = pd.read_csv('../input/iris/Iris.csv') Iris.head(n=10)
code
32071401/cell_1
[ "text_plain_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32071401/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) fig = Iris[Iris.Species == 'Iris-setosa'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', marker='x', color='#fa6c33', label='Setosa') fig = Iris[Iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', marker='*', color='#3c8991', label='Versicolor', ax=fig) fig = Iris[Iris.Species == 'Iris-virginica'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', marker='D', color='#d5081e', label='Virginica', ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig = plt.gcf() fig.set_size_inches(10, 6) sns.set_style('darkgrid') plt.show()
code
32071401/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() #Exploratory Data Analysis #Petal Length VS Petal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='x',color='#270c8c',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='o',color='#d5081e',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='>',color='#45aa53',label='Virginica',ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() fig = plt.gcf() fig.set_size_inches(15, 9) pairplot = sns.pairplot(Iris, hue='Species', palette='husl', diag_kind='kde', kind='scatter')
code
32071401/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() #Exploratory Data Analysis #Petal Length VS Petal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='x',color='#270c8c',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='o',color='#d5081e',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='>',color='#45aa53',label='Virginica',ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() Iris.hist(edgecolor='black', bins=15, color='#C11321', linewidth=1.8) fig = plt.gcf() fig.set_size_inches(15, 9) plt.show()
code
32071401/cell_3
[ "image_output_1.png" ]
import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) Iris = pd.read_csv('../input/iris/Iris.csv') Iris.info() Iris.isnull().sum()
code
32071401/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() #Exploratory Data Analysis #Petal Length VS Petal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='x',color='#270c8c',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='o',color='#d5081e',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='PetalLengthCm',y='PetalWidthCm',marker='>',color='#45aa53',label='Virginica',ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() fig = plt.gcf() fig.set_size_inches(15, 9) # Pair Plot using seaborn library pairplot=sns.pairplot(Iris,hue='Species',palette='husl',diag_kind="kde",kind='scatter') Iris.plot.area(y=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'], alpha=0.5, figsize=(13, 9)) fig = plt.gcf() fig.set_size_inches(13, 9) fig = sns.heatmap(Iris.corr(), annot=True, cmap='YlGnBu', linewidths=1.5, linecolor='k', vmin=0.5, vmax=1.0, square=True, cbar_kws={'orientation': 'vertical'}, cbar=True)
code
32071401/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data Processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns Iris = pd.read_csv('../input/iris/Iris.csv') Iris.isnull().sum() Iris.drop('Id', axis=1, inplace=True) #Exploratory Data Analysis #Sepal Length VS Sepal Width fig=Iris[Iris.Species=='Iris-setosa'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='x',color='#fa6c33',label='Setosa') fig=Iris[Iris.Species=='Iris-versicolor'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='*',color='#3c8991',label='Versicolor',ax=fig) fig=Iris[Iris.Species=='Iris-virginica'].plot(kind='scatter',x='SepalLengthCm',y='SepalWidthCm',marker='D',color='#d5081e',label='Virginica',ax=fig) fig.set_xlabel('Sepal Length') fig.set_ylabel('Sepal Width') fig.set_title('Sepal Length VS Sepal Width') fig=plt.gcf() fig.set_size_inches(10,6) sns.set_style("darkgrid") plt.show() fig = Iris[Iris.Species == 'Iris-setosa'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', marker='x', color='#270c8c', label='Setosa') fig = Iris[Iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', marker='o', color='#d5081e', label='Versicolor', ax=fig) fig = Iris[Iris.Species == 'Iris-virginica'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', marker='>', color='#45aa53', label='Virginica', ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title('Petal Length VS Petal Width') fig = plt.gcf() fig.set_size_inches(10, 6) sns.set_style('darkgrid') plt.show()
code
104124854/cell_4
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
code
104124854/cell_20
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) dfz = trans(X_test) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] enc_df = pd.DataFrame(ohe.transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] dfz[num] = mmc.transform(dfz[num]) df = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') df = trans(df) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] enc_df = pd.DataFrame(ohe.transform(df[cat]).toarray(), columns=ohe.get_feature_names_out()) df = df.reset_index(drop=True).join(enc_df) df.drop(['Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] df[num] = mmc.transform(df[num]) df.head()
code
104124854/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) dfz.head()
code
104124854/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104124854/cell_18
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) dfz = trans(X_test) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] enc_df = pd.DataFrame(ohe.transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] dfz[num] = mmc.transform(dfz[num]) df = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') df = trans(df) df.head()
code
104124854/cell_16
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) X_train = dfz y_train = y_train.reset_index(drop=True) dfz = trans(X_test) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] enc_df = pd.DataFrame(ohe.transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] dfz[num] = mmc.transform(dfz[num]) X_test = dfz y_test = y_test.reset_index(drop=True) model = RandomForestClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
code
104124854/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') df.head()
code
104124854/cell_17
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) dfz = trans(X_test) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] enc_df = pd.DataFrame(ohe.transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] dfz[num] = mmc.transform(dfz[num]) df = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') df.head()
code
104124854/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) X_train = dfz y_train = y_train.reset_index(drop=True) model = RandomForestClassifier() model.fit(X_train, y_train)
code
104124854/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler,MinMaxScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') X = df.drop('Transported', 1) y = df['Transported'].apply(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def trans(df): df['Age'].fillna(df.Age.mean(), inplace=True) df['RoomService'].fillna(df.RoomService.mean(), inplace=True) df['FoodCourt'].fillna(df.FoodCourt.mean(), inplace=True) df['ShoppingMall'].fillna(df.ShoppingMall.mean(), inplace=True) df['Spa'].fillna(df.Spa.mean(), inplace=True) df['VRDeck'].fillna(df.VRDeck.mean(), inplace=True) df['HomePlanet'].fillna(df['HomePlanet'].mode()[0], inplace=True) df['Destination'].fillna(df['Destination'].mode()[0], inplace=True) df['CryoSleep'].fillna(df['CryoSleep'].mode()[0], inplace=True) df['VIP'].fillna(df['VIP'].mode()[0], inplace=True) df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True) df['CryoSleep'] = df['CryoSleep'].apply(int) df[['Deck', 'Num', 'Side']] = df['Cabin'].str.split('/', expand=True) df['Num'] = df['Num'].astype(int) return df dfz = trans(X_train) cat = ['HomePlanet', 'Deck', 'Side', 'Destination'] ohe = OneHotEncoder(drop='first') enc_df = pd.DataFrame(ohe.fit_transform(dfz[cat]).toarray(), columns=ohe.get_feature_names_out()) dfz = dfz.reset_index(drop=True).join(enc_df) dfz.drop(['PassengerId', 'Name', 'VIP', 'Cabin', 'HomePlanet', 'Deck', 'Side', 'Destination'], axis=1, inplace=True) num = ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] mmc = MinMaxScaler() dfz[num] = mmc.fit_transform(dfz[num]) dfz = trans(X_test) dfz.head()
code
32071416/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df['Province/State'] = df['Province/State'].fillna(df['Country/Region']) df['Cases'] = df['Cases'].astype(int) df = df[df['Cases'] > 0].reset_index(drop=True) df.head()
code
32071416/cell_4
[ "text_html_output_1.png" ]
!curl -o $confirmed_csv $confirmed_gitpath
code
32071416/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df.head()
code
32071416/cell_2
[ "text_html_output_1.png" ]
!pip install folium
code
32071416/cell_11
[ "text_plain_output_1.png" ]
import math import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df['Province/State'] = df['Province/State'].fillna(df['Country/Region']) df['Cases'] = df['Cases'].astype(int) df = df[df['Cases'] > 0].reset_index(drop=True) df_alarming_cities=df.sort_values(by='Cases', ascending=False).groupby('Country/Region').head(1).reset_index(drop=True) df_alarming_cities=df_alarming_cities.head(n=10) df_alarming_cities import math total_incidents = df['Cases'].sum() def geojsons(df): features = [] for _, row in df.iterrows(): feature = {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [row['Long'], row['Lat']]}, 'properties': {'time': pd.to_datetime(row['Date'], format='%Y-%m-%d').__str__(), 'style': {'color': ''}, 'icon': 'circle', 'iconstyle': {'fillColor': 'red', 'fillOpacity': 0.8, 'stroke': 'true', 'radius': math.log(row['Cases'])}}} features.append(feature) return features start_geojson = geojsons(df) start_geojson
code
32071416/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32071416/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df.head()
code
32071416/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df['Province/State'] = df['Province/State'].fillna(df['Country/Region']) df.info()
code
32071416/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df['Province/State'] = df['Province/State'].fillna(df['Country/Region']) df['Cases'] = df['Cases'].astype(int) df = df[df['Cases'] > 0].reset_index(drop=True) df_alarming_cities = df.sort_values(by='Cases', ascending=False).groupby('Country/Region').head(1).reset_index(drop=True) df_alarming_cities = df_alarming_cities.head(n=10) df_alarming_cities
code
32071416/cell_12
[ "text_html_output_1.png" ]
from folium.plugins import TimestampedGeoJson import folium import math import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df = df.melt(id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'], var_name='Date', value_name='Cases') df['Date'] = df['Date'].str.replace('(/d+)/(\\d+)/(\\d+)', '20\\3-\\1-\\2') df['Date'] = pd.to_datetime(df['Date']) df['Province/State'] = df['Province/State'].fillna(df['Country/Region']) df['Cases'] = df['Cases'].astype(int) df = df[df['Cases'] > 0].reset_index(drop=True) df_alarming_cities=df.sort_values(by='Cases', ascending=False).groupby('Country/Region').head(1).reset_index(drop=True) df_alarming_cities=df_alarming_cities.head(n=10) df_alarming_cities import math total_incidents = df['Cases'].sum() def geojsons(df): features = [] for _, row in df.iterrows(): feature = {'type': 'Feature', 'geometry': {'type': 'Point', 'coordinates': [row['Long'], row['Lat']]}, 'properties': {'time': pd.to_datetime(row['Date'], format='%Y-%m-%d').__str__(), 'style': {'color': ''}, 'icon': 'circle', 'iconstyle': {'fillColor': 'red', 'fillOpacity': 0.8, 'stroke': 'true', 'radius': math.log(row['Cases'])}}} features.append(feature) return features start_geojson = geojsons(df) start_geojson import folium from folium.plugins import TimestampedGeoJson m = folium.Map(location=[50, 30], zoom_start=2, tiles='Stamen Toner') for _, row in df_alarming_cities.iterrows(): folium.Marker(location=[row['Lat'], row['Long']], icon=folium.Icon(color='black', icon='ambulance', prefix='fa'), popup=row['Province/State']).add_to(m) TimestampedGeoJson(start_geojson, period='P1D', duration='PT1M', transition_time=2000, auto_play=True).add_to(m) m
code
32071416/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) confirmed_csv = 'corona_confirmed.csv' confirmed_gitpath = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' import pandas as pd df = pd.read_csv(confirmed_csv) df.head()
code
16162621/cell_42
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.head()
code
16162621/cell_63
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason'] df_hour = df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack() df_month = df.groupby(by=['Day of Week', 'Month']).count()['Reason'].unstack() df_month.head()
code
16162621/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) df['Departments'].value_counts()
code
16162621/cell_57
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason'] df_hour = df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack() df_hour.head()
code
16162621/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.countplot(x='Day of Week', data=df, hue='Reason', palette='viridis') sns.despine(left=True) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0) plt.show()
code
16162621/cell_44
[ "text_html_output_1.png" ]
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import cufflinks as cf from plotly import __version__ from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import cufflinks as cf import plotly.plotly as py import plotly.graph_objs as go init_notebook_mode(connected=True) cf.go_offline()
code
16162621/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.countplot(x='Reason', data=df, palette='magma') sns.despine(left=True)
code
16162621/cell_55
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason']
code
16162621/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df.head()
code
16162621/cell_40
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.despine(left=True) sns.despine(left=True) Month_grouping = df.groupby('Month').count() Month_grouping['twp'].plot() plt.show()
code
16162621/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) df.head()
code
16162621/cell_26
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) type(df['timeStamp'].iloc[0])
code
16162621/cell_65
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.despine(left=True) sns.despine(left=True) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason'] df_hour = df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack() sns.clustermap(df_hour, cmap='coolwarm', linecolor='white', linewidths=1) df_month = df.groupby(by=['Day of Week', 'Month']).count()['Reason'].unstack() plt.figure(figsize=(15, 7)) sns.heatmap(df_month, cmap='magma', linecolor='white', linewidths=1) plt.show()
code
16162621/cell_48
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df[df['Reason'] == 'EMS'].groupby('Date').count()['lat'].iplot(kind='line')
code
16162621/cell_61
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.despine(left=True) sns.despine(left=True) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason'] df_hour = df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack() sns.clustermap(df_hour, cmap='coolwarm', linecolor='white', linewidths=1) plt.show()
code
16162621/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) df['Reason'].value_counts().head(1)
code
16162621/cell_50
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df[df['Reason'] == 'Fire'].groupby('Date').count()['lat'].iplot(kind='line')
code
16162621/cell_52
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df[df['Reason'] == 'Traffic'].groupby('Date').count()['lat'].iplot(kind='line')
code
16162621/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16162621/cell_45
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby('Date').count()['lat'].iplot(kind='line')
code
16162621/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) df.head()
code
16162621/cell_59
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.despine(left=True) sns.despine(left=True) Month_grouping = df.groupby('Month').count() df['Date'] = df['timeStamp'].apply(lambda t: t.date()) df.groupby(by=['Day of Week', 'Hour']).count()['Reason'] df_hour = df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack() plt.figure(figsize=(15, 7)) sns.heatmap(df_hour, cmap='magma', linecolor='white', linewidths=1) plt.show()
code
16162621/cell_8
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['zip'].value_counts().head(5)
code
16162621/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df.head()
code
16162621/cell_38
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) Month_grouping = df.groupby('Month').count() Month_grouping.head()
code
16162621/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) df.head()
code
16162621/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) type(df['timeStamp'].iloc[0])
code
16162621/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['twp'].value_counts().head(5)
code
16162621/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/911.csv') df['title'].nunique()
code
16162621/cell_36
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/911.csv') df['Reason'] = df['title'].apply(lambda title: title.split(':')[0]) df['Departments'] = df['title'].apply(lambda title: title.split(':')[1]) sns.despine(left=True) sns.despine(left=True) sns.countplot(x='Month', data=df, hue='Reason', palette='magma') sns.despine(left=True) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0) plt.show()
code
325103/cell_4
[ "text_plain_output_1.png" ]
from sklearn import linear_model, svm, metrics from sklearn import linear_model, svm, metrics classifier = linear_model.SGDClassifier(n_iter=100, n_jobs=6, penalty='l1') print(classifier)
code
325103/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
325103/cell_5
[ "text_plain_output_1.png" ]
from sklearn import linear_model, svm, metrics import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/train.csv') target = dataset[[0]].values.ravel() train = dataset.iloc[:, 1:].values test = pd.read_csv('../input/test.csv').values from sklearn import linear_model, svm, metrics classifier = linear_model.SGDClassifier(n_iter=100, n_jobs=6, penalty='l1') classifier.fit(train, target)
code
90118084/cell_9
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5)
code
90118084/cell_23
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} countries['Vanuatu'].head()
code
90118084/cell_20
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} countries['Mali'].head()
code
90118084/cell_6
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') data.head()
code
90118084/cell_29
[ "text_html_output_1.png" ]
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd def visualize_word_counts(counts): wc = WordCloud(max_font_size=130, min_font_size=25, colormap='tab20', background_color='white', prefer_horizontal=0.95, width=2100, height=700, random_state=0) cloud = wc.generate_from_frequencies(counts) plt.axis('off') data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} country_gender_dying_corr = {} country_gender_suicide_corr = {} for val, df in data.groupby('Country'): corr_gender_dying = df['ProbDyingMale'].corr(df['ProbDyingFemale']) corr_gender_suicide = df['SuicideMale'].corr(df['SuicideFemale']) country_gender_dying_corr[val] = corr_gender_dying country_gender_suicide_corr[val] = corr_gender_suicide visualize_word_counts(data.groupby('Country').mean()['SuicideBoth'].to_dict())
code
90118084/cell_26
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} country_gender_dying_corr = {} country_gender_suicide_corr = {} for val, df in data.groupby('Country'): corr_gender_dying = df['ProbDyingMale'].corr(df['ProbDyingFemale']) corr_gender_suicide = df['SuicideMale'].corr(df['SuicideFemale']) country_gender_dying_corr[val] = corr_gender_dying country_gender_suicide_corr[val] = corr_gender_suicide if val == 'Turkey': display(df)
code
90118084/cell_19
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} def repeated_measures_effect_size(country, col1, col2): col1, col2 = (countries[country][col1], countries[country][col2]) m1, m2 = (np.mean(col1), np.mean(col2)) s1, s2 = (np.std(col1), np.std(col2)) r = col1.corr(col2) s_z = np.sqrt(s1 ** 2 + s2 ** 2 - 2 * r * s1 * s2) s_rm = s_z / np.sqrt(2 * (1 - r)) return (m1 - m2) / s_rm effect_sizes_dying = {c: repeated_measures_effect_size(c, 'ProbDyingMale', 'ProbDyingFemale') for c in countries} effect_sizes_dying = dict(sorted(effect_sizes_dying.items(), key=lambda x: x[1])) for c in list(effect_sizes_dying.keys())[:5]: print(c)
code
90118084/cell_24
[ "text_plain_output_1.png" ]
from wordcloud import WordCloud import matplotlib.pyplot as plt import numpy as np import pandas as pd def visualize_word_counts(counts): wc = WordCloud(max_font_size=130, min_font_size=25, colormap='tab20', background_color='white', prefer_horizontal=0.95, width=2100, height=700, random_state=0) cloud = wc.generate_from_frequencies(counts) plt.axis('off') data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} def repeated_measures_effect_size(country, col1, col2): col1, col2 = (countries[country][col1], countries[country][col2]) m1, m2 = (np.mean(col1), np.mean(col2)) s1, s2 = (np.std(col1), np.std(col2)) r = col1.corr(col2) s_z = np.sqrt(s1 ** 2 + s2 ** 2 - 2 * r * s1 * s2) s_rm = s_z / np.sqrt(2 * (1 - r)) return (m1 - m2) / s_rm plt.figure(figsize=(15, 5)) plt.hist(effect_sizes.values(), bins=30) plt.xticks(np.arange(-10, 41, 5)) plt.grid() plt.show()
code
90118084/cell_14
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/suicide-rates-worldwide-20002019/data.csv') columns = ['Country', 'Year', 'ProbDyingBoth', 'ProbDyingMale', 'ProbDyingFemale', 'SuicideBoth', 'SuicideMale', 'SuicideFemale'] values = data.iloc[1:, :].values data = pd.DataFrame(values, columns=columns) for col in columns[2:]: data[col] = data[col].map(lambda x: x.split('[')[0]).astype('float') data.sample(5) countries = {val: df for val, df in data.groupby('Country')} countries['Germany'].head()
code