path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
89135215/cell_15
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new['1stFlrSF'].hist(bins=50) plt.show()
code
89135215/cell_16
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new['BsmtUnfSF'].hist(bins=50) plt.show()
code
89135215/cell_17
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new['GrLivArea'].hist(bins=50) plt.show()
code
89135215/cell_14
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new['TotalBsmtSF'].hist(bins=50) plt.show()
code
89135215/cell_10
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) house_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') house_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') Numlist1 = ['BsmtQual', 'BsmtCond', 'FireplaceQu', 'GarageQual', 'GarageCond'] Numlist2 = ['BsmtExposure'] Numlist3 = ['BsmtFinType1', 'BsmtFinType2'] Numlist4 = ['PoolQC'] Numlist5 = ['Fence'] Numlist6 = ['ExterQual', 'ExterCond', 'HeatingQC', 'KitchenQual'] Numlist7 = ['LotShape'] Numlist8 = ['LandSlope'] Numlist9 = ['Functional'] Numlist10 = ['GarageFinish'] def numeric_map1(x): return x.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5, np.nan: 0}) def numeric_map2(y): return y.map({'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4, np.nan: 0}) def numeric_map3(z): return z.map({'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6, np.nan: 0}) def numeric_map4(a): return a.map({'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4, np.nan: 0}) def numeric_map5(b): return b.map({'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4, np.nan: 0}) def numeric_map6(c): return c.map({'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}) def numeric_map7(d): return d.map({'IR3': 1, 'IR2': 2, 'IR1': 3, 'Reg': 4}) def numeric_map8(e): return e.map({'Sev': 1, 'Mod': 2, 'Gtl': 3}) def numeric_map9(f): return f.map({'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5, 'Min2': 6, 'Min1': 7, 'Typ': 8}) def numeric_map10(g): return g.map({'Unf': 1, 'RFn': 2, 'Fin': 3, np.nan: 0}) house_train[Numlist1] = house_train[Numlist1].apply(numeric_map1) house_train[Numlist2] = house_train[Numlist2].apply(numeric_map2) house_train[Numlist3] = house_train[Numlist3].apply(numeric_map3) house_train[Numlist4] = house_train[Numlist4].apply(numeric_map4) house_train[Numlist5] = house_train[Numlist5].apply(numeric_map5) house_train[Numlist6] = house_train[Numlist6].apply(numeric_map6) house_train[Numlist7] = house_train[Numlist7].apply(numeric_map7) house_train[Numlist8] = house_train[Numlist8].apply(numeric_map8) house_train[Numlist9] = house_train[Numlist9].apply(numeric_map9) house_train[Numlist10] = house_train[Numlist10].apply(numeric_map10) house_test[Numlist1] = house_test[Numlist1].apply(numeric_map1) house_test[Numlist2] = house_test[Numlist2].apply(numeric_map2) house_test[Numlist3] = house_test[Numlist3].apply(numeric_map3) house_test[Numlist4] = house_test[Numlist4].apply(numeric_map4) house_test[Numlist5] = house_test[Numlist5].apply(numeric_map5) house_test[Numlist6] = house_test[Numlist6].apply(numeric_map6) house_test[Numlist7] = house_test[Numlist7].apply(numeric_map7) house_test[Numlist8] = house_test[Numlist8].apply(numeric_map8) house_test[Numlist9] = house_test[Numlist9].apply(numeric_map9) house_test[Numlist10] = house_test[Numlist10].apply(numeric_map10) train = house_train.select_dtypes(exclude=['object']) test = house_test.select_dtypes(exclude=['object']) corr = train.corr() col = corr['SalePrice'].sort_values(ascending=False).abs() col scaler = StandardScaler() x = train.iloc[:, 1:-1] y = train['SalePrice'] uncorrlated = [i for i in col.keys() if col[i] < 0.05] uncorrlated.remove('Id') x_new = x.drop(columns=uncorrlated) test = test.drop(columns=uncorrlated) x_new.info()
code
72076990/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols test.isna().sum()[test.isna().sum() > 0] for col in cat_cols: print('***' + col + '***') print('Number of unique cat:', test[col].nunique()) print(test[col].value_counts())
code
72076990/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape
code
72076990/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols train['target'].hist()
code
72076990/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') print(f'Train Shape: {train.shape}\nTest Shape: {test.shape}')
code
72076990/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train.isna().sum()[train.isna().sum() > 0] for col in cat_cols: print('***' + col + '***') print('Number of unique cat:', train[col].nunique()) print(train[col].value_counts())
code
72076990/cell_6
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols
code
72076990/cell_2
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor import lightgbm as lgb from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt plt.style.use('ggplot')
code
72076990/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train.isna().sum()[train.isna().sum() > 0] train[cat_cols].sample(5)
code
72076990/cell_7
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols
code
72076990/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols train['target'].describe()
code
72076990/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train.isna().sum()[train.isna().sum() > 0]
code
72076990/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') test.isna().sum()[test.isna().sum() > 0]
code
72076990/cell_24
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train.isna().sum()[train.isna().sum() > 0] X_train, X_valid, y_train, y_valid = train_test_split(train.drop(columns=['target']), train['target'].values, test_size=0.1, random_state=42) (X_train.shape, X_valid.shape) rf = RandomForestRegressor(random_state=42, max_depth=6, max_leaf_nodes=5, n_jobs=-1) rf.fit(X_train.drop(columns=['id']), y_train) preds_rf = rf.predict(X_valid.drop(columns=['id'])) print('RMSE:', mean_squared_error(y_valid, preds_rf, squared=False))
code
72076990/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train['target'].hist()
code
72076990/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train.isna().sum()[train.isna().sum() > 0] X_train, X_valid, y_train, y_valid = train_test_split(train.drop(columns=['target']), train['target'].values, test_size=0.1, random_state=42) (X_train.shape, X_valid.shape)
code
72076990/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape train['target'].hist()
code
72076990/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes
code
72081792/cell_9
[ "text_plain_output_1.png" ]
from tqdm.auto import tqdm from transformers import TFAutoModel, AutoTokenizer import pandas as pd import pathlib import tensorflow as tf ROOT_PATH = pathlib.Path('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/') MODEL = 'distilbert-base-multilingual-cased' BATCH_SIZE = 32 EPOCHS = 1 MAX_DOC_LENGTH = 256 train_df = pd.read_csv(ROOT_PATH / 'jigsaw-toxic-comment-train.csv') valid_df = pd.read_csv(ROOT_PATH / 'validation.csv') test_df = pd.read_csv(ROOT_PATH / 'test.csv').rename(columns={'content': 'comment_text'}) train_df.sample(5) class Tokenizer: def __init__(self, tokenizer, max_doc_length: int, padding=True) -> None: self.tokenizer = tokenizer self.max_doc_length = max_doc_length self.padding = padding def __call__(self, x): return self.tokenizer(x, max_length=self.max_doc_length, truncation=True, padding=self.padding, return_tensors='tf') tokenizer = Tokenizer(AutoTokenizer.from_pretrained(MODEL), MAX_DOC_LENGTH) def get_tokenized_values(text, tokenizer, batch_size): input_ids = [] attention_mask = [] for i in tqdm(range(0, len(text), batch_size)): tokenized_batch = tokenizer(text[i:i + batch_size]) input_ids.append(tokenized_batch['input_ids']) attention_mask.append(tokenized_batch['attention_mask']) return (tf.concat(input_ids, axis=0), tf.concat(attention_mask, axis=0)) train_input_ids, train_attention_mask = get_tokenized_values(train_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) valid_input_ids, valid_attention_mask = get_tokenized_values(valid_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) test_input_ids, test_attention_mask = get_tokenized_values(test_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) y_train = train_df.toxic.values y_valid = valid_df.toxic.values
code
72081792/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pathlib ROOT_PATH = pathlib.Path('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/') MODEL = 'distilbert-base-multilingual-cased' BATCH_SIZE = 32 EPOCHS = 1 MAX_DOC_LENGTH = 256 train_df = pd.read_csv(ROOT_PATH / 'jigsaw-toxic-comment-train.csv') valid_df = pd.read_csv(ROOT_PATH / 'validation.csv') test_df = pd.read_csv(ROOT_PATH / 'test.csv').rename(columns={'content': 'comment_text'}) train_df.sample(5)
code
72081792/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pathlib ROOT_PATH = pathlib.Path('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/') MODEL = 'distilbert-base-multilingual-cased' BATCH_SIZE = 32 EPOCHS = 1 MAX_DOC_LENGTH = 256 train_df = pd.read_csv(ROOT_PATH / 'jigsaw-toxic-comment-train.csv') valid_df = pd.read_csv(ROOT_PATH / 'validation.csv') test_df = pd.read_csv(ROOT_PATH / 'test.csv').rename(columns={'content': 'comment_text'}) train_df.sample(5) (train_df['toxic'].mean(), valid_df['toxic'].mean())
code
72081792/cell_15
[ "text_plain_output_1.png" ]
from tqdm.auto import tqdm from transformers import TFAutoModel, AutoTokenizer import pandas as pd import pathlib import tensorflow as tf import tensorflow.keras as keras ROOT_PATH = pathlib.Path('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/') MODEL = 'distilbert-base-multilingual-cased' BATCH_SIZE = 32 EPOCHS = 1 MAX_DOC_LENGTH = 256 train_df = pd.read_csv(ROOT_PATH / 'jigsaw-toxic-comment-train.csv') valid_df = pd.read_csv(ROOT_PATH / 'validation.csv') test_df = pd.read_csv(ROOT_PATH / 'test.csv').rename(columns={'content': 'comment_text'}) train_df.sample(5) class Tokenizer: def __init__(self, tokenizer, max_doc_length: int, padding=True) -> None: self.tokenizer = tokenizer self.max_doc_length = max_doc_length self.padding = padding def __call__(self, x): return self.tokenizer(x, max_length=self.max_doc_length, truncation=True, padding=self.padding, return_tensors='tf') tokenizer = Tokenizer(AutoTokenizer.from_pretrained(MODEL), MAX_DOC_LENGTH) def get_tokenized_values(text, tokenizer, batch_size): input_ids = [] attention_mask = [] for i in tqdm(range(0, len(text), batch_size)): tokenized_batch = tokenizer(text[i:i + batch_size]) input_ids.append(tokenized_batch['input_ids']) attention_mask.append(tokenized_batch['attention_mask']) return (tf.concat(input_ids, axis=0), tf.concat(attention_mask, axis=0)) train_input_ids, train_attention_mask = get_tokenized_values(train_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) valid_input_ids, valid_attention_mask = get_tokenized_values(valid_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) test_input_ids, test_attention_mask = get_tokenized_values(test_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) y_train = train_df.toxic.values y_valid = valid_df.toxic.values train_dataset = tf.data.Dataset.from_tensor_slices(((train_input_ids, train_attention_mask), y_train)).repeat().shuffle(2048).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) valid_dataset = tf.data.Dataset.from_tensor_slices(((valid_input_ids, valid_attention_mask), y_valid)).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) test_dataset = tf.data.Dataset.from_tensor_slices((test_input_ids, test_attention_mask)).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) bert_model = TFAutoModel.from_pretrained(MODEL) input_ids = keras.layers.Input(shape=(MAX_DOC_LENGTH,), dtype=tf.int32) attention_mask = keras.layers.Input(shape=(MAX_DOC_LENGTH,), dtype=tf.int32) sequence_output = bert_model(input_ids, attention_mask)[0] cls_token = sequence_output[:, 0, :] out = keras.layers.Dense(1, activation='sigmoid')(cls_token) model = keras.models.Model(inputs=(input_ids, attention_mask), outputs=out) model.compile(keras.optimizers.Adam(lr=1e-05), loss='binary_crossentropy', metrics=['accuracy', keras.metrics.AUC()]) model.summary()
code
72081792/cell_17
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from tqdm.auto import tqdm from transformers import TFAutoModel, AutoTokenizer import pandas as pd import pathlib import tensorflow as tf import tensorflow.keras as keras ROOT_PATH = pathlib.Path('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/') MODEL = 'distilbert-base-multilingual-cased' BATCH_SIZE = 32 EPOCHS = 1 MAX_DOC_LENGTH = 256 train_df = pd.read_csv(ROOT_PATH / 'jigsaw-toxic-comment-train.csv') valid_df = pd.read_csv(ROOT_PATH / 'validation.csv') test_df = pd.read_csv(ROOT_PATH / 'test.csv').rename(columns={'content': 'comment_text'}) train_df.sample(5) class Tokenizer: def __init__(self, tokenizer, max_doc_length: int, padding=True) -> None: self.tokenizer = tokenizer self.max_doc_length = max_doc_length self.padding = padding def __call__(self, x): return self.tokenizer(x, max_length=self.max_doc_length, truncation=True, padding=self.padding, return_tensors='tf') tokenizer = Tokenizer(AutoTokenizer.from_pretrained(MODEL), MAX_DOC_LENGTH) def get_tokenized_values(text, tokenizer, batch_size): input_ids = [] attention_mask = [] for i in tqdm(range(0, len(text), batch_size)): tokenized_batch = tokenizer(text[i:i + batch_size]) input_ids.append(tokenized_batch['input_ids']) attention_mask.append(tokenized_batch['attention_mask']) return (tf.concat(input_ids, axis=0), tf.concat(attention_mask, axis=0)) train_input_ids, train_attention_mask = get_tokenized_values(train_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) valid_input_ids, valid_attention_mask = get_tokenized_values(valid_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) test_input_ids, test_attention_mask = get_tokenized_values(test_df['comment_text'].values.tolist(), tokenizer, BATCH_SIZE * 4) y_train = train_df.toxic.values y_valid = valid_df.toxic.values train_dataset = tf.data.Dataset.from_tensor_slices(((train_input_ids, train_attention_mask), y_train)).repeat().shuffle(2048).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) valid_dataset = tf.data.Dataset.from_tensor_slices(((valid_input_ids, valid_attention_mask), y_valid)).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) test_dataset = tf.data.Dataset.from_tensor_slices((test_input_ids, test_attention_mask)).batch(BATCH_SIZE).prefetch(BATCH_SIZE * 2) bert_model = TFAutoModel.from_pretrained(MODEL) input_ids = keras.layers.Input(shape=(MAX_DOC_LENGTH,), dtype=tf.int32) attention_mask = keras.layers.Input(shape=(MAX_DOC_LENGTH,), dtype=tf.int32) sequence_output = bert_model(input_ids, attention_mask)[0] cls_token = sequence_output[:, 0, :] out = keras.layers.Dense(1, activation='sigmoid')(cls_token) model = keras.models.Model(inputs=(input_ids, attention_mask), outputs=out) model.compile(keras.optimizers.Adam(lr=1e-05), loss='binary_crossentropy', metrics=['accuracy', keras.metrics.AUC()]) model.summary() n_steps = train_input_ids.shape[0] // BATCH_SIZE train_history = model.fit(train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=EPOCHS)
code
72081792/cell_12
[ "text_html_output_1.png" ]
(x[0].shape, x[1].shape)
code
128026857/cell_13
[ "image_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) print(f'{red}{col_name}:{res}') weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} print(weights.sort_values(by='z-score'), '\n') plt.figure(figsize=(3, 2)) sns.kdeplot(weights['percentage'], shade=True) plt.title(f'Density Plot of {col_name}') plt.xlabel('Percentage') plt.ylabel('Density') plt.show()
code
128026857/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() df_train.head()
code
128026857/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns
code
128026857/cell_29
[ "text_plain_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_train.shape prognosis_list = df_train.prognosis.unique() train_cluster_cols = df_train.filter(like='cluster') test_cluster_cols = df_test.filter(like='cluster') train_cluster_cols = df_train.filter(regex='cluster') test_cluster_cols = df_test.filter(regex='cluster') cluster_cols = list(train_cluster_cols.columns) test_cluster_cols.head()
code
128026857/cell_26
[ "text_plain_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_train.shape prognosis_list = df_train.prognosis.unique() df_train.head()
code
128026857/cell_11
[ "text_plain_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} for group_name, group_df in disease_dfs.items(): print(f'{blu}{group_name}{res}:') print(round(group_df.drop(columns=['prognosis']).sum().sort_values(ascending=False)[:5] / len(group_df), 2), '\n')
code
128026857/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) plt.figure(figsize=(16, 4)) marginals = train.groupby('prognosis').mean() plt.imshow(marginals, cmap='hot') plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() plt.show()
code
128026857/cell_15
[ "text_plain_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_z = pd.DataFrame(z_scores) plt.figure(figsize=(16, 4)) plt.imshow(df_z, cmap='coolwarm') plt.xticks(range(64), df_z.columns, rotation=90) plt.yticks(range(11), df_z.index) plt.colorbar() plt.show()
code
128026857/cell_31
[ "text_html_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_train.shape prognosis_list = df_train.prognosis.unique() train_cluster_cols = df_train.filter(like='cluster') test_cluster_cols = df_test.filter(like='cluster') train_cluster_cols = df_train.filter(regex='cluster') test_cluster_cols = df_test.filter(regex='cluster') cluster_cols = list(train_cluster_cols.columns) prognosis_dict = {df_train.prognosis.unique()[i]: i for i in range(11)} df_train['prognosis_encoding'] = df_train['prognosis'].apply(lambda x: prognosis_dict[x]) df_train.head()
code
128026857/cell_14
[ "text_html_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_train.shape
code
128026857/cell_22
[ "image_output_11.png", "text_plain_output_56.png", "text_plain_output_35.png", "image_output_24.png", "text_plain_output_43.png", "image_output_46.png", "text_plain_output_37.png", "image_output_25.png", "text_plain_output_5.png", "text_plain_output_48.png", "text_plain_output_30.png", "image_output_47.png", "text_plain_output_15.png", "image_output_17.png", "image_output_30.png", "text_plain_output_9.png", "text_plain_output_44.png", "image_output_14.png", "image_output_59.png", "image_output_39.png", "text_plain_output_40.png", "image_output_28.png", "text_plain_output_31.png", "text_plain_output_20.png", "image_output_23.png", "text_plain_output_60.png", "image_output_34.png", "image_output_64.png", "text_plain_output_4.png", "text_plain_output_64.png", "text_plain_output_13.png", "image_output_13.png", "text_plain_output_52.png", "text_plain_output_45.png", "image_output_40.png", "image_output_5.png", "image_output_48.png", "text_plain_output_14.png", "image_output_18.png", "text_plain_output_32.png", "text_plain_output_29.png", "image_output_58.png", "text_plain_output_58.png", "image_output_21.png", "text_plain_output_49.png", "text_plain_output_63.png", "text_plain_output_27.png", "image_output_52.png", "text_plain_output_54.png", "text_plain_output_10.png", "image_output_60.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_57.png", "image_output_62.png", "text_plain_output_24.png", "text_plain_output_21.png", "image_output_56.png", "image_output_31.png", "text_plain_output_47.png", "text_plain_output_25.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_50.png", "text_plain_output_36.png", "image_output_32.png", "image_output_53.png", "text_plain_output_3.png", "image_output_4.png", "image_output_51.png", "text_plain_output_22.png", "image_output_42.png", "image_output_35.png", "text_plain_output_38.png", "image_output_41.png", "image_output_57.png", "text_plain_output_7.png", "image_output_36.png", "image_output_8.png", "image_output_37.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_59.png", "text_plain_output_8.png", "text_plain_output_26.png", "image_output_27.png", "image_output_54.png", "image_output_6.png", "text_plain_output_41.png", "text_plain_output_34.png", "image_output_45.png", "text_plain_output_42.png", "image_output_63.png", "text_plain_output_53.png", "text_plain_output_23.png", "text_plain_output_51.png", "image_output_12.png", "text_plain_output_28.png", "image_output_22.png", "text_plain_output_2.png", "image_output_55.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_39.png", "image_output_3.png", "image_output_29.png", "text_plain_output_55.png", "image_output_44.png", "image_output_43.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_33.png", "text_plain_output_62.png", "image_output_50.png", "image_output_15.png", "image_output_49.png", "text_plain_output_61.png", "image_output_9.png", "image_output_19.png", "image_output_61.png", "image_output_38.png", "image_output_26.png", "text_plain_output_46.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_z = pd.DataFrame(z_scores) plt.xticks(range(64), df_z.columns, rotation=90) plt.yticks(range(11), df_z.index) plt.colorbar() df_symptom = df_z.T symptom_cluster = df_symptom.groupby('cluster').groups symptom_cluster
code
128026857/cell_27
[ "image_output_1.png" ]
from colorama import Style, Fore import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns rc = {'axes.facecolor': '#F8F8F8', 'figure.facecolor': '#F8F8F8', 'axes.edgecolor': '#000000', 'grid.color': '#EBEBE7' + '30', 'font.family': 'serif', 'axes.labelcolor': '#000000', 'xtick.color': '#000000', 'ytick.color': '#000000', 'grid.alpha': 0.4} sns.set(rc=rc) palette = ['#302c36', '#037d97', '#91013E', '#C09741', '#EC5B6D', '#90A6B1', '#6ca957', '#D8E3E2'] from sklearn.ensemble import RandomForestClassifier from vecstack import stacking from sklearn.linear_model import LogisticRegression from lightgbm import LGBMClassifier from sklearn.naive_bayes import GaussianNB from xgboost import XGBClassifier from sklearn.metrics import roc_auc_score, accuracy_score, log_loss from sklearn.model_selection import cross_val_score, train_test_split, RepeatedStratifiedKFold, StratifiedKFold from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.cluster import KMeans import warnings warnings.filterwarnings('ignore') from sklearn.naive_bayes import BernoulliNB import plotly.express as px import random import os from copy import deepcopy from functools import partial from itertools import combinations import random import gc import xgboost as xgb from xgboost.callback import EarlyStopping from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoost, CatBoostClassifier from catboost import Pool from colorama import Style, Fore blk = Style.BRIGHT + Fore.BLACK mgt = Style.BRIGHT + Fore.MAGENTA red = Style.BRIGHT + Fore.RED blu = Style.BRIGHT + Fore.BLUE res = Style.RESET_ALL df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_orig_train = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/trainn.csv') df_orig_test = pd.read_csv('/kaggle/input/vector-borne-disease-prediction/testt.csv') df_train.columns primary_columns = list(df_train.drop(columns=['id', 'prognosis']).columns) train = df_train.copy().drop(columns=['id']) marginals = train.groupby('prognosis').mean() plt.xticks(range(64), marginals.columns, rotation=90) plt.yticks(range(11), marginals.index) plt.colorbar() disease_dfs = {group_name: group_df for group_name, group_df in df_train.drop(columns=['id']).groupby(by='prognosis')} diseses_important_symptoms = {} import seaborn as sns disease_combined = df_train.drop(columns=['id']).groupby(by='prognosis').sum() value_counts = df_train['prognosis'].value_counts() z_scores = {} df_high = pd.DataFrame() for col_name in df_train.columns: if col_name not in ['id', 'prognosis']: top_diseases = disease_combined[col_name].sort_values(ascending=False) top_df = top_diseases.reset_index() top_df['percentage'] = top_df.apply(lambda row: round(row[col_name] / value_counts[row['prognosis']], 2), axis=1) weights = top_df.drop(columns=[col_name]) weights['z-score'] = round((weights['percentage'] - weights['percentage'].mean()) / weights['percentage'].std(), 2) z_scores[col_name] = {row['prognosis']: row['z-score'] for _, row in weights.iterrows()} df_train.shape prognosis_list = df_train.prognosis.unique() train_cluster_cols = df_train.filter(like='cluster') test_cluster_cols = df_test.filter(like='cluster') train_cluster_cols.head()
code
90131759/cell_16
[ "text_plain_output_1.png" ]
from _csv import reader from numpy import mean from numpy import std from scipy.stats import norm import pandas as pd import random def load_csv(filename): dataset = list() with open(filename, 'r') as file: csv_reader = reader(file) for row in csv_reader: if not row: continue dataset.append(row) return dataset def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) def separate_by_class(dataset): separated = dict() for i in range(len(dataset)): vector = dataset[i] class_value = vector[-1] if class_value not in separated: separated[class_value] = list() separated[class_value].append(vector) return separated def splitDataset(dataset, ratio): trainSize = int(len(dataset) * ratio) trainSet = [] tempSet = list(dataset) while len(trainSet) < trainSize: index = random.randrange(len(tempSet)) trainSet.append(tempSet.pop(index)) return [trainSet, tempSet] def fit_distribution(data): mu = mean(data) sigma = std(data) dist = norm(mu, sigma) return dist def probability(X, prior, dist1, dist2, dist3, dist4): return prior * dist1.pdf(X[0]) * dist2.pdf(X[1]) * dist3.pdf(X[2]) * dist4.pdf(X[3]) def predictedClass(data, prob_setosa, prob_versicolor, prob_virginica): max_prob = [0] * len(data) predicted = [''] * len(data) for i in range(len(data)): max_prob[i] = max(prob_setosa[i], prob_versicolor[i], prob_virginica[i]) if max_prob[i] == prob_setosa[i]: predicted[i] = 'Iris-setosa' elif max_prob[i] == prob_versicolor[i]: predicted[i] = 'Iris-versicolor' else: predicted[i] = 'Iris-virginica' return predicted def accuracy(actual, predicted): correct = 0 predicted['is_equal'] = actual['0'] == predicted['0'] correct = predicted['is_equal'].values.sum() return correct / float(len(actual)) * 100.0 def implementedClassifier(data): trainSet, testSet = splitDataset(data, 0.6) testSet = pd.DataFrame(testSet) testX = testSet.loc[:, [0, 1, 2, 3]] actualTestClass = testSet.loc[:, [4]] actualTestClass.columns = ['0'] separated = separate_by_class(trainSet) X_seto = separated['Iris-setosa'] X_versi = separated['Iris-versicolor'] X_virgi = separated['Iris-virginica'] X_seto = pd.DataFrame(X_seto) X_versi = pd.DataFrame(X_versi) X_virgi = pd.DataFrame(X_virgi) prior_seto = len(X_seto) / len(trainSet) prior_versi = len(X_versi) / len(trainSet) prior_virgi = len(X_virgi) / len(trainSet) X1_seto = fit_distribution(X_seto[0]) X2_seto = fit_distribution(X_seto[1]) X3_seto = fit_distribution(X_seto[2]) X4_seto = fit_distribution(X_seto[3]) X1_versi = fit_distribution(X_versi[0]) X2_versi = fit_distribution(X_versi[1]) X3_versi = fit_distribution(X_versi[2]) X4_versi = fit_distribution(X_versi[3]) X1_virgi = fit_distribution(X_virgi[0]) X2_virgi = fit_distribution(X_virgi[1]) X3_virgi = fit_distribution(X_virgi[2]) X4_virgi = fit_distribution(X_virgi[3]) X_sample1, y_sample1 = (testX.loc[[16]], actualTestClass.loc[[16]]) X_sample2, y_sample2 = (testX.loc[[30]], actualTestClass.loc[[30]]) prob_seto = probability(X_sample1, prior_seto, X1_seto, X2_seto, X3_seto, X4_seto) prob_versi = probability(X_sample1, prior_versi, X1_versi, X2_versi, X3_versi, X4_versi) prob_virgi = probability(X_sample1, prior_virgi, X1_virgi, X2_virgi, X3_virgi, X4_virgi) predicted = predictedClass(X_sample1, prob_seto, prob_versi, prob_virgi) prob_seto = probability(X_sample2, prior_seto, X1_seto, X2_seto, X3_seto, X4_seto) prob_versi = probability(X_sample2, prior_versi, X1_versi, X2_versi, X3_versi, X4_versi) prob_virgi = probability(X_sample2, prior_virgi, X1_virgi, X2_virgi, X3_virgi, X4_virgi) predicted = predictedClass(X_sample2, prob_seto, prob_versi, prob_virgi) prob_seto = probability(testSet, prior_seto, X1_seto, X2_seto, X3_seto, X4_seto) prob_versi = probability(testSet, prior_versi, X1_versi, X2_versi, X3_versi, X4_versi) prob_virgi = probability(testSet, prior_virgi, X1_virgi, X2_virgi, X3_virgi, X4_virgi) predicted = predictedClass(testSet, prob_seto, prob_versi, prob_virgi) predicted = pd.DataFrame(predicted) predicted.columns = ['0'] accuracyPercentage = accuracy(actualTestClass, predicted) if __name__ == '__main__': filepath = '../input/iris-dataset/iris.data.csv' data = load_csv(filepath) for i in range(len(data[0]) - 1): str_column_to_float(data, i) implementedClassifier(data)
code
130015160/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import tensorflow as tf x_train = x_train / 255 x_test = x_test / 255 i = tf.keras.Input((28, 28, 1)) x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(i) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) autoencoder = tf.keras.models.Model(i, x) autoencoder.summary() autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics='accuracy') r = autoencoder.fit(x=x_train, y=x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) plt.plot(r.history['loss'], label='loss') plt.plot(r.history['val_loss'], label='validation_loss') plt.xlabel('epoch') plt.legend()
code
130015160/cell_2
[ "text_plain_output_1.png" ]
from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()
code
130015160/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf from tensorflow import keras from keras.datasets import mnist import matplotlib.pyplot as plt
code
130015160/cell_7
[ "text_plain_output_1.png" ]
import tensorflow as tf x_train = x_train / 255 x_test = x_test / 255 i = tf.keras.Input((28, 28, 1)) x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(i) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) autoencoder = tf.keras.models.Model(i, x) autoencoder.summary() autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics='accuracy') r = autoencoder.fit(x=x_train, y=x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test))
code
130015160/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import tensorflow as tf x_train = x_train / 255 x_test = x_test / 255 i = tf.keras.Input((28, 28, 1)) x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(i) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) autoencoder = tf.keras.models.Model(i, x) autoencoder.summary() autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics='accuracy') r = autoencoder.fit(x=x_train, y=x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) plt.plot(r.history['accuracy'], label='accuracy') plt.plot(r.history['val_accuracy'], label='val_accuracy') plt.xlabel('epoch') plt.legend()
code
130015160/cell_5
[ "text_plain_output_1.png" ]
import tensorflow as tf i = tf.keras.Input((28, 28, 1)) x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(i) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2D(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x) x = tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='tanh', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) x = tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x) x = tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) x = tf.keras.layers.UpSampling2D((2, 2))(x) autoencoder = tf.keras.models.Model(i, x) autoencoder.summary()
code
88090019/cell_1
[ "text_plain_output_1.png" ]
!pip install -U timm
code
88090019/cell_17
[ "text_plain_output_1.png" ]
from torch.utils.data.dataset import Dataset import cv2 import os import timm import torch conf = {'batch': 16, 'image_dir': '../input/dog-image-dsg/photo/photo', 'image_size': 224, 'tta': 1, 'num_classes': 73, 'num_workers': 2, 'device': 'cuda' if torch.cuda.is_available() else 'cpu'} modeldef = [{'mdl': 'convnext_base_in22ft1k', 'pth': '../input/d/sinpcw/dog-image-dsg/ex001/ex001/k0/model_best.pth'}, {'mdl': 'convnext_base_in22ft1k', 'pth': '../input/d/sinpcw/dog-image-dsg/ex001/ex001/k1/model_best.pth'}, {'mdl': 'convnext_base_in22ft1k', 'pth': '../input/d/sinpcw/dog-image-dsg/ex001/ex001/k2/model_best.pth'}, {'mdl': 'convnext_base_in22ft1k', 'pth': '../input/d/sinpcw/dog-image-dsg/ex001/ex001/k3/model_best.pth'}, {'mdl': 'convnext_base_in22ft1k', 'pth': '../input/d/sinpcw/dog-image-dsg/ex001/ex001/k4/model_best.pth'}] def TTA(x, ops): if ops == 0: y = x elif ops == 1: y = torch.flip(x, [-1]) elif ops == 2: y = torch.flip(x, [-2]) elif ops == 3: y = torch.flip(x, [-1, -2]) else: raise ValueError() return y class InferDataset(Dataset): def __init__(self, image_dir, dataframe, augmentop): self.image_dir = image_dir self.dataframe = dataframe self.augmentop = augmentop def __len__(self): return len(self.dataframe) def __getitem__(self, idx): img = cv2.imread(os.path.join(self.image_dir, self.dataframe.iat[idx, 0] + '.jpg')) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = self.augmentop(force_apply=False, image=img)['image'] img = img.transpose(2, 0, 1) img = torch.from_numpy(img) return img def GetLoader(image_dir, dataframe, augmentop, batch=1, num_workers=2): return torch.utils.data.DataLoader(InferDataset(image_dir, dataframe, augmentop), batch_size=batch, shuffle=False, drop_last=False, num_workers=num_workers) def GetModel(name, num_classes, pth): model = timm.create_model(model_name=name, num_classes=num_classes, in_chans=3, pretrained=False) state = torch.load(pth, map_location='cpu') model.load_state_dict(state, strict=True) model.eval() return model def GetModels(config, mdefs): models = [] for i, mdef in enumerate(mdefs): mdl = GetModel(mdef['mdl'], config['num_classes'], mdef['pth']).to(conf['device']) models.append(mdl) return models infer_models = GetModels(conf, modeldef)
code
88090019/cell_14
[ "text_html_output_1.png" ]
import pandas as pd infer_df = pd.read_csv('../input/dog-image-dsg/test.csv') infer_df.head()
code
72073661/cell_7
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold from sklearn.preprocessing import OrdinalEncoder from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/30-days-of-ml/train.csv') df_test = pd.read_csv('../input/30-days-of-ml/test.csv') kf = KFold(shuffle=True, random_state=5) cat_cols = [c for c in df_train.columns if 'cat' in c] ordinal_encoder = OrdinalEncoder() ordinal_encoder.fit(df_train.loc[:, cat_cols]) def transform_categorical(df, oe=ordinal_encoder): cat_cols = [c for c in df.columns if 'cat' in c] df[cat_cols] = oe.transform(df.loc[:, cat_cols]) return df df_train = transform_categorical(df_train) df_test = transform_categorical(df_test) preds = [] for fold, (train_indices, validation_indices) in enumerate(kf.split(df_train)): xtrain = df_train.iloc[train_indices] xvalid = df_train.iloc[validation_indices] ytrain = xtrain.target yvalid = xvalid.target xtrain = xtrain.drop(columns=['target']) xvalid = xvalid.drop(columns=['target']) model = XGBRegressor(random_state=fold, verbosity=1) model.fit(xtrain, ytrain) preds_valid = model.predict(xvalid) preds_test = model.predict(df_test) preds.append(preds_test) print(fold, mean_squared_error(yvalid, preds_valid, squared=False))
code
2003218/cell_2
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/spooky-author-identification/train.csv') test_data = pd.read_csv('../input/spooky-author-identification/test.csv') train_data.describe()
code
2003218/cell_3
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import nltk import pandas as pd train_data = pd.read_csv('../input/spooky-author-identification/train.csv') test_data = pd.read_csv('../input/spooky-author-identification/test.csv') def preprocess_text(text, remove_list): """ tokens = nltk.pos_tag(nltk.word_tokenize(text)) print(tokens) good_words = [w for w, wtype in tokens if wtype not in remove_list] print(good_words) """ def clean_word(word): word = word.lower() if len(word) > 1 and word[0] == "'": return word[1:] return word tokens = nltk.pos_tag(nltk.word_tokenize(text)) tokens = [(clean_word(word), pos) for word, pos in tokens] return [(word, pos) for word, pos in tokens if word not in remove_list] def preprocess_corpus(corpus): stop_words = set(stopwords.words('english')) stop_words.update(['.', ',', '"', "'", '?', '!', ':', ';', '(', ')', '[', ']', '{', '}']) return [preprocess_text(text, stop_words) for text in corpus] preprocessed_train_corpus = preprocess_corpus(train_data['text']) preprocessed_test_corpus = preprocess_corpus(test_data['text']) print(preprocessed_train_corpus[0])
code
88085043/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df df.isnull().sum() ma_days = [7, 10, 14, 21, 50, 100] maxi_days = [30, 365, 730] def calculate_average(df, ma_days): for ma in ma_days: column_name = 'MA for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).mean() def calculate_maximum(df, ma_days): for ma in maxi_days: column_name = 'Maximum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).max() def calculate_minimum(df, ma_days): for ma in maxi_days: column_name = 'Minimum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).min() calculate_average(df, ma_days) calculate_maximum(df, maxi_days) calculate_minimum(df, maxi_days) df['std for 7 days'] = pd.DataFrame.rolling(df['Close'], 7).std() df['Diff High Low'] = df['High'] - df['Low'] df['Diff Open Close'] = df['Open'] - df['Close'] df['Daily Return'] = df['Close'].pct_change() * 100 df.columns df.isnull().sum() from sklearn.model_selection import train_test_split y = df['Close'] df['Close previous'] = df['Close'] df = df.drop(['Close'], axis=1) df = df.drop(['Adjusted Close'], axis=1) df = df.shift(periods=1) x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=0.2, shuffle=False) print(x_test.isnull().sum()) x_train.isnull().sum() x_train.fillna(x_train.mean(), inplace=True) x_train.isnull().sum() df df.fillna(x_train.mean(), inplace=True)
code
88085043/cell_4
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df df.info() df.describe() df.isnull().sum()
code
88085043/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df
code
88085043/cell_7
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df df.isnull().sum() ma_days = [7, 10, 14, 21, 50, 100] maxi_days = [30, 365, 730] def calculate_average(df, ma_days): for ma in ma_days: column_name = 'MA for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).mean() def calculate_maximum(df, ma_days): for ma in maxi_days: column_name = 'Maximum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).max() def calculate_minimum(df, ma_days): for ma in maxi_days: column_name = 'Minimum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).min() calculate_average(df, ma_days) calculate_maximum(df, maxi_days) calculate_minimum(df, maxi_days) df['std for 7 days'] = pd.DataFrame.rolling(df['Close'], 7).std() df['Diff High Low'] = df['High'] - df['Low'] df['Diff Open Close'] = df['Open'] - df['Close'] df['Daily Return'] = df['Close'].pct_change() * 100 print('number of features {}'.format(len(df.columns))) df.columns df.isnull().sum()
code
88085043/cell_14
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectKBest from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df df.isnull().sum() ma_days = [7, 10, 14, 21, 50, 100] maxi_days = [30, 365, 730] def calculate_average(df, ma_days): for ma in ma_days: column_name = 'MA for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).mean() def calculate_maximum(df, ma_days): for ma in maxi_days: column_name = 'Maximum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).max() def calculate_minimum(df, ma_days): for ma in maxi_days: column_name = 'Minimum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).min() calculate_average(df, ma_days) calculate_maximum(df, maxi_days) calculate_minimum(df, maxi_days) df['std for 7 days'] = pd.DataFrame.rolling(df['Close'], 7).std() df['Diff High Low'] = df['High'] - df['Low'] df['Diff Open Close'] = df['Open'] - df['Close'] df['Daily Return'] = df['Close'].pct_change() * 100 df.columns df.isnull().sum() from sklearn.model_selection import train_test_split y = df['Close'] df['Close previous'] = df['Close'] df = df.drop(['Close'], axis=1) df = df.drop(['Adjusted Close'], axis=1) df = df.shift(periods=1) x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=0.2, shuffle=False) x_train.isnull().sum() x_train.fillna(x_train.mean(), inplace=True) x_train.isnull().sum() df df.fillna(x_train.mean(), inplace=True) from sklearn.feature_selection import SelectKBest def select_k_features(k=8, x_train=x_train, y_train=y_train): bestfeatures = SelectKBest(score_func=f_classif, k=10) fit = bestfeatures.fit(x_train, y_train) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(x_train.columns) featureScores = pd.concat([dfcolumns, dfscores], axis=1) featureScores.columns = ['Specs', 'Score'] best_10 = list(featureScores.nlargest(10, 'Score')['Specs']) for col in x_train: if col not in best_10: x_train.drop([col], axis=1, inplace=True) return x_train x_train = select_k_features() x_test = x_test[x_train.columns] x_train.columns import sklearn.metrics import math def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = (np.array(y_true), np.array(y_pred)) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def train_test_and_measure(model_name, model, x_train=x_train, x_test=x_test, y_train=y_train, y_test=y_test): model = model.fit(x_train, y_train) prediction = model.predict(x_test) mse = sklearn.metrics.mean_squared_error(y_test, prediction) rmse = math.sqrt(mse) MBE = np.mean(prediction - y_test) plot_df = pd.DataFrame(y_test) plot_df['predictions'] = prediction return prediction import time from datetime import datetime import plotly_express as px from plotly.offline import init_notebook_mode init_notebook_mode(connected=True) from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression import matplotlib.pyplot as plt from sklearn.neural_network import MLPRegressor regression_model = LinearRegression() adaBoostRegressor_model = AdaBoostRegressor(random_state=0, n_estimators=100) randomForestRegressor_model = RandomForestRegressor(max_depth=2, random_state=0) MLPRegressor = MLPRegressor(random_state=1, max_iter=3000) train_test_and_measure('regression_model', regression_model) train_test_and_measure('adaBoostRegressor_model', adaBoostRegressor_model) train_test_and_measure('randomForestRegressor_model', randomForestRegressor_model) pred = train_test_and_measure('MLPRegressor', MLPRegressor) print(MLPRegressor.score(x_test, y_test))
code
88085043/cell_10
[ "text_html_output_1.png" ]
from sklearn.feature_selection import SelectKBest from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import pandas as pd def load_stock(name): df = pd.read_csv('../input/stock-market-data/stock_market_data/nasdaq/csv/{}.csv'.format(name)) df.set_index('Date', inplace=True) return df names = ['AAL', 'AAPL'] stocks = [load_stock(n) for n in names] df = stocks[0][-1500:] df df.isnull().sum() ma_days = [7, 10, 14, 21, 50, 100] maxi_days = [30, 365, 730] def calculate_average(df, ma_days): for ma in ma_days: column_name = 'MA for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).mean() def calculate_maximum(df, ma_days): for ma in maxi_days: column_name = 'Maximum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).max() def calculate_minimum(df, ma_days): for ma in maxi_days: column_name = 'Minimum for %s days' % str(ma) df[column_name] = pd.DataFrame.rolling(df['Close'], ma).min() calculate_average(df, ma_days) calculate_maximum(df, maxi_days) calculate_minimum(df, maxi_days) df['std for 7 days'] = pd.DataFrame.rolling(df['Close'], 7).std() df['Diff High Low'] = df['High'] - df['Low'] df['Diff Open Close'] = df['Open'] - df['Close'] df['Daily Return'] = df['Close'].pct_change() * 100 df.columns df.isnull().sum() from sklearn.model_selection import train_test_split y = df['Close'] df['Close previous'] = df['Close'] df = df.drop(['Close'], axis=1) df = df.drop(['Adjusted Close'], axis=1) df = df.shift(periods=1) x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=0.2, shuffle=False) x_train.isnull().sum() x_train.fillna(x_train.mean(), inplace=True) x_train.isnull().sum() df df.fillna(x_train.mean(), inplace=True) from sklearn.feature_selection import SelectKBest def select_k_features(k=8, x_train=x_train, y_train=y_train): bestfeatures = SelectKBest(score_func=f_classif, k=10) fit = bestfeatures.fit(x_train, y_train) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(x_train.columns) featureScores = pd.concat([dfcolumns, dfscores], axis=1) featureScores.columns = ['Specs', 'Score'] best_10 = list(featureScores.nlargest(10, 'Score')['Specs']) for col in x_train: if col not in best_10: x_train.drop([col], axis=1, inplace=True) return x_train x_train = select_k_features() x_test = x_test[x_train.columns] x_train.columns
code
106198232/cell_21
[ "image_output_1.png" ]
import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3,3), 0, borderType=cv2.BORDER_CONSTANT) #plt.imshow(img_gaussian_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_median_opencv = cv2.medianBlur(sim[0][1].reshape(40,40), 1) #plt.imshow(img_median_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_median_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = cv2.cvtColor(np.array(sim[0][1], dtype='ubyte'), cv2.COLOR_BGR2RGB) image_bilateral_opencv = cv2.bilateralFilter(img, 5, 40, 100, borderType=cv2.BORDER_CONSTANT) plt.imshow(image_bilateral_opencv)
code
106198232/cell_13
[ "text_plain_output_1.png" ]
import numpy as np disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) print(sim[0][1].shape)
code
106198232/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import random disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] plt.subplots(10, 5, figsize=(20, 30)) for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] plt.subplot(10, 10, 1 + i) plt.imshow(img) plt.show()
code
106198232/cell_30
[ "image_output_2.png", "image_output_1.png" ]
from skimage.filters import gaussian from skimage.filters import median from skimage.morphology import disk from skimage.restoration import denoise_bilateral import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3,3), 0, borderType=cv2.BORDER_CONSTANT) #plt.imshow(img_gaussian_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_median_opencv = cv2.medianBlur(sim[0][1].reshape(40,40), 1) #plt.imshow(img_median_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_median_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = cv2.cvtColor(np.array(sim[0][1], dtype='ubyte'), cv2.COLOR_BGR2RGB) image_bilateral_opencv = cv2.bilateralFilter(img, 5, 40, 100, borderType=cv2.BORDER_CONSTANT) img_gaussian_scikit = gaussian(sim[0][1], sigma=1, mode='constant', cval=0) plt.imshow(img_gaussian_scikit) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_scikit) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = sim[0][1].reshape(40,40) img_median_scikit = median(img, disk(1), mode='constant', cval=0) #plt.imshow(img_median_scikit) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_median_scikit) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_bilateral_scikit = denoise_bilateral(sim[0][1].reshape(40, 40), sigma_color=0.05, sigma_spatial=15, multichannel=False) fig, axes = plt.subplots(ncols=2, figsize=(15, 5)) axes[0].imshow(sim[0][1], label='label') axes[1].imshow(img_bilateral_scikit) axes[0].set_title('noised') axes[1].set_title('denoised') plt.show()
code
106198232/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import os os.listdir('../input')
code
106198232/cell_19
[ "text_plain_output_1.png" ]
import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3,3), 0, borderType=cv2.BORDER_CONSTANT) #plt.imshow(img_gaussian_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_median_opencv = cv2.medianBlur(sim[0][1].reshape(40, 40), 1) fig, axes = plt.subplots(ncols=2, figsize=(15, 5)) axes[0].imshow(sim[0][1], label='label') axes[1].imshow(img_median_opencv) axes[0].set_title('noised') axes[1].set_title('denoised') plt.show()
code
106198232/cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import random disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) plt.subplots(10, 5, figsize=(20, 30)) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] plt.subplot(10, 10, 1 + i) plt.imshow(img) plt.show()
code
106198232/cell_15
[ "image_output_1.png" ]
import numpy as np disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) img3 = sim[0][1].reshape(40, 40) print(img3.shape)
code
106198232/cell_16
[ "text_plain_output_1.png" ]
import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() print(img.shape) plt.imshow(img)
code
106198232/cell_17
[ "text_plain_output_1.png" ]
import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3, 3), 0, borderType=cv2.BORDER_CONSTANT) fig, axes = plt.subplots(ncols=2, figsize=(15, 5)) axes[0].imshow(sim[0][1], label='label') axes[1].imshow(img_gaussian_opencv) axes[0].set_title('noised') axes[1].set_title('denoised') plt.show()
code
106198232/cell_24
[ "image_output_1.png" ]
from skimage.filters import gaussian import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3,3), 0, borderType=cv2.BORDER_CONSTANT) #plt.imshow(img_gaussian_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_median_opencv = cv2.medianBlur(sim[0][1].reshape(40,40), 1) #plt.imshow(img_median_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_median_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = cv2.cvtColor(np.array(sim[0][1], dtype='ubyte'), cv2.COLOR_BGR2RGB) image_bilateral_opencv = cv2.bilateralFilter(img, 5, 40, 100, borderType=cv2.BORDER_CONSTANT) img_gaussian_scikit = gaussian(sim[0][1], sigma=1, mode='constant', cval=0) plt.imshow(img_gaussian_scikit) fig, axes = plt.subplots(ncols=2, figsize=(15, 5)) axes[0].imshow(sim[0][1], label='label') axes[1].imshow(img_gaussian_scikit) axes[0].set_title('noised') axes[1].set_title('denoised') plt.show()
code
106198232/cell_14
[ "image_output_1.png" ]
import h5py import numpy as np event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) img2 = np.expand_dims(sim[0][1], axis=2) print(img2.shape)
code
106198232/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from skimage.filters import gaussian from skimage.filters import median from skimage.morphology import disk import cv2 import h5py import matplotlib.pyplot as plt import numpy as np import random event = h5py.File('../input/insar-dataset/insar_data_event.hdf5', 'r') disp = np.zeros(shape=(16000, 40, 40)) sim = np.zeros(shape=(16000, 9, 40, 40, 1)) topo = np.zeros(shape=(16000, 1, 40, 40, 1)) for i in range(len(event.keys())): for j in range(100): disp[i * 100 + j] = np.array(event['event{}'.format(i)]['displacement']) sim[i * 100 + j] = np.array(event['event{}'.format(i)]['simulation']) topo[i * 100 + j] = np.array(event['event{}'.format(i)]['topography']) for i in range(100): ind = random.randint(0, 15999) img = disp[ind] for i in range(100): ind = random.randint(0, 15999) img = sim[ind][1] img2 = np.expand_dims(sim[0][1], axis=2) img = np.broadcast_to(sim[0][1], (40, 40, 3)).copy() img_gaussian_opencv = cv2.GaussianBlur(sim[0][1], (3,3), 0, borderType=cv2.BORDER_CONSTANT) #plt.imshow(img_gaussian_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img_median_opencv = cv2.medianBlur(sim[0][1].reshape(40,40), 1) #plt.imshow(img_median_opencv) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_median_opencv) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = cv2.cvtColor(np.array(sim[0][1], dtype='ubyte'), cv2.COLOR_BGR2RGB) image_bilateral_opencv = cv2.bilateralFilter(img, 5, 40, 100, borderType=cv2.BORDER_CONSTANT) img_gaussian_scikit = gaussian(sim[0][1], sigma=1, mode='constant', cval=0) plt.imshow(img_gaussian_scikit) fig, axes = plt.subplots(ncols=2, figsize=(15,5)) axes[0].imshow(sim[0][1], label="label") axes[1].imshow(img_gaussian_scikit) axes[0].set_title("noised") axes[1].set_title("denoised") plt.show() img = sim[0][1].reshape(40, 40) img_median_scikit = median(img, disk(1), mode='constant', cval=0) fig, axes = plt.subplots(ncols=2, figsize=(15, 5)) axes[0].imshow(sim[0][1], label='label') axes[1].imshow(img_median_scikit) axes[0].set_title('noised') axes[1].set_title('denoised') plt.show()
code
122256098/cell_21
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) rf = RandomForestClassifier() rf.fit(tr_x, tr_y) Accuracy_RandomForest = rf.score(cv_x, cv_y) test = pd.read_csv('test.csv') test_x = test[['Pclass', 'Sex']] test_x['Sex'].replace('male', 1, inplace=True) test_x['Sex'].replace('female', 0, inplace=True) prd = rf.predict(test_x) prd
code
122256098/cell_13
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) rf = RandomForestClassifier() rf.fit(tr_x, tr_y) Accuracy_RandomForest = rf.score(cv_x, cv_y) print('Accuracy = {}%'.format(Accuracy_RandomForest * 100))
code
122256098/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) train_x.head()
code
122256098/cell_25
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') op = test[['PassengerId']] op.to_csv('Submission.csv', index=False)
code
122256098/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.head()
code
122256098/cell_23
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) rf = RandomForestClassifier() rf.fit(tr_x, tr_y) Accuracy_RandomForest = rf.score(cv_x, cv_y) test = pd.read_csv('test.csv') test_x = test[['Pclass', 'Sex']] test_x['Sex'].replace('male', 1, inplace=True) test_x['Sex'].replace('female', 0, inplace=True) prd = rf.predict(test_x) op = test[['PassengerId']] op['Survived'] = prd
code
122256098/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum()
code
122256098/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') test_x = test[['Pclass', 'Sex']] test_x['Sex'].replace('male', 1, inplace=True) test_x['Sex'].replace('female', 0, inplace=True) test_x.head()
code
122256098/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_x.head()
code
122256098/cell_18
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') test_x = test[['Pclass', 'Sex']] test_x['Sex'].replace('male', 1, inplace=True) test_x['Sex'].replace('female', 0, inplace=True) test_x.head()
code
122256098/cell_8
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_y = train[['Survived']] train_y.head()
code
122256098/cell_15
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) lgr = LogisticRegression() lgr.fit(tr_x, tr_y) Accuracy_LogisticRegression = lgr.score(cv_x, cv_y) print('Accuracy = {}%'.format(Accuracy_LogisticRegression * 100))
code
122256098/cell_16
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') test.head()
code
122256098/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') test_x = test[['Pclass', 'Sex']] test_x.head()
code
122256098/cell_24
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') op = test[['PassengerId']] op.head()
code
122256098/cell_14
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) lgr = LogisticRegression() lgr.fit(tr_x, tr_y)
code
122256098/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) print(tr_x.head()) print(tr_y.head())
code
122256098/cell_12
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('train.csv') train.isnull().sum() train_x = train[['Pclass', 'Sex']] train_y = train[['Survived']] train_x['Sex'].replace('male', 1, inplace=True) train_x['Sex'].replace('female', 0, inplace=True) tr_x, cv_x, tr_y, cv_y = train_test_split(train_x, train_y, test_size=0.3) rf = RandomForestClassifier() rf.fit(tr_x, tr_y)
code
122256098/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.describe()
code
122248046/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) popular_cities = df['City'].value_counts()[:10] popular_country = df['Country'].value_counts()[:10] transport_counts = df['Transportation type'].value_counts()[:5] plt.axis('equal') sns.countplot(data=df, x=df['Traveler age'], palette='bright') plt.title('Number of trips by age group') plt.xticks(rotation=90) plt.show()
code
122248046/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum()
code
122248046/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) popular_cities = df['City'].value_counts()[:10] popular_country = df['Country'].value_counts()[:10] transport_counts = df['Transportation type'].value_counts()[:5] transport_counts.plot.pie(labels=transport_counts.index.tolist(), autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.title('Transportation Types') plt.show()
code
122248046/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum()
code
122248046/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) duractions_count = df['Duration (days)'].value_counts().idxmax() print('Most common travel duration is', duractions_count, 'days.')
code
122248046/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import plotly.express as px from plotly.offline import iplot import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122248046/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0]
code
122248046/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df = df.drop('Destination', axis=1) popular_cities = df['City'].value_counts()[:10] popular_country = df['Country'].value_counts()[:10] popular_country.plot.bar() plt.title('10 most popular travel countries') plt.xlabel('Countries') plt.ylabel('Trips')
code
122248046/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/traveler-trip-data/Travel details dataset.csv') df.isnull().sum() df.dropna(inplace=True) df.isnull().sum() df.shape[0] df.info()
code