path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129014537/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129014537/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94m') print(train.isna().sum().sort_values(ascending=False))
code
129014537/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.describe()
code
129014537/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.head()
code
33102708/cell_4
[ "image_output_5.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt def print_files(): for dirname,_,filname in os.walk('..../kaggle/input'): for filename in filenames: print(os.path.join(dirname,filename)) PATH=('../kaggle/input/mp/architecture/MPLA Architecture_png') image(PATH) fig=plt.figure() ax1=fig.add_subplot(axes,row,column) columns =[confirmed,criticals/fatals,recovered,deaths] weeks=x_axes x=weeks x=[0,1,2,3,4,20,7,5] columns=[values] values =[0,10,20,30,80000,40000,20000,10000,1000] y_axes=values y=y_axes ax1.pt(x,y) fig=plt.fig() ax1=fig.subplots() ax.plot(x,y) fig=plt.figure(figsize+(15,15)) ax=fig.add_subplot() ax.plot(x,color=red,alpha=0.5) plt.xlim(x.min()*1.5,x.max()*1.5) plt.ylim(c.min()*1.5,c.max()*1.5) plt.scatter(x,50,color=green,alpha=0.5) plt.annotate((x_axes,y_axes),fontsize=16) plt.show() #Merge all the csv's/concatenate all the csv's #Write the concatenate csv's into a single csv def value (last_update): last_update = 3/30/2020 for value in ('lastupdate'): columns =['Total_confirmed_cases,(Criticals_cases/Fatals_cases),Recovered_cases,Deaths_cases'] Total_confirmed_cases =65 Recovered_cases=64 Deaths_cases=1 weeks='x_axes' x=weeks x=[0,1,2,3,4,20,7,5] columns=['values'] values =[0,10,20,30,80000,40000,20000,10000,1000] y_axes=values y=y_axes 'List.append(value)' print('result') print('List.update(value)') print('List.append(value)') print(['Suspected_cases']) print(['Confirmed_cases']) print(['Critical_cases']) print(['Recovered_cases']) print(['Death_cases']) #UPDATE TOTAL CONFIRMED, RECOVERED, DEATHS, FATAL, SUSPECTED confirmed =('confirmed[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('confirmed_values') Critical_cases = ('Critical_cases[[province/state,last_update],[country/Region]]==Nigeria') print('result') print(values) print('critical/fatal_values') recovered = ('recovered[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('recovered_values') Death_cases= ('death[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('suspected_values') suspected = ('suspected[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('death_values') import matplotlib.pyplot as plt #Renaming column Nigeria_cases = ('Nigerian_cases.rename(column={last_update:confirmed,suspected:suspected,fatal:fatal,recovered:recovered,deaths:deaths)') #Nigeria_cases.Confirmed plt.plot('kind=barh, figsize=(70,30), color=[green, lime], Width=1, rotation=2') plt.title('Total_confirmed_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.suspected plt.plot('kind=barh, figsize=(70,30), color=[purple, lime], Width=1, rotation=2') plt.title('Total_suspected_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.death plt.plot('kind=barh, figsize=(70,30), color=[red, lime], Width=1, rotation=2') plt.title('Total_death_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.recovered plt.plot('kind=barh, figsize=(70,30), color=[magenta,lime], Width=1, rotation=2') plt.title('Total_recovered_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.critical plt.plot('kind=barh, figsize=(70,30), color=[blue, lime], Width=1, rotation=2') plt.title('Total_critical_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() 'df' def values(Today_updates): Today_updates = 4 / 28 / 2020 Today = 'new_update' for value in 'new_update': columns = ['confirmed,criticals/fatals,recovered,deaths'] Total_confirmed_cases = 1532 deaths = 44 weeks = 'x_axes' x = weeks columns = ['Total_confirmed_cases,(Criticals_cases/Fatals_cases),Recovered_cases,Deaths_cases'] Total_confirmed_cases = 65 Recovered_cases = 64 Deaths_cases = 1 weeks = 'x_axes' x = weeks x = [0, 1, 2, 3, 4, 20, 7, 5] columns = ['values'] values = [0, 10, 20, 30, 100000, 40000, 20000, 10000, 1000] y_axes = values y = y_axes 'List.append(value)' print('result') print('List.update(value)') print('List.append(value)') print(['Suspected_cases']) print(['Confirmed_cases']) print(['Critical_cases']) print(['Recovered_cases']) print(['Death_cases']) confirmed = 'confirmed[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('confirmed_values') Critical_cases = 'Critical_cases[[province/state,last_update],[country/Region]]==Nigeria' print('result') print(values) print('critical/fatal_values') recovered = 'recovered[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('recovered_values') Death_cases = 'death[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('suspected_values') suspected = 'suspected[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('death_values') import matplotlib.pyplot as plt Nigeria_cases = 'Nigerian_cases.rename(column={last_update:confirmed,suspected:suspected,fatal:fatal,recovered:recovered,deaths:deaths)' plt.plot('kind=barh, figsize=(70,30), color=[green, lime], Width=1, rotation=2') plt.title('Total_confirmed_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[purple, lime], Width=1, rotation=2') plt.title('Total_suspected_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[red, lime], Width=1, rotation=2') plt.title('Total_death_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[magenta,lime], Width=1, rotation=2') plt.title('Total_recovered_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[blue, lime], Width=1, rotation=2') plt.title('Total_critical_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() 'df'
code
33102708/cell_2
[ "text_plain_output_1.png" ]
request = 'request.get(http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/confirmed.csv)' request = 'download' download = '....../input/http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/confirmed.csv' df = 'download' print(df) request = 'request.get(http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/recovered.csv)' request = 'download' download = '....../input/http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/recovered.csv' df = 'download' print(df) request = 'request.get(http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/fatal.csv)' request = 'download' download = '....../input/http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/fatal.csv' df = 'download' print(df) request = 'request.get(http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/death.csv)' request = 'download' download = '....../input/http://raw.githubusercontent.com/CSSEGIS.SandData/COVID-19/master/cssc_COVID-19/death.csv' df = 'download' print(df) request = 'request.get(http://kaggle /corona_global_forecasting/kernel_COVID-19/submission_csv_file.csv)' request = 'download' download = '....../input/http://kaggle /corona_global_forecasting/kernel_COVID-19/submission_csv_file.csv' df = 'download' print(df)
code
33102708/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
from scipy.signal import find_peaks import matplotlib.pyplot as plt import cmath import os.path import scipy as integrate import numpy as np import pandas as pd from pandas import DataFrame as df import pywaffle import joypy from dateutil.parser import parse
code
33102708/cell_3
[ "image_output_5.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt def print_files(): for dirname, _, filname in os.walk('..../kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) PATH = '../kaggle/input/mp/architecture/MPLA Architecture_png' image(PATH) fig = plt.figure() ax1 = fig.add_subplot(axes, row, column) columns = [confirmed, criticals / fatals, recovered, deaths] weeks = x_axes x = weeks x = [0, 1, 2, 3, 4, 20, 7, 5] columns = [values] values = [0, 10, 20, 30, 80000, 40000, 20000, 10000, 1000] y_axes = values y = y_axes ax1.pt(x, y) fig = plt.fig() ax1 = fig.subplots() ax.plot(x, y) fig = plt.figure(figsize + (15, 15)) ax = fig.add_subplot() ax.plot(x, color=red, alpha=0.5) plt.xlim(x.min() * 1.5, x.max() * 1.5) plt.ylim(c.min() * 1.5, c.max() * 1.5) plt.scatter(x, 50, color=green, alpha=0.5) plt.annotate((x_axes, y_axes), fontsize=16) plt.show() def value(last_update): last_update = 3 / 30 / 2020 for value in 'lastupdate': columns = ['Total_confirmed_cases,(Criticals_cases/Fatals_cases),Recovered_cases,Deaths_cases'] Total_confirmed_cases = 65 Recovered_cases = 64 Deaths_cases = 1 weeks = 'x_axes' x = weeks x = [0, 1, 2, 3, 4, 20, 7, 5] columns = ['values'] values = [0, 10, 20, 30, 80000, 40000, 20000, 10000, 1000] y_axes = values y = y_axes 'List.append(value)' print('result') print('List.update(value)') print('List.append(value)') print(['Suspected_cases']) print(['Confirmed_cases']) print(['Critical_cases']) print(['Recovered_cases']) print(['Death_cases']) confirmed = 'confirmed[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('confirmed_values') Critical_cases = 'Critical_cases[[province/state,last_update],[country/Region]]==Nigeria' print('result') print(values) print('critical/fatal_values') recovered = 'recovered[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('recovered_values') Death_cases = 'death[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('suspected_values') suspected = 'suspected[[province/state, last_update],[country/Region]]==Nigeria' print('result') print(values) print('death_values') import matplotlib.pyplot as plt Nigeria_cases = 'Nigerian_cases.rename(column={last_update:confirmed,suspected:suspected,fatal:fatal,recovered:recovered,deaths:deaths)' plt.plot('kind=barh, figsize=(70,30), color=[green, lime], Width=1, rotation=2') plt.title('Total_confirmed_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[purple, lime], Width=1, rotation=2') plt.title('Total_suspected_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[red, lime], Width=1, rotation=2') plt.title('Total_death_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[magenta,lime], Width=1, rotation=2') plt.title('Total_recovered_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() plt.plot('kind=barh, figsize=(70,30), color=[blue, lime], Width=1, rotation=2') plt.title('Total_critical_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() 'df'
code
33102708/cell_5
[ "image_output_5.png", "image_output_4.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt def print_files(): for dirname,_,filname in os.walk('..../kaggle/input'): for filename in filenames: print(os.path.join(dirname,filename)) PATH=('../kaggle/input/mp/architecture/MPLA Architecture_png') image(PATH) fig=plt.figure() ax1=fig.add_subplot(axes,row,column) columns =[confirmed,criticals/fatals,recovered,deaths] weeks=x_axes x=weeks x=[0,1,2,3,4,20,7,5] columns=[values] values =[0,10,20,30,80000,40000,20000,10000,1000] y_axes=values y=y_axes ax1.pt(x,y) fig=plt.fig() ax1=fig.subplots() ax.plot(x,y) fig=plt.figure(figsize+(15,15)) ax=fig.add_subplot() ax.plot(x,color=red,alpha=0.5) plt.xlim(x.min()*1.5,x.max()*1.5) plt.ylim(c.min()*1.5,c.max()*1.5) plt.scatter(x,50,color=green,alpha=0.5) plt.annotate((x_axes,y_axes),fontsize=16) plt.show() #Merge all the csv's/concatenate all the csv's #Write the concatenate csv's into a single csv def value (last_update): last_update = 3/30/2020 for value in ('lastupdate'): columns =['Total_confirmed_cases,(Criticals_cases/Fatals_cases),Recovered_cases,Deaths_cases'] Total_confirmed_cases =65 Recovered_cases=64 Deaths_cases=1 weeks='x_axes' x=weeks x=[0,1,2,3,4,20,7,5] columns=['values'] values =[0,10,20,30,80000,40000,20000,10000,1000] y_axes=values y=y_axes 'List.append(value)' print('result') print('List.update(value)') print('List.append(value)') print(['Suspected_cases']) print(['Confirmed_cases']) print(['Critical_cases']) print(['Recovered_cases']) print(['Death_cases']) #UPDATE TOTAL CONFIRMED, RECOVERED, DEATHS, FATAL, SUSPECTED confirmed =('confirmed[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('confirmed_values') Critical_cases = ('Critical_cases[[province/state,last_update],[country/Region]]==Nigeria') print('result') print(values) print('critical/fatal_values') recovered = ('recovered[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('recovered_values') Death_cases= ('death[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('suspected_values') suspected = ('suspected[[province/state, last_update],[country/Region]]==Nigeria') print('result') print(values) print('death_values') import matplotlib.pyplot as plt #Renaming column Nigeria_cases = ('Nigerian_cases.rename(column={last_update:confirmed,suspected:suspected,fatal:fatal,recovered:recovered,deaths:deaths)') #Nigeria_cases.Confirmed plt.plot('kind=barh, figsize=(70,30), color=[green, lime], Width=1, rotation=2') plt.title('Total_confirmed_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.suspected plt.plot('kind=barh, figsize=(70,30), color=[purple, lime], Width=1, rotation=2') plt.title('Total_suspected_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.death plt.plot('kind=barh, figsize=(70,30), color=[red, lime], Width=1, rotation=2') plt.title('Total_death_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.recovered plt.plot('kind=barh, figsize=(70,30), color=[magenta,lime], Width=1, rotation=2') plt.title('Total_recovered_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() #Nigeria_cases.critical plt.plot('kind=barh, figsize=(70,30), color=[blue, lime], Width=1, rotation=2') plt.title('Total_critical_cases by province/state in Nigeria', size=40) plt.ylabel('province/state', size=30) plt.yticks(size=20) plt.xticks(size=20) plt.show() 'df' def values(Today_updates): Today_updates = 4 / 28 / 2020 Today = 'new_update' for value in 'new_update': columns = ['confirmed,criticals/fatals,recovered,deaths'] Total_confirmed_cases = 1532 deaths = 44 weeks = 'x_axes' x = weeks columns = ['Total_confirmed_cases,(Criticals_cases/Fatals_cases),Recovered_cases,Deaths_cases'] Total_confirmed_cases = 65 Recovered_cases = 64 Deaths_cases = 1 weeks = 'x_axes' x = weeks x = [0, 1, 2, 3, 4, 20, 7, 5] columns = ['values'] values = [0, 10, 20, 30, 100000, 40000, 20000, 10000, 1000] y_axes = values y = y_axes 'List.append(value)' confirmed = 'confirmed[[province/state, last_update],[country/Region]]==Nigeria' Critical_cases = 'Critical_cases[[province/state,last_update],[country/Region]]==Nigeria' recovered = 'recovered[[province/state, last_update],[country/Region]]==Nigeria' Death_cases = 'death[[province/state, last_update],[country/Region]]==Nigeria' suspected = 'suspected[[province/state, last_update],[country/Region]]==Nigeria' import matplotlib.pyplot as plt Nigeria_cases = 'Nigerian_cases.rename(column={last_update:confirmed,suspected:suspected,fatal:fatal,recovered:recovered,deaths:deaths)' plt.yticks(size=20) plt.xticks(size=20) plt.yticks(size=20) plt.xticks(size=20) plt.yticks(size=20) plt.xticks(size=20) plt.yticks(size=20) plt.xticks(size=20) plt.yticks(size=20) plt.xticks(size=20) 'df' import matplotlib.pyplot as plt import numpy as np from pandas import DataFrame as df startdate = 1 / 19 / 20 transmission = 'local_transmission' local_transmission = 3 confirmed_Nigeria = 'confirmed[confirmed[country/region]==Nigeria' confirmed_Nigeria = 'confirmed_Nigeria(group_by(confirmed_Nigeria[region])).sum()' Confirmed_Nigeria_Cases = 'Confirmed_Nigeria_Cases.iloc[0][2:confirmed_Nigeria.shape[1]]' plt.plot('kind=Scattered, figsize=(20,50), color=1, rotation=2') plt.plot('confirmed_Nigeria', color='green', label='confirmed_cases') plt.title('Confirmed_Nigeria overline in Nigeria', size=30) plt.ylabel('Confirmed_cases', size=20) plt.xlabel('Updates', size=20) plt.yticks(rotation=90, size=15) plt.xticks(size=15) plt.plot('Nigeria', color='green', label='Nigeria') plt.show() recovered_Nigeria_cases = 'recovered[recovered[country]==Nigeria' recovered_Nigeria_cases = 'recovered_Nigeria.groupby(recovered_Nigeria[region]).sum()' recovered_Nigeria_cases = 'recovered_Nigeria.iloc[0][2:confirmed_Nigeria.shape[1]]' plt.plot('kind=Scattered, figsize=(20,50), color=1, rotation=2') plt.plot('recovered_Nigeria', color='magenta', label='Recovered_cases') plt.title('Recovered_Nigeria overline in Nigeria', size=30) plt.ylabel('Rcovered_cases', size=20) plt.xlabel('Updates', size=20) plt.yticks(rotation=90, size=15) plt.xticks(size=15) plt.plot('Nigeria', color='magenta', label='Nigeria') plt.show() critical_Nigeria_cases = 'critical[critical[country]==Nigeria' critical_Nigeria_cases_cases = 'critical_Nigeria.groupby(critical_Nigeria[region]).sum()' critical_Nigeria_cases = 'critical_Nigeria.iloc[0][2:critical_Nigeria.shape[1]]' plt.plot('kind=Scattered, figsize=(20,50), color=1, rotation=2') plt.plot('critical_Nigeria', color='blue', label='critical_cases') plt.title('Critical_Nigeria overline in Nigeria', size=30) plt.ylabel('Critical_cases', size=20) plt.xlabel('Updates', size=20) plt.yticks(rotation=90, size=15) plt.xticks(size=15) plt.plot('Nigeria', color='blue', label='Nigeria') plt.show() suspected_Nigeria = 'suspected[suspected[country]==Nigeria' suspected_Nigeria = 'suspected_Nigeria.groupby(suspected_Nigeria[region]).sum()' suspected_Nigeria = 'suspected_Nigeria.iloc[0][2:suspected_Nigeria.shape[1]]' plt.plot('kind=Scattered, figsize=(20,50), color=1, rotation=2') plt.plot('suspected_Nigeria', color='purple', label='Suspected_cases') plt.title('Suspected_Nigeria overline in Nigeria', size=30) plt.ylabel('Suspected_cases', size=20) plt.xlabel('Updates', size=20) plt.yticks(rotation=90, size=15) plt.xticks(size=15) plt.plot('Nigeria', color='purple', label='Nigeria') plt.show() death_Nigeria = 'death[death[country]==Nigeria' Death_Nigeria_Cases = 'death_Nigeria.groupby(death_Nigeria[region]).sum()' Death_Nigeria_cases = 'death_Nigeria.iloc[0][2:confirmed_Nigeria.shape[1]]' plt.plot('kind=Scattered, figsize=(20,50), color=1, rotation=2') plt.plot('Death_Nigeria_Cases', color='red', label='Deaths_cases') plt.title('Death_Nigeria overline in Nigeria', size=30) plt.ylabel('Death_cases', size=20) plt.xlabel('Updates', size=20) plt.yticks(rotation=90, size=15) plt.xticks(size=15) plt.plot('Nigeria', color='red', label='Nigeria') plt.show() 'df'
code
2025278/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression LR = LinearRegression() y = Housetrain2.SalePrice X = Housetrain2.drop('SalePrice', axis=1) LR.fit(X, y)
code
2025278/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Housetrain = pd.read_csv('../input/train.csv') Housetrain.isnull().sum(axis=0) Housetrain1 = Housetrain.dropna(axis=1, how='any') Housetrain1
code
2025278/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression LR = LinearRegression() y = Housetrain2.SalePrice X = Housetrain2.drop('SalePrice', axis=1) LR.fit(X, y) LR.score(X, y) LR
code
2025278/cell_20
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Housetrain = pd.read_csv('../input/train.csv') Housetrain.isnull().sum(axis=0) Housetrain1 = Housetrain.dropna(axis=1, how='any') y = Housetrain2.SalePrice X = Housetrain2.drop('SalePrice', axis=1) le = LabelEncoder() Housetrain2 = Housetrain1.apply(le.fit_transform) Housetrain2.describe().transpose()
code
2025278/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Housetrain = pd.read_csv('../input/train.csv') Housetest = pd.read_csv('../input/test.csv') Housetest.head()
code
2025278/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2025278/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Housetrain = pd.read_csv('../input/train.csv') Housetrain.isnull().sum(axis=0)
code
2025278/cell_16
[ "text_plain_output_1.png" ]
y = Housetrain2.SalePrice X = Housetrain2.drop('SalePrice', axis=1)
code
2025278/cell_22
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression LR = LinearRegression() y = Housetrain2.SalePrice X = Housetrain2.drop('SalePrice', axis=1) LR.fit(X, y) LR.score(X, y)
code
2025278/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Housetrain = pd.read_csv('../input/train.csv') Housetrain.head()
code
34129676/cell_21
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary()
code
34129676/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) print('Training size: {}'.format(train_df.shape)) print('Validation size: {}'.format(valid_df.shape))
code
34129676/cell_34
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') for i in range(0, 15): for x, y in sample_generator: image = x[0] break plt.tight_layout() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr]) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,10)) ax1.plot(hist.history['loss'], color='b', label='Training loss') ax1.plot(hist.history['val_loss'], color='r', label='Validation loss') ax1.set_xticks(np.arange(1, EPOCHS, 1)) ax1.set_yticks(np.arange(0, 1, 0.1)) ax2.plot(hist.history['accuracy'], color='b', label='Training loss') ax2.plot(hist.history['val_accuracy'], color='r', label='Validation loss') ax2.set_xticks(np.arange(1, EPOCHS, 1)) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show() data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/test/' data_dir_test_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_test_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df_test = pd.DataFrame(lists, columns=['image']) df_test['label'] = np.where(df_test['image'].str.contains('LEGO'), 'LEGO', 'Unknown') test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory(directory=data_dir, target_size=(img_width, img_height), color_mode='rgb', batch_size=batch_size, class_mode=None, shuffle=False) test_size = df_test.shape[0]
code
34129676/cell_6
[ "text_html_output_1.png" ]
import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') df['label'].value_counts().plot.bar()
code
34129676/cell_39
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') for i in range(0, 15): for x, y in sample_generator: image = x[0] break plt.tight_layout() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr]) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,10)) ax1.plot(hist.history['loss'], color='b', label='Training loss') ax1.plot(hist.history['val_loss'], color='r', label='Validation loss') ax1.set_xticks(np.arange(1, EPOCHS, 1)) ax1.set_yticks(np.arange(0, 1, 0.1)) ax2.plot(hist.history['accuracy'], color='b', label='Training loss') ax2.plot(hist.history['val_accuracy'], color='r', label='Validation loss') ax2.set_xticks(np.arange(1, EPOCHS, 1)) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show() data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/test/' data_dir_test_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_test_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df_test = pd.DataFrame(lists, columns=['image']) df_test['label'] = np.where(df_test['image'].str.contains('LEGO'), 'LEGO', 'Unknown') test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory(directory=data_dir, target_size=(img_width, img_height), color_mode='rgb', batch_size=batch_size, class_mode=None, shuffle=False) test_size = df_test.shape[0] sample_test = df_test.head(18) sample_test.head() plt.figure(figsize=(10,10)) for index,row in sample_test.iterrows(): image = row['image'] pred = row['label'] img = load_img(data_dir + image) plt.subplot(6,3,index+1) plt.imshow(img) plt.xlabel(pred) plt.tight_layout() plt.show() print(df_test.count) print(df_test['match'].value_counts()) df_test['match'].value_counts().plot.bar()
code
34129676/cell_11
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) valid_df['label'].value_counts().plot.bar()
code
34129676/cell_7
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) plt.subplot(1, 2, 1) plt.title(sample.iloc[0]['label']) plt.imshow(image) image = load_img(data_dir + sample.iloc[1]['image']) plt.subplot(1, 2, 2) plt.title(sample.iloc[1]['label']) plt.imshow(image) plt.show()
code
34129676/cell_18
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') plt.figure(figsize=(12, 12)) for i in range(0, 15): plt.subplot(5, 3, i + 1) for x, y in sample_generator: image = x[0] plt.imshow(image) break plt.tight_layout() plt.show()
code
34129676/cell_15
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb')
code
34129676/cell_38
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') for i in range(0, 15): for x, y in sample_generator: image = x[0] break plt.tight_layout() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr]) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,10)) ax1.plot(hist.history['loss'], color='b', label='Training loss') ax1.plot(hist.history['val_loss'], color='r', label='Validation loss') ax1.set_xticks(np.arange(1, EPOCHS, 1)) ax1.set_yticks(np.arange(0, 1, 0.1)) ax2.plot(hist.history['accuracy'], color='b', label='Training loss') ax2.plot(hist.history['val_accuracy'], color='r', label='Validation loss') ax2.set_xticks(np.arange(1, EPOCHS, 1)) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show() data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/test/' data_dir_test_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_test_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df_test = pd.DataFrame(lists, columns=['image']) df_test['label'] = np.where(df_test['image'].str.contains('LEGO'), 'LEGO', 'Unknown') test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory(directory=data_dir, target_size=(img_width, img_height), color_mode='rgb', batch_size=batch_size, class_mode=None, shuffle=False) test_size = df_test.shape[0] sample_test = df_test.head(18) sample_test.head() plt.figure(figsize=(10, 10)) for index, row in sample_test.iterrows(): image = row['image'] pred = row['label'] img = load_img(data_dir + image) plt.subplot(6, 3, index + 1) plt.imshow(img) plt.xlabel(pred) plt.tight_layout() plt.show()
code
34129676/cell_3
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from sklearn.model_selection import train_test_split from collections import Counter from keras import backend as K from keras import optimizers import pandas as pd import numpy as np import cv2 import matplotlib.pyplot as plt import os
code
34129676/cell_17
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb')
code
34129676/cell_31
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') for i in range(0, 15): for x, y in sample_generator: image = x[0] break plt.tight_layout() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr]) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10)) ax1.plot(hist.history['loss'], color='b', label='Training loss') ax1.plot(hist.history['val_loss'], color='r', label='Validation loss') ax1.set_xticks(np.arange(1, EPOCHS, 1)) ax1.set_yticks(np.arange(0, 1, 0.1)) ax2.plot(hist.history['accuracy'], color='b', label='Training loss') ax2.plot(hist.history['val_accuracy'], color='r', label='Validation loss') ax2.set_xticks(np.arange(1, EPOCHS, 1)) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show()
code
34129676/cell_14
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb')
code
34129676/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) train_df['label'].value_counts().plot.bar()
code
34129676/cell_27
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr])
code
34129676/cell_37
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten, Activation from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, load_img from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import os import pandas as pd data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/train/' data_dir_train_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_train_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/train/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df = pd.DataFrame(lists, columns=['image']) df['label'] = np.where(df['image'].str.contains('LEGO'), 'LEGO', 'Unknown') sample = df.sample(2) image = load_img(data_dir + sample.iloc[0]['image']) image = load_img(data_dir + sample.iloc[1]['image']) train_df, valid_df = train_test_split(df, test_size=0.2, random_state=42) img_width, img_height = (204, 204) batch_size = 64 num_classes = 2 input_shape = (img_width, img_height, 3) EPOCHS = 10 train_datagen = ImageDataGenerator(rotation_range=45, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.1, height_shift_range=0.1, rescale=1.0 / 255) train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') validation_datagen = ImageDataGenerator(rescale=1.0 / 255) validation_generator = validation_datagen.flow_from_dataframe(dataframe=valid_df, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') sample = train_df.sample(1, random_state=42) sample_generator = train_datagen.flow_from_dataframe(dataframe=sample, directory=data_dir, x_col='image', y_col='label', target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='rgb') for i in range(0, 15): for x, y in sample_generator: image = x[0] break plt.tight_layout() model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy']) model.summary() earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=15, mode='min', verbose=1) checkpointer = ModelCheckpoint(filepath='/kaggle/working/models/model.{epoch:02d}-{val_loss:.6f}.hdf5', verbose=1, save_best_only=True, save_weights_only=True) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=10, min_lr=0, verbose=1) hist = model.fit_generator(train_generator, steps_per_epoch=np.ceil(len(train_df) / batch_size), epochs=EPOCHS, validation_data=validation_generator, validation_steps=np.ceil(len(valid_df) / batch_size), workers=8, max_queue_size=15, callbacks=[earlystopper, checkpointer, reduce_lr]) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10,10)) ax1.plot(hist.history['loss'], color='b', label='Training loss') ax1.plot(hist.history['val_loss'], color='r', label='Validation loss') ax1.set_xticks(np.arange(1, EPOCHS, 1)) ax1.set_yticks(np.arange(0, 1, 0.1)) ax2.plot(hist.history['accuracy'], color='b', label='Training loss') ax2.plot(hist.history['val_accuracy'], color='r', label='Validation loss') ax2.set_xticks(np.arange(1, EPOCHS, 1)) legend = plt.legend(loc='best', shadow=True) plt.tight_layout() plt.show() data_dir = '/kaggle/input/lego-vs-unknown-cropped/VIA_dataset_cropped/test/' data_dir_test_lego = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/LEGO' test_lego = ['LEGO/' + f for f in os.listdir(data_dir_test_lego)] data_dir_test_Unknown = '/kaggle/input//lego-vs-unknown-cropped/VIA_dataset_cropped/test/Unknown' test_Unknown = ['Unknown/' + f for f in os.listdir(data_dir_test_Unknown)] lists = test_lego + test_Unknown df_test = pd.DataFrame(lists, columns=['image']) df_test['label'] = np.where(df_test['image'].str.contains('LEGO'), 'LEGO', 'Unknown') test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory(directory=data_dir, target_size=(img_width, img_height), color_mode='rgb', batch_size=batch_size, class_mode=None, shuffle=False) test_size = df_test.shape[0] df_test
code
129013037/cell_42
[ "image_output_1.png" ]
from mlxtend.plotting import plot_decision_regions from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) from mlxtend.plotting import plot_decision_regions fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); centers = [[1, 1], [-1, -1], [1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); scores = [] for k in range(1, 11): clf = KNeighborsClassifier(k) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) scores.append(score) plt.figure(figsize=(12, 3)) sns.lineplot(x=map(str, range(1, 11)), y=scores, marker='o', markersize=10)
code
129013037/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] sns.scatterplot(x=X_train[:, 0], y=X_train[:, 1], hue=y_train, palette='viridis') sns.scatterplot(x=X_test[:, 0], y=X_test[:, 1], hue=y_test, palette='rocket_r')
code
129013037/cell_9
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum()
code
129013037/cell_25
[ "text_plain_output_1.png" ]
from sklearn.inspection import DecisionBoundaryDisplay from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.inspection import DecisionBoundaryDisplay disp = DecisionBoundaryDisplay.from_estimator(clf, X_test, response_method='predict', alpha=0.7) disp.ax_.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolor='yellow')
code
129013037/cell_4
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['Protein_(g)'])
code
129013037/cell_34
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] centers = [[1, 1], [-1, -1], [1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] y
code
129013037/cell_30
[ "image_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129013037/cell_44
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) scores = [] for k in range(1, 11): clf = KNeighborsClassifier(k) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) scores.append(score) clf = KNeighborsClassifier(metric='manhattan') clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129013037/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train sns.boxplot(x=data['Protein_(g)'])
code
129013037/cell_40
[ "text_plain_output_1.png" ]
from mlxtend.plotting import plot_decision_regions from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) from mlxtend.plotting import plot_decision_regions fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2)
code
129013037/cell_39
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129013037/cell_48
[ "image_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier params = {'n_neighbors': range(1, 30), 'metric': ['l1', 'l2']} best_clf = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=params) best_clf.fit(X_train, y_train) best_clf.score(X_test, y_test)
code
129013037/cell_41
[ "image_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) scores = [] for k in range(1, 11): clf = KNeighborsClassifier(k) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(k, score) scores.append(score)
code
129013037/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.describe()
code
129013037/cell_52
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier params = {'n_neighbors': range(1, 30), 'metric': ['l1', 'l2']} best_clf = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=params) best_clf.fit(X_train, y_train) best_clf.score(X_test, y_test) best_clf.best_params_ y_best_clf = best_clf.predict(X_test) print(classification_report(y_test, y_best_clf))
code
129013037/cell_1
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train
code
129013037/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] train.info()
code
129013037/cell_49
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier params = {'n_neighbors': range(1, 30), 'metric': ['l1', 'l2']} best_clf = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=params) best_clf.fit(X_train, y_train) best_clf.score(X_test, y_test) best_clf.best_params_
code
129013037/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=y)
code
129013037/cell_51
[ "image_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) scores = [] for k in range(1, 11): clf = KNeighborsClassifier(k) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) scores.append(score) clf = KNeighborsClassifier(metric='manhattan') clf.fit(X_train, y_train) clf.score(X_test, y_test) y_clf = clf.predict(X_test) print(classification_report(y_test, y_clf))
code
129013037/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from mlxtend.plotting import plot_decision_regions from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) from mlxtend.plotting import plot_decision_regions fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2)
code
129013037/cell_8
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.info()
code
129013037/cell_16
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] y
code
129013037/cell_38
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] centers = [[1, 1], [-1, -1], [1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] sns.scatterplot(x=X_train[:, 0], y=X_train[:, 1], hue=y_train) sns.scatterplot(x=X_test[:, 0], y=X_test[:, 1], hue=y_test, palette='tab10')
code
129013037/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum()
code
129013037/cell_31
[ "image_output_1.png" ]
from mlxtend.plotting import plot_decision_regions from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test) from mlxtend.plotting import plot_decision_regions fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2); clf = KNeighborsClassifier(2) clf.fit(X_train, y_train) clf.score(X_test, y_test) fig, ax = plt.subplots(figsize=(10, 8)) plot_decision_regions(X_test, y_test, clf=clf, legend=2)
code
129013037/cell_22
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129013037/cell_10
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() train['Ash_(g)'] = train['Ash_(g)'].fillna(train['Ash_(g)'].median()) train['Water_(g)'] = train['Water_(g)'].fillna(train['Water_(g)'].median()) train['Fiber_TD_(g)'] = train['Fiber_TD_(g)'].fillna(train['Fiber_TD_(g)'].median()) train['Sugar_Tot_(g)'] = train['Sugar_Tot_(g)'].fillna(train['Sugar_Tot_(g)'].median()) train['Calcium_(mg)'] = train['Calcium_(mg)'].fillna(train['Calcium_(mg)'].median()) train['Iron_(mg)'] = train['Iron_(mg)'].fillna(train['Iron_(mg)'].median()) train['Magnesium_(mg)'] = train['Magnesium_(mg)'].fillna(train['Magnesium_(mg)'].median()) train['Phosphorus_(mg)'] = train['Phosphorus_(mg)'].fillna(train['Phosphorus_(mg)'].median()) train['Potassium_(mg)'] = train['Potassium_(mg)'].fillna(train['Potassium_(mg)'].median()) train['Sodium_(mg)'] = train['Sodium_(mg)'].fillna(train['Sodium_(mg)'].median()) train['Zinc_(mg)'] = train['Zinc_(mg)'].fillna(train['Zinc_(mg)'].median()) train['Copper_mg)'] = train['Copper_mg)'].fillna(train['Copper_mg)'].median()) train['Manganese_(mg)'] = train['Manganese_(mg)'].fillna(train['Manganese_(mg)'].median()) train['Selenium_(µg)'] = train['Selenium_(µg)'].fillna(train['Selenium_(µg)'].median()) train['Vit_C_(mg)'] = train['Vit_C_(mg)'].fillna(train['Vit_C_(mg)'].median()) train['Thiamin_(mg)'] = train['Thiamin_(mg)'].fillna(train['Thiamin_(mg)'].median()) train['Riboflavin_(mg)'] = train['Riboflavin_(mg)'].fillna(train['Riboflavin_(mg)'].median()) train['Niacin_(mg)'] = train['Niacin_(mg)'].fillna(train['Niacin_(mg)'].median()) train['Panto_Acid_mg)'] = train['Panto_Acid_mg)'].fillna(train['Panto_Acid_mg)'].median()) train['Vit_B6_(mg)'] = train['Vit_B6_(mg)'].fillna(train['Vit_B6_(mg)'].median()) train['Folate_Tot_(µg)'] = train['Folate_Tot_(µg)'].fillna(train['Folate_Tot_(µg)'].median()) train['Folic_Acid_(µg)'] = train['Folic_Acid_(µg)'].fillna(train['Folic_Acid_(µg)'].median()) train['Food_Folate_(µg)'] = train['Food_Folate_(µg)'].fillna(train['Food_Folate_(µg)'].median()) train['Folate_DFE_(µg)'] = train['Folate_DFE_(µg)'].fillna(train['Folate_DFE_(µg)'].median()) train['Choline_Tot_ (mg)'] = train['Choline_Tot_ (mg)'].fillna(train['Choline_Tot_ (mg)'].median()) train['Vit_B12_(µg)'] = train['Vit_B12_(µg)'].fillna(train['Vit_B12_(µg)'].median()) train['Vit_A_IU'] = train['Vit_A_IU'].fillna(train['Vit_A_IU'].median()) train['Vit_A_RAE'] = train['Vit_A_RAE'].fillna(train['Vit_A_RAE'].median()) train['Retinol_(µg)'] = train['Retinol_(µg)'].fillna(train['Retinol_(µg)'].median()) train['Alpha_Carot_(µg)'] = train['Alpha_Carot_(µg)'].fillna(train['Alpha_Carot_(µg)'].median()) train['Beta_Carot_(µg)'] = train['Beta_Carot_(µg)'].fillna(train['Beta_Carot_(µg)'].median()) train['Beta_Crypt_(µg)'] = train['Beta_Crypt_(µg)'].fillna(train['Beta_Crypt_(µg)'].median()) train['Lycopene_(µg)'] = train['Lycopene_(µg)'].fillna(train['Lycopene_(µg)'].median()) train['Lut+Zea_ (µg)'] = train['Lut+Zea_ (µg)'].fillna(train['Lut+Zea_ (µg)'].median()) train['Vit_E_(mg)'] = train['Vit_E_(mg)'].fillna(train['Vit_E_(mg)'].median()) train['Vit_D_µg'] = train['Vit_D_µg'].fillna(train['Vit_D_µg'].median()) train['Vit_D_IU'] = train['Vit_D_IU'].fillna(train['Vit_D_IU'].median()) train['Vit_K_(µg)'] = train['Vit_K_(µg)'].fillna(train['Vit_K_(µg)'].median()) train['FA_Sat_(g)'] = train['FA_Sat_(g)'].fillna(train['FA_Sat_(g)'].median()) train['FA_Mono_(g)'] = train['FA_Mono_(g)'].fillna(train['FA_Mono_(g)'].median()) train['FA_Poly_(g)'] = train['FA_Poly_(g)'].fillna(train['FA_Poly_(g)'].median()) train['Cholestrl_(mg)'] = train['Cholestrl_(mg)'].fillna(train['Cholestrl_(mg)'].median()) train['GmWt_1'] = train['GmWt_1'].fillna(train['GmWt_1'].median()) train['GmWt_2'] = train['GmWt_2'].fillna(train['GmWt_2'].median()) train['Refuse_Pct'] = train['Refuse_Pct'].fillna(train['Refuse_Pct'].median())
code
129013037/cell_36
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd import seaborn as sns import seaborn as sns import seaborn as sns import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import seaborn as sns train = pd.read_excel('/kaggle/input/products/ABBREV_with_CLASS.xlsx') train train.isnull().sum() import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train Q1 = train['Protein_(g)'].quantile(0.25) Q3 = train['Protein_(g)'].quantile(0.75) IQR = Q3 - Q1 train = train[(train['Protein_(g)'] >= Q1 - 1.5 * IQR) & (train['Protein_(g)'] <= Q3 + 1.5 * IQR)] import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = train from sklearn.preprocessing import LabelEncoder labelencoder_Shrt_Desc = LabelEncoder() train['Shrt_Desc'] = labelencoder_Shrt_Desc.fit_transform(train['Shrt_Desc']) labelencoder_GmWt_Desc1 = LabelEncoder() train['GmWt_Desc1'] = labelencoder_GmWt_Desc1.fit_transform(train['GmWt_Desc1']) labelencoder_GmWt_Desc2 = LabelEncoder() train['GmWt_Desc2'] = labelencoder_GmWt_Desc2.fit_transform(train['GmWt_Desc2']) train.isnull().sum() import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() centers = [[1, 1], [-1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] centers = [[1, 1], [-1, -1], [1, -1]] X = train.drop('CLASS', axis=1) y = train['CLASS'] sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=y)
code
129024934/cell_21
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df
code
129024934/cell_9
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser1
code
129024934/cell_25
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A']
code
129024934/cell_4
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data)
code
129024934/cell_57
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1) df3.dropna() df3.dropna(thresh=2) df3
code
129024934/cell_56
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1) df3.dropna() df3.dropna(thresh=2)
code
129024934/cell_30
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] booldf = df > 0 booldf
code
129024934/cell_33
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df[df['W'] > 0]['X']
code
129024934/cell_44
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1']
code
129024934/cell_55
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1) df3.dropna()
code
129024934/cell_6
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d)
code
129024934/cell_39
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df.set_index('States') df
code
129024934/cell_26
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1]
code
129024934/cell_48
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2] dfnew.loc['G1'].loc[2]['B'] dfnew.xs('G1')
code
129024934/cell_41
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) hier_index
code
129024934/cell_54
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1)
code
129024934/cell_11
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) ser2
code
129024934/cell_19
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df[['W', 'Z']]
code
129024934/cell_50
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2] dfnew.loc['G1'].loc[2]['B'] dfnew.xs('G1') dfnew.index.names = ['Groups', 'Num'] dfnew
code
129024934/cell_7
[ "text_html_output_1.png" ]
import numpy as np # linear algebra labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} d
code
129024934/cell_45
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2]
code
129024934/cell_18
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) print(type(df['W'])) print(type(df))
code
129024934/cell_32
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df['W'] > 0
code
129024934/cell_51
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2] dfnew.loc['G1'].loc[2]['B'] dfnew.xs('G1') dfnew.index.names = ['Groups', 'Num'] dfnew.xs(1, level='Num')
code
129024934/cell_59
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1) df3.dropna() df3.dropna(thresh=2) df3.fillna(value='X') df3['A'].fillna(value=df3['A'].mean())
code
129024934/cell_58
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) np.random.seed(101) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) df3 = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]} df3 = pd.DataFrame(df3) df3 df3.dropna(axis=1) df3.dropna() df3.dropna(thresh=2) df3.fillna(value='X')
code
129024934/cell_28
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']]
code
129024934/cell_16
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df
code
129024934/cell_38
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df.set_index('States')
code
129024934/cell_47
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2] dfnew.loc['G1'].loc[2]['B'] dfnew
code
129024934/cell_17
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df['W']
code
129024934/cell_35
[ "text_html_output_1.png" ]
states = 'CA NY WY OR'.split() states
code
129024934/cell_43
[ "text_html_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew
code
129024934/cell_31
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) df.drop('new', axis=1, inplace=True) df df.drop('E', axis=0, inplace=True) df.loc['A'] df.iloc[1] df.loc['B', 'Y'] df.loc[['A', 'B'], ['W', 'Y']] df['W']
code
129024934/cell_46
[ "text_plain_output_1.png" ]
from numpy.random import randn import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'a': 10, 'b': 20, 'c': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=labels) pd.Series(d) ser1 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'USSR', 'Japan']) ser2 = pd.Series([1, 2, 3, 4], ['USA', 'Germany', 'Italy', 'Japan']) df = pd.DataFrame(randn(5, 4), ['A', 'B', 'C', 'D', 'E'], ['W', 'X', 'Y', 'Z']) outside = ['G1', 'G1', 'G1', 'G2', 'G2', 'G2'] inside = [1, 2, 3, 1, 2, 3] hier_index = list(zip(outside, inside)) hier_index = pd.MultiIndex.from_tuples(hier_index) dfnew = pd.DataFrame(randn(6, 2), hier_index, ['A', 'B']) dfnew.loc['G1'] dfnew.loc['G1'].loc[2] dfnew.loc['G1'].loc[2]['B']
code