path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
122248046/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) df.head()
code
122248046/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.head()
code
122248046/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) popular_cities = df['City'].value_counts()[:10] popular_cities.plot.bar() plt.title('10 most popular travel cities') plt.xlabel('Cities') plt.ylabel('Trips')
code
16125131/cell_21
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) print(f"total foreign population: {df['IBGE_RES_POP_ESTR'].sum():10.0f}") print(f"% of foreign population {df['IBGE_RES_POP_ESTR'].sum() / df['IBGE_RES_POP'].sum() * 100:10.2f}")
code
16125131/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) df['STATE'].value_counts().shape
code
16125131/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.head()
code
16125131/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 scale_factor = 20000 avg_growth = (df['ESTIMATED_POP'].sum() - df['IBGE_RES_POP'].sum()) / df['IBGE_RES_POP'].sum() * 100 pop_by_state = df[['STATE', 'ESTIMATED_POP']].groupby(by='STATE').sum().sort_values(by='ESTIMATED_POP', ascending=False) fastest_growing_states = df[['STATE', 'IBGE_RES_POP', 'ESTIMATED_POP']].groupby(by='STATE').sum() fastest_growing_states['%GROWTH'] = (fastest_growing_states['ESTIMATED_POP'] - fastest_growing_states['IBGE_RES_POP']) / fastest_growing_states['IBGE_RES_POP'] * 100 fgs = fastest_growing_states.sort_values(by='%GROWTH', ascending=False) fastest_growing_capitals = df[df['CAPITAL'] == 1][['CITY', 'STATE', 'IBGE_RES_POP', 'ESTIMATED_POP']] fastest_growing_capitals['%GROWTH'] = (fastest_growing_capitals['ESTIMATED_POP'] - fastest_growing_capitals['IBGE_RES_POP']) / fastest_growing_capitals['IBGE_RES_POP'] * 100 fgc = fastest_growing_capitals.sort_values(by='%GROWTH', ascending=False) plt.figure(figsize=(40, 20)) plt.bar(fgc['CITY'], fgc['%GROWTH'], label='% growth') plt.plot(fgc['CITY'], [avg_growth] * fgc.shape[0], color='red', label='% avg growth') plt.legend() plt.title('Fastest growing capital cities') plt.show()
code
16125131/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os print(os.listdir('../input'))
code
16125131/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 scale_factor = 20000 avg_growth = (df['ESTIMATED_POP'].sum() - df['IBGE_RES_POP'].sum()) / df['IBGE_RES_POP'].sum() * 100 pop_by_state = df[['STATE', 'ESTIMATED_POP']].groupby(by='STATE').sum().sort_values(by='ESTIMATED_POP', ascending=False) fastest_growing_states = df[['STATE', 'IBGE_RES_POP', 'ESTIMATED_POP']].groupby(by='STATE').sum() fastest_growing_states['%GROWTH'] = (fastest_growing_states['ESTIMATED_POP'] - fastest_growing_states['IBGE_RES_POP']) / fastest_growing_states['IBGE_RES_POP'] * 100 fgs = fastest_growing_states.sort_values(by='%GROWTH', ascending=False) plt.figure(figsize=(15, 10)) plt.bar(fgs.index, fgs['%GROWTH'], label='% growth') plt.plot(fgs.index, [avg_growth] * fgs.index.shape[0], color='red', label='% avg growth') plt.legend() plt.title('Fastest growing states') plt.show()
code
16125131/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) print(f"total population (2018): {df['ESTIMATED_POP'].sum():10.0f}") avg_growth = (df['ESTIMATED_POP'].sum() - df['IBGE_RES_POP'].sum()) / df['IBGE_RES_POP'].sum() * 100 print(f'% population growth between 2010 and 2018: {avg_growth:2.2f}')
code
16125131/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 scale_factor = 20000 pop_by_state = df[['STATE', 'ESTIMATED_POP']].groupby(by='STATE').sum().sort_values(by='ESTIMATED_POP', ascending=False) plt.figure(figsize=(15, 10)) plt.bar(pop_by_state.index, pop_by_state['ESTIMATED_POP']) plt.title('Population by state (2018)') plt.show()
code
16125131/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 plt.figure(figsize=(10, 10)) plt.title('Population per Latitude and Longitude') plt.xlabel('Longitude') plt.ylabel('Latitude') scale_factor = 20000 plt.scatter(df[mask1 & mask2 & mask3]['LONG'], df[mask1 & mask2 & mask3]['LAT'], s=df[mask1 & mask2 & mask3]['ESTIMATED_POP'] / scale_factor, alpha=1, label='Capital city') plt.scatter(df[mask1 & mask2 & ~mask3]['LONG'], df[mask1 & mask2 & ~mask3]['LAT'], s=df[mask1 & mask2 & ~mask3]['ESTIMATED_POP'] / scale_factor, alpha=1, label='Other') plt.legend() plt.show()
code
16125131/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) df['STATE'].value_counts()
code
16125131/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.fillna(0.0, inplace=True) mask1 = df['LONG'] != 0 mask2 = df['LAT'] != 0 mask3 = df['CAPITAL'] == 1 plt.figure(figsize=(10, 10)) plt.title('Cities Latitude and Longitude') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.scatter(df[mask1 & mask2 & mask3]['LONG'], df[mask1 & mask2 & mask3]['LAT'], s=20, alpha=1, label='Capital city') plt.scatter(df[mask1 & mask2 & ~mask3]['LONG'], df[mask1 & mask2 & ~mask3]['LAT'], s=1, alpha=1, label='Other') plt.legend() plt.show()
code
16125131/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BRAZIL_CITIES.csv', sep=';', decimal=',') df.info()
code
121151296/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() plt.boxplot('x', data=train)
code
121151296/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count()
code
121151296/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample
code
121151296/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() plt.bar('x', 'y', data=train)
code
121151296/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import linear_model import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train)
code
121151296/cell_44
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) mean_squared_error(y_test, y_pred)
code
121151296/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() plt.plot('x', 'y', data=train)
code
121151296/cell_40
[ "text_plain_output_1.png" ]
from sklearn import linear_model import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) accuracy = slr.score(x_test, y_test) print(accuracy)
code
121151296/cell_26
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape
code
121151296/cell_41
[ "text_plain_output_1.png" ]
from sklearn import linear_model import matplotlib.pyplot as plt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) plt.plot(x_test, y_pred, color='red') plt.scatter('x', 'y', data=test) plt.show()
code
121151296/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.info()
code
121151296/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121151296/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') test.head()
code
121151296/cell_45
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) r2_score(y_test, y_pred)
code
121151296/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train['y'].describe()
code
121151296/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape plt.scatter('x', 'y', data=test)
code
121151296/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.tail()
code
121151296/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train['x'].value_counts()
code
121151296/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train['y'].value_counts()
code
121151296/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import linear_model import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) y_pred
code
121151296/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import os import numpy as np import pandas as pd import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121151296/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train['x'].describe()
code
121151296/cell_35
[ "text_plain_output_1.png" ]
from sklearn import linear_model import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_
code
121151296/cell_43
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_ y_pred = slr.predict(x_test) mean_absolute_error(y_test, y_pred)
code
121151296/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() plt.boxplot('x', data=train)
code
121151296/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train['x'].isnull().count()
code
121151296/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() plt.scatter('x', 'y', data=train)
code
121151296/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape
code
121151296/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape plt.scatter('x', 'y', data=train)
code
121151296/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') train.head()
code
121151296/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import linear_model import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/random-linear-regression/train.csv') test = pd.read_csv('/kaggle/input/random-linear-regression/test.csv') train.sample train.shape train.isnull().count() train = train.dropna() train.shape slr = linear_model.LinearRegression() x_train = np.array(train.iloc[:, :-1].values) y_train = np.array(train.iloc[:, :1].values) x_test = np.array(test.iloc[:, :-1].values) y_test = np.array(test.iloc[:, :1].values) slr.fit(x_train, y_train) slr.coef_ slr.intercept_
code
322308/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import xgboost as xgb from scipy import sparse from sklearn.feature_extraction import FeatureHasher from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import LabelEncoder, OneHotEncoder, scale from sklearn.decomposition import TruncatedSVD, SparsePCA from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.feature_selection import SelectPercentile, f_classif, chi2 from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.metrics import log_loss
code
322308/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd print('# Read App Events') app_ev = pd.read_csv('../input/app_events.csv', dtype={'device_id': np.str}) app_ev = app_ev.groupby('event_id')['app_id'].apply(lambda x: ' '.join(set(('app_id:' + str(s) for s in x))))
code
322308/cell_5
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd app_ev = pd.read_csv('../input/app_events.csv', dtype={'device_id': np.str}) app_ev = app_ev.groupby('event_id')['app_id'].apply(lambda x: ' '.join(set(('app_id:' + str(s) for s in x)))) print('# Read Events') events = pd.read_csv('../input/events.csv', dtype={'device_id': np.str}) events['app_id'] = events['event_id'].map(app_ev) events = events.dropna() del app_ev events = events[['device_id', 'app_id']] events = events.groupby('device_id')['app_id'].apply(lambda x: ' '.join(set(str(' '.join((str(s) for s in x))).split(' ')))) events = events.reset_index(name='app_id') events = pd.concat([pd.Series(row['device_id'], row['app_id'].split(' ')) for _, row in events.iterrows()]).reset_index() events.columns = ['app_id', 'device_id']
code
130010335/cell_9
[ "text_plain_output_4.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, ax = plt.subplots(figsize=(4, 4)) res = stats.probplot(df_clinic['updrs_1'], dist='norm', plot=ax)
code
130010335/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.info()
code
130010335/cell_23
[ "image_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_3'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_4'],dist='norm', plot=ax) plt.yticks(rotation=0) df_eda = df_clinic.groupby('patient_id')['visit_month'].max() ax = sns.histplot(df_eda, kde=True, color="blue", line_kws={'linewidth': 2, 'linestyle': '--'}) ax.lines[0].set_color('orange') plt.title(f"Max month", fontweight="bold", pad=15) plt.show() df_eda = df_clinic.groupby('visit_month', as_index=False).mean().dropna() df_eda for i in range(4): sns.regplot(x=df_eda['visit_month'].values, y=df_eda[f'updrs_{i + 1}'].values, color='green', ci=None, line_kws={'color': 'orange', 'linestyle': '--'}) plt.title(f'Mean of updrs_{i + 1} by timeseries', fontweight='bold', pad=15) plt.text(0, df_eda[f'updrs_{i + 1}'].values.max() * 0.99, f"CORR: {round(df_eda.corr().loc['visit_month', f'updrs_{i + 1}'], 3)}") plt.show()
code
130010335/cell_20
[ "image_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_3'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_4'],dist='norm', plot=ax) plt.yticks(rotation=0) df_eda = df_clinic.groupby('patient_id')['visit_month'].max() ax = sns.histplot(df_eda, kde=True, color='blue', line_kws={'linewidth': 2, 'linestyle': '--'}) ax.lines[0].set_color('orange') plt.title(f'Max month', fontweight='bold', pad=15) plt.show()
code
130010335/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique()
code
130010335/cell_11
[ "text_plain_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, ax = plt.subplots(figsize=(4, 4)) res = stats.probplot(df_clinic['updrs_3'], dist='norm', plot=ax)
code
130010335/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from sklearn import metrics from sklearn import model_selection import warnings, gc warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130010335/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe()
code
130010335/cell_8
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16, 30)) features = ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i + 1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show()
code
130010335/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import pandas as pd import numpy as np dataframe = pd.DataFrame(df_clinic, columns=['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']) print(dataframe.head()) dataframe.boxplot(grid='false', color='blue', fontsize=10, rot=30)
code
130010335/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic
code
130010335/cell_17
[ "image_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_3'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_4'],dist='norm', plot=ax) sns.heatmap(df_clinic.filter(regex='updrs_*').dropna().corr(), cmap='crest', annot=True, annot_kws={'fontweight': 'bold'}) plt.yticks(rotation=0) plt.show()
code
130010335/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() skewness_1 = df_clinic['updrs_1'].skew() print(f'Skewness for updrs_1 = {skewness_1}') skewness_2 = df_clinic['updrs_2'].skew() print(f'Skewness for updrs_2 = {skewness_2}') skewness_3 = df_clinic['updrs_3'].skew() print(f'Skewness for updrs_3 = {skewness_3}') skewness_4 = df_clinic['updrs_4'].skew() print(f'Skewness for updrs_4 = {skewness_4}')
code
130010335/cell_22
[ "image_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_3'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_4'],dist='norm', plot=ax) plt.yticks(rotation=0) df_eda = df_clinic.groupby('patient_id')['visit_month'].max() df_eda = df_clinic.groupby('visit_month', as_index=False).mean().dropna() df_eda
code
130010335/cell_10
[ "text_html_output_1.png" ]
from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, ax = plt.subplots(figsize=(4, 4)) res = stats.probplot(df_clinic['updrs_2'], dist='norm', plot=ax)
code
130010335/cell_12
[ "text_plain_output_1.png" ]
from scipy import stats from scipy import stats from scipy import stats from scipy import stats import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum() df_clinic.nunique() df_clinic.groupby('patient_id').size().describe() import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure(figsize=(16,30)) features= ['updrs_1','updrs_2','updrs_3','updrs_4'] for i in range(len(features)): fig.add_subplot(9, 5, i+1) sns.distplot(df_clinic[features[i]]) plt.tight_layout() plt.show() from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_1'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_2'],dist='norm', plot=ax) from scipy import stats fig, (ax) = plt.subplots(figsize = (4,4)) res = stats.probplot(df_clinic['updrs_3'],dist='norm', plot=ax) from scipy import stats fig, ax = plt.subplots(figsize=(4, 4)) res = stats.probplot(df_clinic['updrs_4'], dist='norm', plot=ax)
code
130010335/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_clinic = [] tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') train_clinical = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') tmp['CSF'] = 1 df_clinic.append(tmp) tmp = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/supplemental_clinical_data.csv') tmp['CSF'] = 0 df_clinic.append(tmp) df_clinic = pd.concat(df_clinic, axis=0).reset_index(drop=True) df_clinic = df_clinic.rename(columns={'upd23b_clinical_state_on_medication': 'medication'}) df_clinic.isna().sum()
code
32063980/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['customer_type'].unique()
code
32063980/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data.info()
code
32063980/cell_25
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() data['customer_type'] = label_encoder.fit_transform(data['customer_type']) data['assigned_room_type'] = label_encoder.fit_transform(data['assigned_room_type']) data['deposit_type'] = label_encoder.fit_transform(data['deposit_type']) data['reservation_status'] = label_encoder.fit_transform(data['reservation_status']) data['meal'] = label_encoder.fit_transform(data['meal']) data['country'] = label_encoder.fit_transform(data['country']) data['distribution_channel'] = label_encoder.fit_transform(data['distribution_channel']) data['market_segment'] = label_encoder.fit_transform(data['market_segment']) data['reserved_room_type'] = label_encoder.fit_transform(data['reserved_room_type']) data['reservation_status_date'] = label_encoder.fit_transform(data['reservation_status_date']) print('customer_type:', data['customer_type'].unique()) print('reservation_status', data['reservation_status'].unique()) print('deposit_type', data['deposit_type'].unique()) print('assigned_room_type', data['assigned_room_type'].unique()) print('meal', data['meal'].unique()) print('Country:', data['country'].unique()) print('Dist_Channel:', data['distribution_channel'].unique()) print('Market_seg:', data['market_segment'].unique()) print('reserved_room_type:', data['reserved_room_type'].unique())
code
32063980/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data.head()
code
32063980/cell_34
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) clf = Lasso(alpha=0.1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) logreg = LogisticRegression(solver='lbfgs') logreg.fit(X_train, y_train) y_pred = logreg.predict(X_test) print('Mean Absolute Error_logreg:', metrics.mean_absolute_error(y_test, y_pred).round(3)) print('Mean Squared Error_logreg:', metrics.mean_squared_error(y_test, y_pred).round(3)) print('Root Mean Squared Error_logreg:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)).round(3)) print('r2_score_logreg:', r2_score(y_test, y_pred).round(3))
code
32063980/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['reservation_status'].unique()
code
32063980/cell_33
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) clf = Lasso(alpha=0.1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Mean Absolute Error_lasso:', metrics.mean_absolute_error(y_test, y_pred).round(3)) print('Mean Squared Error_lasso:', metrics.mean_squared_error(y_test, y_pred).round(3)) print('Root Mean Squared Error_lasso:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)).round(3)) print('r2_score_lasso:', r2_score(y_test, y_pred).round(3))
code
32063980/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['arrival_date_month'] = data['arrival_date_month'].map({'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}) data['arrival_date_month'].unique()
code
32063980/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data.info()
code
32063980/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['arrival_date_month'].unique()
code
32063980/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32063980/cell_32
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) print('Mean Absolute Error_ridge:', metrics.mean_absolute_error(y_test, y_pred).round(3)) print('Mean Squared Error_ridge:', metrics.mean_squared_error(y_test, y_pred).round(3)) print('Root Mean Squared Error_ridge:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)).round(3)) print('r2_score_ridge:', r2_score(y_test, y_pred).round(3))
code
32063980/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') print('Nan in each columns', data.isna().sum(), sep='\n')
code
32063980/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['hotel'].unique()
code
32063980/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['hotel'] = data['hotel'].map({'Resort Hotel': 0, 'City Hotel': 1}) data['hotel'].unique()
code
32063980/cell_35
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) from sklearn.model_selection import GridSearchCV parameters = {'alpha': [50, 75, 100, 200, 230, 250], 'random_state': [5, 10, 20, 50], 'max_iter': [0.1, 0.5, 1, 2, 3, 5]} grid = GridSearchCV(ridge, parameters, cv=5) grid.fit(X_train, y_train) print('Best_Score_Ridge : ', grid.best_score_) print('best_para_Ridge:', grid.best_params_)
code
32063980/cell_31
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) print('Mean Absolute Error_lng:', metrics.mean_absolute_error(y_test, y_pred).round(3)) print('Mean Squared Error_lng:', metrics.mean_squared_error(y_test, y_pred).round(3)) print('Root Mean Squared Error_lng:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)).round(3)) print('r2_score_lng:', r2_score(y_test, y_pred).round(3))
code
32063980/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['assigned_room_type'].unique()
code
32063980/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() data['deposit_type'].unique()
code
32063980/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data.describe()
code
32063980/cell_36
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import Lasso from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') data = data.drop(['company'], axis=1) data = data.dropna(axis=0) data1 = data.copy() X = data.drop(['previous_cancellations'], axis=1) y = data['previous_cancellations'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) clf = Lasso(alpha=0.1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) from sklearn.model_selection import GridSearchCV parameters = {'alpha': [50, 75, 100, 200, 230, 250], 'random_state': [5, 10, 20, 50], 'max_iter': [0.1, 0.5, 1, 2, 3, 5]} grid = GridSearchCV(ridge, parameters, cv=5) grid.fit(X_train, y_train) from sklearn.model_selection import GridSearchCV parameters = {'alpha': [200, 230, 250, 265, 270, 275, 290, 300], 'random_state': [2, 5, 10, 20, 50], 'max_iter': [5, 10, 15, 20, 30, 50, 100]} grid = GridSearchCV(clf, parameters, cv=5) grid.fit(X_train, y_train) print('Best_Score_Lasso : ', grid.best_score_) print('best_para_Lasso:', grid.best_params_)
code
90151799/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') dataset.head()
code
90151799/cell_20
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=25, criterion='entropy', random_state=0) classifier.fit(X_train, y_train) from sklearn.metrics import confusion_matrix, accuracy_score y_pred = classifier.predict(X_test) cm = confusion_matrix(y_test, y_pred) print(cm) accuracy_score(y_test, y_pred)
code
90151799/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') objList = dataset.select_dtypes(include='object').columns print(objList)
code
90151799/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd dataset = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') objList = dataset.select_dtypes(include='object').columns from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for feat in objList: dataset[feat] = le.fit_transform(dataset[feat].astype(str)) print(dataset.info())
code
90151799/cell_18
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=25, criterion='entropy', random_state=0) classifier.fit(X_train, y_train)
code
90151799/cell_8
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd dataset = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') objList = dataset.select_dtypes(include='object').columns from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for feat in objList: dataset[feat] = le.fit_transform(dataset[feat].astype(str)) dataset.head()
code
90151799/cell_22
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=25, criterion='entropy', random_state=0) classifier.fit(X_train, y_train) from sklearn.metrics import confusion_matrix, accuracy_score y_pred = classifier.predict(X_test) cm = confusion_matrix(y_test, y_pred) accuracy_score(y_test, y_pred) from sklearn.model_selection import cross_val_score accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=10) print('Accuracy: {:.2f} %'.format(accuracies.mean() * 100)) print('Standard Deviation: {:.2f} %'.format(accuracies.std() * 100))
code
90151799/cell_12
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd dataset = pd.read_csv('../input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv') objList = dataset.select_dtypes(include='object').columns from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for feat in objList: dataset[feat] = le.fit_transform(dataset[feat].astype(str)) X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, -1].values print(X)
code
18139612/cell_13
[ "text_html_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.idxmax() returns.idxmin() returns.std() returns.ix['2015-01-01':'2015-12-31'].std()
code
18139612/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.head()
code
18139612/cell_4
[ "text_html_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.head()
code
18139612/cell_11
[ "text_html_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.idxmax() returns.idxmin()
code
18139612/cell_1
[ "text_plain_output_1.png" ]
!pip3 list |grep pandas from pandas_datareader import data, wb import numpy as np import pandas as pd import datetime start = datetime.datetime(2006,1,1) end = datetime.datetime(2016,1,1) BAC = data.DataReader('BAC',"yahoo",start,end,) C = data.DataReader('c',"yahoo",start,end) GS = data.DataReader('GS',"yahoo",start,end) JPM = data.DataReader('JPM',"yahoo",start,end) MS = data.DataReader('MS',"yahoo",start,end) WFC = data.DataReader('WFC',"yahoo",start,end)
code