path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73075873/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] plt.figure(figsize=(8, 8)) plt.pie([Flag0, Flag1], labels=['Non-Risk:\n%d total' % Flag0, 'Risk:\n%d total' % Flag1], autopct='%1.2f%%')
code
73075873/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.xticks(rotation=60) data['Age_group'] = pd.qcut(data.Age, 5) g = sns.FacetGrid(data=data, row='House_Ownership', col='Married/Single', height=5, aspect=1.5) g.map_dataframe(sns.barplot, x='Age_group', y='Risk_Flag', ci=None) g.set_xticklabels(rotation=60)
code
73075873/cell_32
[ "text_plain_output_1.png" ]
from imblearn.combine import SMOTETomek from imblearn.over_sampling import ADASYN from imblearn.under_sampling import TomekLinks from imblearn.over_sampling import ADASYN ada = ADASYN(random_state=42) X_ada, y_ada = ada.fit_resample(X_train, y_train) from imblearn.combine import SMOTETomek from imblearn.under_sampling import TomekLinks print('Initial size:', X_train.shape) smt = SMOTETomek(tomek=TomekLinks(sampling_strategy='majority')) X_smt, y_smt = smt.fit_resample(X_train, y_train) print('Resampled size:', X_smt.shape)
code
73075873/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.xticks(rotation=60) sns.displot(x='Age', data=data, height=8, aspect=1.5, hue='Risk_Flag', bins=20)
code
73075873/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') data.info()
code
73075873/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.xticks(rotation=60) sns.catplot(x='Experience', y='Income', data=data, kind='violin', height=8, aspect=1.6, palette='deep')
code
73075873/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g = sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60)
code
73075873/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.ensemble import BalancedRandomForestClassifier from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, plot_roc_curve, plot_confusion_matrix import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.xticks(rotation=60) from imblearn.ensemble import BalancedRandomForestClassifier from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, plot_roc_curve, plot_confusion_matrix brf = BalancedRandomForestClassifier().fit(X_train, y_train) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6)) plt.title('asfafasf') ax1.set_title('Confusion matrix (Balanced RF)') ax2.set_title('ROC curve (Balanced RF)') ax2.plot([0, 1], [0, 1], 'g--', alpha=0.25) plot_confusion_matrix(brf, X_test, y_test, cmap=plt.cm.Blues, normalize='true', ax=ax1) plot_roc_curve(brf, X_test, y_test, ax=ax2) y_pred = brf.predict(X_test) acc_brf = accuracy_score(y_test, y_pred) f1_brf = f1_score(y_test, y_pred) roc_brf = roc_auc_score(y_test, y_pred) print('Roc_Auc score: %.3f' % roc_brf)
code
73075873/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 12)) plt.xticks(rotation=60) sns.barplot(x='STATE', y='Risk_Flag', data=data, palette='deep')
code
73075873/cell_36
[ "text_plain_output_1.png" ]
from imblearn.combine import SMOTETomek from imblearn.ensemble import BalancedRandomForestClassifier from imblearn.over_sampling import ADASYN from imblearn.under_sampling import TomekLinks from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, plot_roc_curve, plot_confusion_matrix import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns data = pd.read_csv('/kaggle/input/loan-prediction-based-on-customer-behavior/Training Data.csv') import matplotlib.pyplot as plt total = list(data.Risk_Flag.value_counts()) Flag0 = total[0] Flag1 = total[1] import seaborn as sns g=sns.catplot(x='STATE', data=data, height=12, aspect=1.5, kind='count', palette='deep') g.set_xticklabels(rotation=60) import seaborn as sns import matplotlib.pyplot as plt plt.xticks(rotation=60) from imblearn.ensemble import BalancedRandomForestClassifier from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, plot_roc_curve, plot_confusion_matrix brf=BalancedRandomForestClassifier().fit(X_train, y_train) fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (16,6)) plt.title('asfafasf') ax1.set_title('Confusion matrix (Balanced RF)') ax2.set_title('ROC curve (Balanced RF)') ax2.plot([0,1], [0,1], 'g--', alpha=0.25) plot_confusion_matrix(brf, X_test, y_test, cmap=plt.cm.Blues, normalize='true', ax=ax1) plot_roc_curve(brf, X_test, y_test, ax=ax2) y_pred = brf.predict(X_test) acc_brf=accuracy_score(y_test, y_pred) f1_brf=f1_score(y_test, y_pred) roc_brf=roc_auc_score(y_test, y_pred) print('Roc_Auc score: %.3f' %roc_brf) from imblearn.over_sampling import ADASYN ada = ADASYN(random_state=42) X_ada, y_ada = ada.fit_resample(X_train, y_train) from sklearn.ensemble import RandomForestClassifier rf_ada=RandomForestClassifier().fit(X_ada, y_ada) fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (16,6)) ax1.set_title('Confusion matrix (RF and ADASYN)') ax2.set_title('ROC curve (RF and ADASYN)') ax2.plot([0,1], [0,1], 'g--', alpha=0.25) plot_confusion_matrix(rf_ada,X_test, y_test, cmap=plt.cm.Blues, normalize='true', ax=ax1) plot_roc_curve(rf_ada, X_test, y_test, ax=ax2) y_pred = rf_ada.predict(X_test) acc_ada=accuracy_score(y_test, y_pred) f1_ada=f1_score(y_test, y_pred) roc_ada=roc_auc_score(y_test, y_pred) print('Roc_Auc score: %.3f' %roc_ada) from imblearn.combine import SMOTETomek from imblearn.under_sampling import TomekLinks smt = SMOTETomek(tomek=TomekLinks(sampling_strategy='majority')) X_smt, y_smt = smt.fit_resample(X_train, y_train) rf_smt=RandomForestClassifier().fit(X_smt, y_smt) fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (16,6)) ax1.set_title('Confusion matrix (RF and SMOTETomek)') ax2.set_title('ROC curve (RF and SMOTETomek)') ax2.plot([0,1], [0,1], 'g--', alpha=0.25) plot_confusion_matrix(rf_smt,X_test, y_test, cmap=plt.cm.Blues, normalize='true', ax=ax1) plot_roc_curve(rf_smt, X_test, y_test, ax=ax2) y_pred = rf_smt.predict(X_test) acc_smt=accuracy_score(y_test, y_pred) f1_smt=f1_score(y_test, y_pred) roc_smt=roc_auc_score(y_test, y_pred) print('Roc_Auc score: %.3f' %roc_smt) y_prob = rf_smt.predict_proba(X_test) threshold = [x for x in np.linspace(0.5, 0.95, 10)] roc = [] acc = [] for t in threshold: y_t = [0 if x[0] > t else 1 for x in y_prob] roc.append(roc_auc_score(y_test, y_t)) acc.append(accuracy_score(y_test, y_t)) plt.figure(figsize=(12, 8)) plt.title('ROC AUC and Accuracy vs. Threshold') plt.plot(threshold, roc, label='ROC AUC Score') plt.plot(threshold, acc, label='Accuracy Score') plt.xlabel('Probabability threshold for non-risk class') plt.ylabel('Score') plt.legend(loc='lower left')
code
105186160/cell_13
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') im = Image.open(working_path / 'train' / '0' / '3002.png') im
code
105186160/cell_9
[ "image_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') input_path = Path('/kaggle/input') train_image_paths = sorted(input_path.rglob('train/*.png')) test_image_paths = sorted(input_path.rglob('test/*.png')) train_image_paths
code
105186160/cell_2
[ "image_output_1.png" ]
!pip install -Uqq fastai
code
105186160/cell_11
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') input_path = Path('/kaggle/input') train_image_paths = sorted(input_path.rglob('train/*.png')) test_image_paths = sorted(input_path.rglob('test/*.png')) try: for image_path in train_image_paths: if '_1' in image_path.stem: with (working_path / 'train' / '1' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) else: with (working_path / 'train' / '0' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) except FileExistsError: print('Training images have already been moved.') else: print('Training images moved.')
code
105186160/cell_1
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105186160/cell_7
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') working_path / folders[0] / labels[0]
code
105186160/cell_18
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') im = Image.open(working_path / 'train' / '0' / '3002.png') im training_images = get_image_files(working_path / 'train') training_images image = Image.open(training_images[1]) image testing_images = get_image_files(working_path / 'test') len(testing_images) Image.open(testing_images[48])
code
105186160/cell_15
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') training_images = get_image_files(working_path / 'train') training_images
code
105186160/cell_16
[ "image_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') im = Image.open(working_path / 'train' / '0' / '3002.png') im training_images = get_image_files(working_path / 'train') training_images image = Image.open(training_images[1]) image
code
105186160/cell_17
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') testing_images = get_image_files(working_path / 'test') len(testing_images)
code
105186160/cell_14
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') input_path = Path('/kaggle/input') train_image_paths = sorted(input_path.rglob('train/*.png')) test_image_paths = sorted(input_path.rglob('test/*.png')) try: for image_path in train_image_paths: if '_1' in image_path.stem: with (working_path / 'train' / '1' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) else: with (working_path / 'train' / '0' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) except FileExistsError: try: for image_path in test_image_paths: if '_1' in image_path.stem: with (working_path / 'test' / '1' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) else: with (working_path / 'test' / '0' / image_path.name).open(mode='xb') as f: f.write(image_path.read_bytes()) except FileExistsError: print('Testing images have already been moved.') else: print('Testing images moved.')
code
105186160/cell_12
[ "text_plain_output_1.png" ]
working_path = Path.cwd() folders = ('train', 'test') labels = ('0', '1') (working_path / 'train' / '0' / '3002.png').exists()
code
74041457/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') (Xtrain.shape, test.shape)
code
74041457/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') Xtrain.head()
code
74041457/cell_11
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler import pandas as pd Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') (Xtrain.shape, test.shape) y = Xtrain.claim Xtrain = Xtrain.drop(['id', 'claim'], axis=1) test_id = test.id test = test.drop('id', axis=1) ss = StandardScaler() ss.fit(Xtrain) Xtrain = ss.transform(Xtrain) test = ss.transform(test) pca = PCA(0.95) pca.fit(Xtrain) Xtrain = pca.transform(Xtrain) test = pca.transform(test) (Xtrain.shape, test.shape)
code
74041457/cell_1
[ "text_plain_output_1.png" ]
import optuna import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import optuna from optuna.samplers import TPESampler import catboost from xgboost import XGBClassifier from sklearn.metrics import accuracy_score, roc_auc_score from functools import partial optuna.logging.set_verbosity(optuna.logging.WARNING) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74041457/cell_3
[ "text_html_output_1.png" ]
import pandas as pd Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv')
code
74041457/cell_17
[ "text_html_output_1.png" ]
from functools import partial from optuna.samplers import TPESampler from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score,roc_auc_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler from xgboost import XGBClassifier import optuna import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import optuna from optuna.samplers import TPESampler import catboost from xgboost import XGBClassifier from sklearn.metrics import accuracy_score, roc_auc_score from functools import partial optuna.logging.set_verbosity(optuna.logging.WARNING) import os Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') (Xtrain.shape, test.shape) y = Xtrain.claim Xtrain = Xtrain.drop(['id', 'claim'], axis=1) test_id = test.id test = test.drop('id', axis=1) ss = StandardScaler() ss.fit(Xtrain) Xtrain = ss.transform(Xtrain) test = ss.transform(test) pca = PCA(0.95) pca.fit(Xtrain) Xtrain = pca.transform(Xtrain) test = pca.transform(test) (Xtrain.shape, test.shape) def getXgbHyperparameters(trial): xgb_param = {'tree_method': 'gpu_hist', 'eval_metric': 'auc', 'n_estimators': trial.suggest_int('n_estimators', 700, 2000, 100), 'booster': 'gbtree', 'reg_lambda': trial.suggest_int('reg_lambda', 1, 100), 'reg_alpha': trial.suggest_int('reg_alpha', 1, 100), 'subsample': trial.suggest_float('subsample', 0.2, 1.0), 'colsample_bytree': trial.suggest_float('colsample_bytree', 0.2, 1.0), 'max_depth': trial.suggest_int('max_depth', 3, 15), 'min_child_weight': trial.suggest_int('min_child_weight', 2, 18), 'learning_rate': trial.suggest_loguniform('learning_rate', 1e-05, 0.01), 'gamma': trial.suggest_float('gamma', 0, 20)} return xgb_param def optimize(trial, X, y): params = getXgbHyperparameters(trial) xgb = XGBClassifier(**params, use_label_encoder=False) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=44) xgb.fit(X_train, y_train) pred = xgb.predict(X_test) return -1 * roc_auc_score(pred, y_test) opt_func = partial(optimize, X=X_train, y=y_train) func = lambda trial: optimize(trial, Xtrain, y) def logging_callback(study, frozen_trial): previous_best_value = study.user_attrs.get('previous_best_value', None) if previous_best_value != study.best_value: study.set_user_attr('previous_best_value', study.best_value) study = optuna.create_study(sampler=TPESampler(seed=69), direction='minimize', study_name='xgb') study.optimize(func, timeout=1 * 60 * 60, callbacks=[logging_callback])
code
74041457/cell_5
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd Xtrain = pd.read_csv('../input/sept-2021-filled/train_new.csv') test = pd.read_csv('../input/sept-2021-filled/test_new.csv') (Xtrain.shape, test.shape) test.head()
code
48163599/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_dir = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(data_dir + 'train.json', lines=True) test = pd.read_json(data_dir + 'test.json', lines=True) sample_df = pd.read_csv(data_dir + 'sample_submission.csv') test.head(10)
code
48163599/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_dir = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(data_dir + 'train.json', lines=True) test = pd.read_json(data_dir + 'test.json', lines=True) sample_df = pd.read_csv(data_dir + 'sample_submission.csv') test.shape
code
48163599/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
48163599/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_dir = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(data_dir + 'train.json', lines=True) test = pd.read_json(data_dir + 'test.json', lines=True) sample_df = pd.read_csv(data_dir + 'sample_submission.csv') test.shape print(np.tostring(test['sequence'][1]))
code
48163599/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_dir = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(data_dir + 'train.json', lines=True) test = pd.read_json(data_dir + 'test.json', lines=True) sample_df = pd.read_csv(data_dir + 'sample_submission.csv') len(test['sequence'][0])
code
48163599/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_dir = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(data_dir + 'train.json', lines=True) test = pd.read_json(data_dir + 'test.json', lines=True) sample_df = pd.read_csv(data_dir + 'sample_submission.csv') train.shape
code
122264608/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) model.make_inspector().variable_importances() model.make_inspector().evaluation() model.make_inspector().training_logs()[295:]
code
122264608/cell_9
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) print() for name, value in evaluation.items(): print(f'{name}: {value:.4f}')
code
122264608/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() print(f'Label classes: {classes}') df[label] = df[label].map(classes.index)
code
122264608/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') df = df.iloc[:, 1:] df.head()
code
122264608/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) model.make_inspector().variable_importances()
code
122264608/cell_1
[ "text_plain_output_1.png" ]
!pip install tensorflow_decision_forests wurlitzer
code
122264608/cell_7
[ "image_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) print(f'{len(train_ds_pd)} examples in training, {len(test_ds_pd)} examples for testing.') train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label)
code
122264608/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) model.make_inspector().variable_importances() model.make_inspector().evaluation() model.make_inspector().training_logs()[295:] logs = model.make_inspector().training_logs() sub_df = pd.read_csv('/kaggle/input/playground-series-s3e10/test.csv') sub_df = sub_df.iloc[:, 1:] new_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(sub_df) y_pred = model.predict(new_dataset, verbose=0) submission = pd.read_csv('/kaggle/input/playground-series-s3e10/sample_submission.csv') submission['Class'] = y_pred submission.head()
code
122264608/cell_8
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds)
code
122264608/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') df.head()
code
122264608/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) sub_df = pd.read_csv('/kaggle/input/playground-series-s3e10/test.csv') sub_df = sub_df.iloc[:, 1:] new_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(sub_df) submission = pd.read_csv('/kaggle/input/playground-series-s3e10/sample_submission.csv') submission.head()
code
122264608/cell_14
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) model.make_inspector().variable_importances() model.make_inspector().evaluation() model.make_inspector().training_logs()[295:] logs = model.make_inspector().training_logs() plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot([log.num_trees for log in logs], [log.evaluation.accuracy for log in logs]) plt.xlabel('Number of trees') plt.ylabel('Accuracy') plt.subplot(1, 2, 2) plt.plot([log.num_trees for log in logs], [log.evaluation.loss for log in logs]) plt.xlabel('Number of trees') plt.ylabel('Logloss') plt.show()
code
122264608/cell_10
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) tfdf.model_plotter.plot_model_in_colab(model, tree_idx=0, max_depth=3)
code
122264608/cell_12
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow_decision_forests as tfdf df = pd.read_csv('/kaggle/input/playground-series-s3e10/train.csv') label = 'Class' classes = df[label].unique().tolist() df[label] = df[label].map(classes.index) df = df.iloc[:, 1:] def split_dataset(dataset, test_ratio=0.15): test_indices = np.random.rand(len(dataset)) < test_ratio return (dataset[~test_indices], dataset[test_indices]) train_ds_pd, test_ds_pd = split_dataset(df) train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=label) test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=label) model = tfdf.keras.GradientBoostedTreesModel() model.fit(train_ds) model.compile(metrics=['accuracy', 'AUC', 'Precision', 'Recall', 'binary_crossentropy']) evaluation = model.evaluate(test_ds, return_dict=True) model.make_inspector().variable_importances() model.make_inspector().evaluation()
code
2011423/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('../input/mushrooms.csv') data_df.info()
code
2011423/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output np.set_printoptions(suppress=True, linewidth=300) pd.options.display.float_format = lambda x: '%0.6f' % x print(check_output(['ls', '../input']).decode('utf-8'))
code
2011423/cell_5
[ "image_output_11.png", "image_output_17.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_21.png", "image_output_7.png", "image_output_20.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "image_output_6.png", "image_output_12.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png", "image_output_19.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data_df = pd.read_csv('../input/mushrooms.csv') data_df['y'] = data_df['class'].map({'p': 1, 'e': 0}) columns = [c for c in data_df.columns if not c in ('class', 'y')] single_val_c = {} for i, c in enumerate(columns): if data_df[c].nunique() == 1: single_val_c[c] = data_df[c].unique()[0] continue s = data_df.groupby(c)['y'].mean() sns.barplot(x=s.index, y=s) plt.show() for c in single_val_c.keys(): print('The column %s only has one unique value with %r' % (c, single_val_c[c]))
code
32066544/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
(x_train.shape, y_train.shape)
code
32066544/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df = fashion_mnist_df.sample(frac=0.3).reset_index(drop=True) import matplotlib.pyplot as plt LOOKUP = {0: 'T-shirt', 1: 'Trouser', 2: 'Pullover', 3: 'Dress', 4: 'Coat', 5: 'Sandal', 6: 'Shirt', 7: 'Sneaker', 8: 'Bag', 9: 'Ankle boot'} def display_image(features, actual_label): pass X = fashion_mnist_df[fashion_mnist_df.columns[1:]] Y = fashion_mnist_df['label'] display_image(X.loc[15].values, Y.loc[15])
code
32066544/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df.head(10)
code
32066544/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df = fashion_mnist_df.sample(frac=0.3).reset_index(drop=True) import matplotlib.pyplot as plt LOOKUP = {0: 'T-shirt', 1: 'Trouser', 2: 'Pullover', 3: 'Dress', 4: 'Coat', 5: 'Sandal', 6: 'Shirt', 7: 'Sneaker', 8: 'Bag', 9: 'Ankle boot'} def display_image(features, actual_label): pass X = fashion_mnist_df[fashion_mnist_df.columns[1:]] Y = fashion_mnist_df['label'] X = X / 255 X.head()
code
32066544/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32066544/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df = fashion_mnist_df.sample(frac=0.3).reset_index(drop=True) import matplotlib.pyplot as plt LOOKUP = {0: 'T-shirt', 1: 'Trouser', 2: 'Pullover', 3: 'Dress', 4: 'Coat', 5: 'Sandal', 6: 'Shirt', 7: 'Sneaker', 8: 'Bag', 9: 'Ankle boot'} def display_image(features, actual_label): pass X = fashion_mnist_df[fashion_mnist_df.columns[1:]] Y = fashion_mnist_df['label'] display_image(X.loc[5].values, Y.loc[5])
code
32066544/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df['label'].unique()
code
32066544/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) fashion_mnist_df = pd.read_csv('/kaggle/input/fashionmnist/fashion-mnist_train.csv') fashion_mnist_df = fashion_mnist_df.sample(frac=0.3).reset_index(drop=True) import matplotlib.pyplot as plt LOOKUP = {0: 'T-shirt', 1: 'Trouser', 2: 'Pullover', 3: 'Dress', 4: 'Coat', 5: 'Sandal', 6: 'Shirt', 7: 'Sneaker', 8: 'Bag', 9: 'Ankle boot'} def display_image(features, actual_label): pass X = fashion_mnist_df[fashion_mnist_df.columns[1:]] Y = fashion_mnist_df['label'] display_image(X.loc[500].values, Y.loc[500])
code
2032622/cell_13
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.2) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters def intialize_parameters_deep(layer_dims): np.random.seed(4) L = len(layer_dims) parameters = {} for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) return parameters parameters = intialize_parameters_deep([7, 4, 3]) def linear_forward(A, W): Z = np.dot(W, A.T) cache = (A, W) return (Z, cache) Z, cache = linear_forward(X_train, parameters['W1']) def sigmoid(Z): A = 1 / (1 + np.exp(-Z)) cache = Z return (A, cache) def relu(Z): A = np.maximum(0, Z) cache = Z return (A, cache) A, cache = sigmoid(Z) print(A.shape, cache.shape) A, cache = relu(Z) print(A.shape, cache.shape)
code
2032622/cell_4
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.2) print(X_train.shape, Y_train.shape) print(X_test.shape, Y_test.shape)
code
2032622/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters intialize_parameters(5, 4, 3)
code
2032622/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters def intialize_parameters_deep(layer_dims): np.random.seed(4) L = len(layer_dims) parameters = {} for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) return parameters parameters = intialize_parameters_deep([7, 4, 3]) print(parameters)
code
2032622/cell_15
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.2) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters def intialize_parameters_deep(layer_dims): np.random.seed(4) L = len(layer_dims) parameters = {} for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) return parameters parameters = intialize_parameters_deep([7, 4, 3]) def linear_forward(A, W): Z = np.dot(W, A.T) cache = (A, W) return (Z, cache) Z, cache = linear_forward(X_train, parameters['W1']) def sigmoid(Z): A = 1 / (1 + np.exp(-Z)) cache = Z return (A, cache) def relu(Z): A = np.maximum(0, Z) cache = Z return (A, cache) A, cache = sigmoid(Z) A, cache = relu(Z) def linear_activation_forward(A_prev, W, activation): if activation == 'sigmoid': Z, linear_cache = linear_forward(A_prev, W) A, activation_cache = sigmoid(Z) if activation == 'relu': Z, linear_cache = linear_forward(A_prev, W) A, activation_cache = relu(Z) cache = (linear_cache, activation_cache) return (A, cache) A, cache = linear_activation_forward(X_train, parameters['W1'], 'sigmoid') print(A.shape) A, cache = linear_activation_forward(X_train, parameters['W1'], 'relu') print(A.shape)
code
2032622/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) print(DataX.shape) DataY = np.transpose([dataset[:, 7]]) print(DataY.shape)
code
2032622/cell_17
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.2) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters def intialize_parameters_deep(layer_dims): np.random.seed(4) L = len(layer_dims) parameters = {} for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) return parameters parameters = intialize_parameters_deep([7, 4, 3]) def linear_forward(A, W): Z = np.dot(W, A.T) cache = (A, W) return (Z, cache) Z, cache = linear_forward(X_train, parameters['W1']) def sigmoid(Z): A = 1 / (1 + np.exp(-Z)) cache = Z return (A, cache) def relu(Z): A = np.maximum(0, Z) cache = Z return (A, cache) A, cache = sigmoid(Z) A, cache = relu(Z) def linear_activation_forward(A_prev, W, activation): if activation == 'sigmoid': Z, linear_cache = linear_forward(A_prev, W) A, activation_cache = sigmoid(Z) if activation == 'relu': Z, linear_cache = linear_forward(A_prev, W) A, activation_cache = relu(Z) cache = (linear_cache, activation_cache) return (A, cache) A, cache = linear_activation_forward(X_train, parameters['W1'], 'sigmoid') A, cache = linear_activation_forward(X_train, parameters['W1'], 'relu') def L_Model_forward(X, parameters): A = X caches = [] L = len(parameters) for l in range(1, L): A_prev = A A, cache = linear_activation_forward(A_prev, parameters['W' + str(1)], 'relu') caches.append(cache) A = A.T AL, cache = linear_activation_forward(A, parameters['W' + str(L)], 'sigmoid') caches.append(cache) return (A, caches) AL, cache = L_Model_forward(X_train, parameters) print(AL.shape)
code
2032622/cell_10
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas dataframe = pandas.read_csv('../input/ecoli.csv', delim_whitespace=True) dataframe.columns = ['seq_name', 'mcg', 'gvh', 'lip', 'chg', 'aac', 'alm1', 'alm2', 'site'] dataframe = dataframe.drop('seq_name', axis=1) dataframe.site.replace(('cp', 'im', 'pp', 'imU', 'om', 'omL', 'imL', 'imS'), (1, 0, 0, 0, 0, 0, 0, 0), inplace=True) dataset = dataframe.values DataX = np.array(dataset[:, 0:7]) DataY = np.transpose([dataset[:, 7]]) X_train, X_test, Y_train, Y_test = train_test_split(DataX, DataY, test_size=0.2) def intialize_parameters(n_x, n_h, n_y): np.random.seed(4) W1 = np.random.randn(n_h, n_x) W2 = np.random.randn(n_y, n_h) parameters = {'W1': W1, 'W2': W2} return parameters def intialize_parameters_deep(layer_dims): np.random.seed(4) L = len(layer_dims) parameters = {} for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) return parameters parameters = intialize_parameters_deep([7, 4, 3]) def linear_forward(A, W): Z = np.dot(W, A.T) cache = (A, W) return (Z, cache) Z, cache = linear_forward(X_train, parameters['W1']) print(Z.shape)
code
106212034/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) movies = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_movies.csv') credit = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_credits.csv') credit.head(3)
code
106212034/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import ast from sklearn.feature_extraction.text import CountVectorizer import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106212034/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) movies = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_movies.csv') credit = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_credits.csv') movies = movies[['id', 'title', 'overview', 'tagline', 'genres', 'keywords']] movies = movies.merge(credit, on='title') movies.drop(['movie_id'], axis=1, inplace=True) movies.dropna(inplace=True) movies.isnull().sum() movies
code
106212034/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) movies = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_movies.csv') credit = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_credits.csv') movies.head(3)
code
106212034/cell_24
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity import ast import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) movies = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_movies.csv') credit = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_credits.csv') movies = movies[['id', 'title', 'overview', 'tagline', 'genres', 'keywords']] movies = movies.merge(credit, on='title') movies.drop(['movie_id'], axis=1, inplace=True) def convert(text): L = [] for i in ast.literal_eval(text): L.append(i['name']) return L def convert2(text): a = [] count = 0 for i in ast.literal_eval(text): if count < 3: a.append(i['name']) count += 1 return a def convert3(data): a = [] for i in ast.literal_eval(data): if i['job'] == 'Director': a.append(i['name']) return a movies.dropna(inplace=True) movies.isnull().sum() def remove_space(data): a = [] for i in data: a.append(i.replace(' ', '')) return a movies['overview'] = movies['overview'].apply(lambda x: x.split()) movies['tagline'] = movies['tagline'].apply(lambda x: x.split()) movies.drop(['overview', 'tagline', 'genres', 'keywords', 'cast', 'crew'], axis=1, inplace=True) cv = CountVectorizer(max_features=6000, stop_words='english') vector = cv.fit_transform(movies['tag']).toarray() from sklearn.metrics.pairwise import cosine_similarity cosim = cosine_similarity(vector) def recommend(name): index = np.where(movies['title'] == name)[0][0] similar_items = sorted(list(enumerate(cosim[index])), key=lambda x: x[1], reverse=True)[0:5] data = [] for i in similar_items: v = movies[movies.index == i[0]]['title'] v = list(v) data.append(v) return pd.DataFrame(data) recommend('Avatar')
code
106212034/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) movies = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_movies.csv') credit = pd.read_csv('/kaggle/input/tmdb-movie-metadata/tmdb_5000_credits.csv') movies = movies[['id', 'title', 'overview', 'tagline', 'genres', 'keywords']] movies = movies.merge(credit, on='title') movies.drop(['movie_id'], axis=1, inplace=True) movies.dropna(inplace=True) movies.isnull().sum()
code
329711/cell_4
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import numpy as np import pandas as pd import csv from sklearn.ensemble import RandomForestClassifier def munge_data(df): """fill in missing values and convert characters to numerical""" df['Sex'] = df['Sex'].map({'female': 0, 'male': 1}).astype(int) median_ages = np.zeros((2, 3)) for i in range(0, 2): for j in range(0, 3): median_ages[i, j] = df[(df['Sex'] == i) & (df['Pclass'] == j + 1)]['Age'].dropna().median() for i in range(0, 2): for j in range(0, 3): df.loc[df.Age.isnull() & (df.Sex == i) & (df.Pclass == j + 1), 'Age'] = median_ages[i, j] df['Embarked'] = df['Embarked'].dropna().map({'C': 1, 'S': 2, 'Q': 3}).astype(int) mode = df['Embarked'].dropna().mode().astype(int) df['Embarked'] = df['Embarked'].fillna(mode) df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) return df.fillna(0) train_df = pd.read_csv('../input/train.csv', header=0) test_df = pd.read_csv('../input/test.csv', header=0) ids = test_df['PassengerId'].values train_df = munge_data(train_df) test_df = munge_data(test_df) train_data = train_df.values test_data = test_df.values rf = RandomForestClassifier(n_estimators=100) rf = rf.fit(train_data[0:, 1:], train_data[0:, 0]) import matplotlib.pyplot as plt f, ax = plt.subplots(figsize=(10, 4)) bar_placements = range(len(rf.feature_importances_)) ax.bar(bar_placements, rf.feature_importances_) ax.set_title('Feature Importances') ax.set_xticks([tick + 0.5 for tick in bar_placements]) ax.set_xticklabels(train_df.columns[1:]) f.show()
code
329711/cell_2
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import numpy as np import pandas as pd import numpy as np import pandas as pd import csv from sklearn.ensemble import RandomForestClassifier def munge_data(df): """fill in missing values and convert characters to numerical""" df['Sex'] = df['Sex'].map({'female': 0, 'male': 1}).astype(int) median_ages = np.zeros((2, 3)) for i in range(0, 2): for j in range(0, 3): median_ages[i, j] = df[(df['Sex'] == i) & (df['Pclass'] == j + 1)]['Age'].dropna().median() for i in range(0, 2): for j in range(0, 3): df.loc[df.Age.isnull() & (df.Sex == i) & (df.Pclass == j + 1), 'Age'] = median_ages[i, j] df['Embarked'] = df['Embarked'].dropna().map({'C': 1, 'S': 2, 'Q': 3}).astype(int) mode = df['Embarked'].dropna().mode().astype(int) df['Embarked'] = df['Embarked'].fillna(mode) df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) return df.fillna(0) train_df = pd.read_csv('../input/train.csv', header=0) test_df = pd.read_csv('../input/test.csv', header=0) ids = test_df['PassengerId'].values train_df = munge_data(train_df) test_df = munge_data(test_df) train_data = train_df.values test_data = test_df.values print('Training...') rf = RandomForestClassifier(n_estimators=100) rf = rf.fit(train_data[0:, 1:], train_data[0:, 0]) print('Accuracy = ', (rf.predict(train_data[0:, 1:]) == train_data[0:, 0]).mean())
code
329711/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import cross_validation from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import numpy as np import pandas as pd import csv from sklearn.ensemble import RandomForestClassifier def munge_data(df): """fill in missing values and convert characters to numerical""" df['Sex'] = df['Sex'].map({'female': 0, 'male': 1}).astype(int) median_ages = np.zeros((2, 3)) for i in range(0, 2): for j in range(0, 3): median_ages[i, j] = df[(df['Sex'] == i) & (df['Pclass'] == j + 1)]['Age'].dropna().median() for i in range(0, 2): for j in range(0, 3): df.loc[df.Age.isnull() & (df.Sex == i) & (df.Pclass == j + 1), 'Age'] = median_ages[i, j] df['Embarked'] = df['Embarked'].dropna().map({'C': 1, 'S': 2, 'Q': 3}).astype(int) mode = df['Embarked'].dropna().mode().astype(int) df['Embarked'] = df['Embarked'].fillna(mode) df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) return df.fillna(0) train_df = pd.read_csv('../input/train.csv', header=0) test_df = pd.read_csv('../input/test.csv', header=0) ids = test_df['PassengerId'].values train_df = munge_data(train_df) test_df = munge_data(test_df) train_data = train_df.values test_data = test_df.values rf = RandomForestClassifier(n_estimators=100) rf = rf.fit(train_data[0:, 1:], train_data[0:, 0]) import matplotlib.pyplot as plt f, ax = plt.subplots(figsize=(10,4)) bar_placements = range(len(rf.feature_importances_)) ax.bar(bar_placements, rf.feature_importances_) ax.set_title("Feature Importances") ax.set_xticks([tick + .5 for tick in bar_placements]) ax.set_xticklabels(train_df.columns[1::]) f.show() from sklearn import cross_validation scores = cross_validation.cross_val_score(rf, train_data[0:, 1:], train_data[0:, 0]) print(scores.mean())
code
90129873/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data processing, CSV file I/O (e.g. pd.read_csv) krenth311 = pd.read_csv('../input/dataset/krenth311.csv') krenth316 = pd.read_csv('../input/dataset/krenth316.csv') merge = pd.concat([krenth311, krenth316]) merge.to_csv('merge.csv', index=False) for col in ['aloneorinagroup']: krenth311[col].value_counts(ascending=True).plot(kind='barh', title=col) plt.xlabel('frequency') plt.show()
code
90129873/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import cufflinks as cf import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import dates as md import seaborn as sns import plotly.graph_objs as go import plotly import cufflinks as cf cf.set_config_file(offline=True) import os
code
17108074/cell_2
[ "text_html_output_1.png" ]
import pandas as pd sku_category_filepath = '../input/sku-category/sku_category.csv' sku_category = pd.read_csv(sku_category_filepath, sep=None, decimal=',', engine='python') sku_category.drop('compare', axis=1, inplace=True) sku_category.drop('sector', axis=1, inplace=True) sku = sku_category.copy() for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sku_price_filepath = '../input/sku-price/{}.csv'.format(date) sku_price = pd.read_csv(sku_price_filepath, sep=None, decimal=',', engine='python') sku_price.columns = ['sku', 'price-{}'.format(date)] sku_sold_filepath = '../input/sku-unitssold/{}.csv'.format(date) sku_sold = pd.read_csv(sku_sold_filepath, sep=None, decimal=',', engine='python') sku_sold.columns = ['sku', 'sold-{}'.format(date)] sku_price['sku'] = sku_price['sku'].astype(str) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_price['sku'] = pd.to_numeric(sku_price['sku']) sku_sold['sku'] = sku_sold['sku'].astype(str) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_sold['sku'] = pd.to_numeric(sku_sold['sku']) sku = pd.merge(sku, sku_price, on='sku', how='left') sku = pd.merge(sku, sku_sold, on='sku', how='left') sku.head()
code
17108074/cell_7
[ "text_html_output_1.png" ]
import pandas as pd sku_category_filepath = '../input/sku-category/sku_category.csv' sku_category = pd.read_csv(sku_category_filepath, sep=None, decimal=',', engine='python') sku_category.drop('compare', axis=1, inplace=True) sku_category.drop('sector', axis=1, inplace=True) sku = sku_category.copy() for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sku_price_filepath = '../input/sku-price/{}.csv'.format(date) sku_price = pd.read_csv(sku_price_filepath, sep=None, decimal=',', engine='python') sku_price.columns = ['sku', 'price-{}'.format(date)] sku_sold_filepath = '../input/sku-unitssold/{}.csv'.format(date) sku_sold = pd.read_csv(sku_sold_filepath, sep=None, decimal=',', engine='python') sku_sold.columns = ['sku', 'sold-{}'.format(date)] sku_price['sku'] = sku_price['sku'].astype(str) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_price['sku'] = pd.to_numeric(sku_price['sku']) sku_sold['sku'] = sku_sold['sku'].astype(str) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_sold['sku'] = pd.to_numeric(sku_sold['sku']) sku = pd.merge(sku, sku_price, on='sku', how='left') sku = pd.merge(sku, sku_sold, on='sku', how='left') sku.sort_values(by='sold-2017-03-01').head(20) sumProductsSold = 0 for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sumProductsSold += sku['price-{}'.format(date)].count() sku_numberSold = sku.copy() columnsToDrop = [x for x in sku.columns if x != 'sku'] sku_numberSold.drop(columnsToDrop, axis=1, inplace=True) sku_numberSold.insert(1, 'avgNumberSold', 0.0) for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) for index in sku.index: number_sold = sku.at[index, 'sold-{}'.format(date)] if number_sold > 0: sku_numberSold.at[index, 'avgNumberSold'] += number_sold sku_numberSold['avgNumberSold'] = sku_numberSold['avgNumberSold'] / 31 sku_numberSold.sort_values('avgNumberSold', ascending=False).head(20)
code
17108074/cell_8
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd sku_category_filepath = '../input/sku-category/sku_category.csv' sku_category = pd.read_csv(sku_category_filepath, sep=None, decimal=',', engine='python') sku_category.drop('compare', axis=1, inplace=True) sku_category.drop('sector', axis=1, inplace=True) sku = sku_category.copy() for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sku_price_filepath = '../input/sku-price/{}.csv'.format(date) sku_price = pd.read_csv(sku_price_filepath, sep=None, decimal=',', engine='python') sku_price.columns = ['sku', 'price-{}'.format(date)] sku_sold_filepath = '../input/sku-unitssold/{}.csv'.format(date) sku_sold = pd.read_csv(sku_sold_filepath, sep=None, decimal=',', engine='python') sku_sold.columns = ['sku', 'sold-{}'.format(date)] sku_price['sku'] = sku_price['sku'].astype(str) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_price['sku'] = pd.to_numeric(sku_price['sku']) sku_sold['sku'] = sku_sold['sku'].astype(str) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_sold['sku'] = pd.to_numeric(sku_sold['sku']) sku = pd.merge(sku, sku_price, on='sku', how='left') sku = pd.merge(sku, sku_sold, on='sku', how='left') sku.sort_values(by='sold-2017-03-01').head(20) sumProductsSold = 0 for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sumProductsSold += sku['price-{}'.format(date)].count() sku_numberSold = sku.copy() columnsToDrop = [x for x in sku.columns if x != 'sku'] sku_numberSold.drop(columnsToDrop, axis=1, inplace=True) sku_numberSold.insert(1, 'avgNumberSold', 0.0) for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) for index in sku.index: number_sold = sku.at[index, 'sold-{}'.format(date)] if number_sold > 0: sku_numberSold.at[index, 'avgNumberSold'] += number_sold sku_numberSold['avgNumberSold'] = sku_numberSold['avgNumberSold'] / 31 sku_numberSold.sort_values('avgNumberSold', ascending=False).head(20) sku_probability = sku_numberSold.copy() sku_probability.rename(columns={'avgNumberSold': 'probability'}, inplace=True) for index in sku_probability.index: probability = 1 - np.exp(-sku_probability.at[index, 'probability']) sku_probability.at[index, 'probability'] = probability sku_probability.sort_values(by='probability', ascending=False).head(20)
code
17108074/cell_3
[ "text_html_output_1.png" ]
import pandas as pd sku_category_filepath = '../input/sku-category/sku_category.csv' sku_category = pd.read_csv(sku_category_filepath, sep=None, decimal=',', engine='python') sku_category.drop('compare', axis=1, inplace=True) sku_category.drop('sector', axis=1, inplace=True) sku = sku_category.copy() for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sku_price_filepath = '../input/sku-price/{}.csv'.format(date) sku_price = pd.read_csv(sku_price_filepath, sep=None, decimal=',', engine='python') sku_price.columns = ['sku', 'price-{}'.format(date)] sku_sold_filepath = '../input/sku-unitssold/{}.csv'.format(date) sku_sold = pd.read_csv(sku_sold_filepath, sep=None, decimal=',', engine='python') sku_sold.columns = ['sku', 'sold-{}'.format(date)] sku_price['sku'] = sku_price['sku'].astype(str) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_price['sku'] = pd.to_numeric(sku_price['sku']) sku_sold['sku'] = sku_sold['sku'].astype(str) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_sold['sku'] = pd.to_numeric(sku_sold['sku']) sku = pd.merge(sku, sku_price, on='sku', how='left') sku = pd.merge(sku, sku_sold, on='sku', how='left') sku.sort_values(by='sold-2017-03-01').head(20)
code
17108074/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd sku_category_filepath = '../input/sku-category/sku_category.csv' sku_category = pd.read_csv(sku_category_filepath, sep=None, decimal=',', engine='python') sku_category.drop('compare', axis=1, inplace=True) sku_category.drop('sector', axis=1, inplace=True) sku = sku_category.copy() for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) sku_price_filepath = '../input/sku-price/{}.csv'.format(date) sku_price = pd.read_csv(sku_price_filepath, sep=None, decimal=',', engine='python') sku_price.columns = ['sku', 'price-{}'.format(date)] sku_sold_filepath = '../input/sku-unitssold/{}.csv'.format(date) sku_sold = pd.read_csv(sku_sold_filepath, sep=None, decimal=',', engine='python') sku_sold.columns = ['sku', 'sold-{}'.format(date)] sku_price['sku'] = sku_price['sku'].astype(str) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_price.drop(sku_price[sku_price['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_price['sku'] = pd.to_numeric(sku_price['sku']) sku_sold['sku'] = sku_sold['sku'].astype(str) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_500_30_EUR'].index.values, axis=0, inplace=True) sku_sold.drop(sku_sold[sku_sold['sku'] == 'S080501_1500_30_EUR'].index.values, axis=0, inplace=True) sku_sold['sku'] = pd.to_numeric(sku_sold['sku']) sku = pd.merge(sku, sku_price, on='sku', how='left') sku = pd.merge(sku, sku_sold, on='sku', how='left') sku.sort_values(by='sold-2017-03-01').head(20) print('We have {} rows (products) in our table'.format(sku.shape[0])) sumProductsSold = 0 for i in range(1, 32): if i < 10: date = '2017-03-0{}'.format(i) else: date = '2017-03-{}'.format(i) if sku['price-{}'.format(date)].count() != sku['sold-{}'.format(date)].count(): print('The price and sold columns do not have the same number of entries for {}'.format(date)) print('{}: {} products sold'.format(date, sku['price-{}'.format(date)].count())) sumProductsSold += sku['price-{}'.format(date)].count() print('At maximum, out of the {} products, {} were sold in the given data'.format(sku.shape[0], sumProductsSold))
code
32068625/cell_6
[ "text_html_output_1.png" ]
import networkx as nx import plotly.graph_objects as go import sys import plotly.graph_objects as go import networkx as nx node_list = list(['Chloroquine phosphate', 'Spike (S) antibody', 'IL-6 antibody', 'Remdesivir', 'Favipiravir', 'Fluorouracil', 'Ribavirin', 'Acyclovir', 'Ritonavir', 'Lopinavir', 'Kaletra', 'Darunavir', 'Arbidol', 'Hydroxychloroquine', 'Oseltamivir']) G = nx.Graph() for i in node_list: G.add_node(i) G.add_edges_from([('Spike (S) antibody', 'IL-6 antibody')]) G.add_edges_from([('Remdesivir', 'Favipiravir')]) G.add_edges_from([('Remdesivir', 'Fluorouracil')]) G.add_edges_from([('Remdesivir', 'Ribavirin')]) G.add_edges_from([('Remdesivir', 'Acyclovir')]) G.add_edges_from([('Fluorouracil', 'Favipiravir')]) G.add_edges_from([('Ribavirin', 'Favipiravir')]) G.add_edges_from([('Acyclovir', 'Favipiravir')]) G.add_edges_from([('Fluorouracil', 'Ribavirin')]) G.add_edges_from([('Fluorouracil', 'Acyclovir')]) G.add_edges_from([('Ribavirin', 'Acyclovir')]) G.add_edges_from([('Ritonavir', 'Lopinavir')]) G.add_edges_from([('Ritonavir', 'Kaletra')]) G.add_edges_from([('Ritonavir', 'Darunavir')]) G.add_edges_from([('Lopinavir', 'Kaletra')]) G.add_edges_from([('Lopinavir', 'Darunavir')]) G.add_edges_from([('Kaletra', 'Darunavir')]) G.add_edges_from([('Arbidol', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Arbidol')]) pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Groups of drugs in clinical trials by working mechanisms', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=100, l=100, r=100, t=100), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) fig.show()
code
32068625/cell_7
[ "text_html_output_2.png" ]
import networkx as nx import networkx as nx import numpy as np import plotly.graph_objects as go import plotly.graph_objects as go import sys import plotly.graph_objects as go import networkx as nx node_list = list(['Chloroquine phosphate', 'Spike (S) antibody', 'IL-6 antibody', 'Remdesivir', 'Favipiravir', 'Fluorouracil', 'Ribavirin', 'Acyclovir', 'Ritonavir', 'Lopinavir', 'Kaletra', 'Darunavir', 'Arbidol', 'Hydroxychloroquine', 'Oseltamivir']) G = nx.Graph() for i in node_list: G.add_node(i) G.add_edges_from([('Spike (S) antibody', 'IL-6 antibody')]) G.add_edges_from([('Remdesivir', 'Favipiravir')]) G.add_edges_from([('Remdesivir', 'Fluorouracil')]) G.add_edges_from([('Remdesivir', 'Ribavirin')]) G.add_edges_from([('Remdesivir', 'Acyclovir')]) G.add_edges_from([('Fluorouracil', 'Favipiravir')]) G.add_edges_from([('Ribavirin', 'Favipiravir')]) G.add_edges_from([('Acyclovir', 'Favipiravir')]) G.add_edges_from([('Fluorouracil', 'Ribavirin')]) G.add_edges_from([('Fluorouracil', 'Acyclovir')]) G.add_edges_from([('Ribavirin', 'Acyclovir')]) G.add_edges_from([('Ritonavir', 'Lopinavir')]) G.add_edges_from([('Ritonavir', 'Kaletra')]) G.add_edges_from([('Ritonavir', 'Darunavir')]) G.add_edges_from([('Lopinavir', 'Kaletra')]) G.add_edges_from([('Lopinavir', 'Darunavir')]) G.add_edges_from([('Kaletra', 'Darunavir')]) G.add_edges_from([('Arbidol', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Arbidol')]) pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Groups of drugs in clinical trials by working mechanisms', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=100, l=100, r=100, t=100), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) import numpy as np exist = {} LIST = open('../input/drugdata/sorted_alresult.coronavirus', 'r') for line in LIST: line = line.replace('\\s\\s+', '\t') line = line.strip() table = line.split(' ') if float(table[0]) > 4: exist[table[1]] = 0 REF = open('../input/drugdata/combine_drug_name_id.csv', 'r') DATA = open('../input/drugdata/combined_fp2_data.csv', 'r') drug = [] all_drug = {} for ref in REF: ref = ref.strip() rrr = ref.split(',') if rrr[1].lower() in exist: drug.append(rrr[1]) data = DATA.readline() data = data.strip() data = data.split(',') kkk = 0 for i in data: data[kkk] = float(i) kkk + 1 all_drug[rrr[1]] = np.asarray(data).astype(np.float) REF.close() DATA.close() connections1 = [] connections2 = [] for drug1 in drug: for drug2 in drug: if drug1 < drug2: cor = np.corrcoef(all_drug[drug1], all_drug[drug2]) if cor[0, 1] > 0.35: connections1.append(drug1) connections2.append(drug2) import sys import plotly.graph_objects as go import networkx as nx node_list = list(all_drug.keys()) G = nx.Graph() for i in node_list: G.add_node(i) i = 0 for drug1 in connections1: drug2 = connections2[i] G.add_edges_from([(drug1, drug2)]) i = i + 1 pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Similarity of chemical structures among the drugs that are related to coronavirus in literature', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=50, l=100, r=100, t=50), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) fig.show()
code
32068625/cell_8
[ "text_html_output_1.png" ]
import networkx as nx import networkx as nx import networkx as nx import numpy as np import numpy as np import plotly.graph_objects as go import plotly.graph_objects as go import plotly.graph_objects as go import sys import plotly.graph_objects as go import networkx as nx node_list = list(['Chloroquine phosphate', 'Spike (S) antibody', 'IL-6 antibody', 'Remdesivir', 'Favipiravir', 'Fluorouracil', 'Ribavirin', 'Acyclovir', 'Ritonavir', 'Lopinavir', 'Kaletra', 'Darunavir', 'Arbidol', 'Hydroxychloroquine', 'Oseltamivir']) G = nx.Graph() for i in node_list: G.add_node(i) G.add_edges_from([('Spike (S) antibody', 'IL-6 antibody')]) G.add_edges_from([('Remdesivir', 'Favipiravir')]) G.add_edges_from([('Remdesivir', 'Fluorouracil')]) G.add_edges_from([('Remdesivir', 'Ribavirin')]) G.add_edges_from([('Remdesivir', 'Acyclovir')]) G.add_edges_from([('Fluorouracil', 'Favipiravir')]) G.add_edges_from([('Ribavirin', 'Favipiravir')]) G.add_edges_from([('Acyclovir', 'Favipiravir')]) G.add_edges_from([('Fluorouracil', 'Ribavirin')]) G.add_edges_from([('Fluorouracil', 'Acyclovir')]) G.add_edges_from([('Ribavirin', 'Acyclovir')]) G.add_edges_from([('Ritonavir', 'Lopinavir')]) G.add_edges_from([('Ritonavir', 'Kaletra')]) G.add_edges_from([('Ritonavir', 'Darunavir')]) G.add_edges_from([('Lopinavir', 'Kaletra')]) G.add_edges_from([('Lopinavir', 'Darunavir')]) G.add_edges_from([('Kaletra', 'Darunavir')]) G.add_edges_from([('Arbidol', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Hydroxychloroquine')]) G.add_edges_from([('Chloroquine phosphate', 'Arbidol')]) pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Groups of drugs in clinical trials by working mechanisms', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=100, l=100, r=100, t=100), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) import numpy as np exist = {} LIST = open('../input/drugdata/sorted_alresult.coronavirus', 'r') for line in LIST: line = line.replace('\\s\\s+', '\t') line = line.strip() table = line.split(' ') if float(table[0]) > 4: exist[table[1]] = 0 REF = open('../input/drugdata/combine_drug_name_id.csv', 'r') DATA = open('../input/drugdata/combined_fp2_data.csv', 'r') drug = [] all_drug = {} for ref in REF: ref = ref.strip() rrr = ref.split(',') if rrr[1].lower() in exist: drug.append(rrr[1]) data = DATA.readline() data = data.strip() data = data.split(',') kkk = 0 for i in data: data[kkk] = float(i) kkk + 1 all_drug[rrr[1]] = np.asarray(data).astype(np.float) REF.close() DATA.close() connections1 = [] connections2 = [] for drug1 in drug: for drug2 in drug: if drug1 < drug2: cor = np.corrcoef(all_drug[drug1], all_drug[drug2]) if cor[0, 1] > 0.35: connections1.append(drug1) connections2.append(drug2) import sys import plotly.graph_objects as go import networkx as nx node_list = list(all_drug.keys()) G = nx.Graph() for i in node_list: G.add_node(i) i = 0 for drug1 in connections1: drug2 = connections2[i] G.add_edges_from([(drug1, drug2)]) i = i + 1 pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Similarity of chemical structures among the drugs that are related to coronavirus in literature', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=50, l=100, r=100, t=50), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) import numpy as np exist = {} LIST = open('../input/drugdata/sorted_alresult.covid19', 'r') for line in LIST: line = line.replace('\\s\\s+', '\t') line = line.strip() table = line.split(' ') if float(table[0]) > 0: exist[table[1]] = 0 REF = open('../input/drugdata/combine_drug_name_id.csv', 'r') DATA = open('../input/drugdata/combined_fp2_data.csv', 'r') drug = [] all_drug = {} for ref in REF: ref = ref.strip() rrr = ref.split(',') if rrr[1].lower() in exist: drug.append(rrr[1]) data = DATA.readline() data = data.strip() data = data.split(',') kkk = 0 for i in data: data[kkk] = float(i) kkk + 1 all_drug[rrr[1]] = np.asarray(data).astype(np.float) REF.close() DATA.close() connections1 = [] connections2 = [] for drug1 in drug: for drug2 in drug: if drug1 < drug2: cor = np.corrcoef(all_drug[drug1], all_drug[drug2]) if cor[0, 1] > 0.35: connections1.append(drug1) connections2.append(drug2) import sys import plotly.graph_objects as go import networkx as nx node_list = list(all_drug.keys()) G = nx.Graph() for i in node_list: G.add_node(i) i = 0 for drug1 in connections1: drug2 = connections2[i] G.add_edges_from([(drug1, drug2)]) i = i + 1 pos = nx.spring_layout(G, k=0.5, iterations=50) for n, p in pos.items(): G.nodes[n]['pos'] = p edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color='#888'), hoverinfo='none', mode='lines') for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) node_trace = go.Scatter(x=[], y=[], text=[], mode='markers', hoverinfo='text', marker=dict(showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict(thickness=5, xanchor='left', titleside='right'), line=dict(width=0))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) for node, adjacencies in enumerate(G.adjacency()): node_trace['marker']['color'] += tuple([len(adjacencies[1])]) node_info = adjacencies[0] node_trace['text'] += tuple([node_info]) fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout(title='Similarity of chemical structures among the drugs that are related to COVID-19 in literature', titlefont=dict(size=12), showlegend=False, hovermode='closest', margin=dict(b=50, l=100, r=100, t=50), annotations=[dict(text='', showarrow=False, xref='paper', yref='paper')], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) fig.show()
code
16113855/cell_9
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/champs-scalar-coupling/train.csv') test = pd.read_csv('../input/champs-scalar-coupling/test.csv') sub = pd.read_csv('../input/champs-scalar-coupling/sample_submission.csv') train_dist = pd.read_csv('../input/distance-features/train_dist.csv') test_dist = pd.read_csv('../input/distance-features/test_dist.csv') train = pd.merge(train.drop(['atom_index_0', 'atom_index_1', 'type'], axis=1), train_dist, how='left', on='id') test = pd.merge(test.drop(['atom_index_0', 'atom_index_1', 'type'], axis=1), test_dist, how='left', on='id') del train_dist, test_dist train_dipole_moment = pd.read_csv('../input/imputing-molecular-features/train_dipole_moment.csv') test_dipole_moment = pd.read_csv('../input/imputing-molecular-features/test_dipole_moment.csv') train = pd.merge(train, train_dipole_moment, how='left', on='molecule_name') test = pd.merge(test, test_dipole_moment, how='left', on='molecule_name') train_potential_energy = pd.read_csv('../input/imputing-molecular-features/train_potential_energy.csv') test_potential_energy = pd.read_csv('../input/imputing-molecular-features/test_potential_energy.csv') train = pd.merge(train, train_potential_energy, how='left', on='molecule_name') test = pd.merge(test, test_potential_energy, how='left', on='molecule_name') train_ob_charges = pd.read_csv('../input/v7-estimation-of-mulliken-charges-with-open-babel/train_ob_charges.csv') test_ob_charges = pd.read_csv('../input/v7-estimation-of-mulliken-charges-with-open-babel/test_ob_charges.csv') train = pd.merge(train, train_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem0'}, axis=1) train = pd.merge(train, train_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem1'}, axis=1) test = pd.merge(test, test_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem0'}, axis=1) test = pd.merge(test, test_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem1'}, axis=1) # https://www.kaggle.com/artgor/artgor-utils def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024 ** 2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024 ** 2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * ( start_mem - end_mem) / start_mem)) return df train = reduce_mem_usage(train) test = reduce_mem_usage(test)
code
16113855/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16113855/cell_15
[ "text_plain_output_1.png" ]
from numpy.random import permutation import lightgbm import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/champs-scalar-coupling/train.csv') test = pd.read_csv('../input/champs-scalar-coupling/test.csv') sub = pd.read_csv('../input/champs-scalar-coupling/sample_submission.csv') train_dist = pd.read_csv('../input/distance-features/train_dist.csv') test_dist = pd.read_csv('../input/distance-features/test_dist.csv') train = pd.merge(train.drop(['atom_index_0', 'atom_index_1', 'type'], axis=1), train_dist, how='left', on='id') test = pd.merge(test.drop(['atom_index_0', 'atom_index_1', 'type'], axis=1), test_dist, how='left', on='id') del train_dist, test_dist train_dipole_moment = pd.read_csv('../input/imputing-molecular-features/train_dipole_moment.csv') test_dipole_moment = pd.read_csv('../input/imputing-molecular-features/test_dipole_moment.csv') train = pd.merge(train, train_dipole_moment, how='left', on='molecule_name') test = pd.merge(test, test_dipole_moment, how='left', on='molecule_name') train_potential_energy = pd.read_csv('../input/imputing-molecular-features/train_potential_energy.csv') test_potential_energy = pd.read_csv('../input/imputing-molecular-features/test_potential_energy.csv') train = pd.merge(train, train_potential_energy, how='left', on='molecule_name') test = pd.merge(test, test_potential_energy, how='left', on='molecule_name') train_ob_charges = pd.read_csv('../input/v7-estimation-of-mulliken-charges-with-open-babel/train_ob_charges.csv') test_ob_charges = pd.read_csv('../input/v7-estimation-of-mulliken-charges-with-open-babel/test_ob_charges.csv') train = pd.merge(train, train_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem0'}, axis=1) train = pd.merge(train, train_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem1'}, axis=1) test = pd.merge(test, test_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem0'}, axis=1) test = pd.merge(test, test_ob_charges[['molecule_name', 'atom_index', 'eem']], how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index']).rename({'eem': 'eem1'}, axis=1) # https://www.kaggle.com/artgor/artgor-utils def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024 ** 2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024 ** 2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * ( start_mem - end_mem) / start_mem)) return df train = reduce_mem_usage(train) test = reduce_mem_usage(test) pred_vars = [v for v in train.columns if v not in ['id', 'molecule_name', 'scalar_coupling_constant', 'atom_index_x', 'atom_index_y']] molecule_names = pd.DataFrame(permutation(train['molecule_name'].unique()), columns=['molecule_name']) nm = molecule_names.shape[0] ntrn = int(0.9 * nm) nval = int(0.1 * nm) tmp_train = pd.merge(train, molecule_names[0:ntrn], how='right', on='molecule_name') tmp_val = pd.merge(train, molecule_names[ntrn:nm], how='right', on='molecule_name') X_train = tmp_train[pred_vars] X_val = tmp_val[pred_vars] y_train = tmp_train['scalar_coupling_constant'] y_val = tmp_val['scalar_coupling_constant'] del tmp_train, tmp_val params = {'objective': 'regression_l1', 'learning_rate': 0.1, 'num_leaves': 1023, 'num_threads': -1, 'bagging_fraction': 0.5, 'bagging_freq': 1, 'feature_fraction': 0.9, 'lambda_l1': 10.0, 'max_bin': 255, 'min_child_samples': 15} cat_feats = ['type', 'type_0', 'type_1', 'atom_0l', 'atom_0r', 'atom_1l', 'atom_1r'] train_data = lightgbm.Dataset(X_train, label=y_train, categorical_feature=cat_feats) val_data = lightgbm.Dataset(X_val, label=y_val, categorical_feature=cat_feats) model = lightgbm.train(params, train_data, valid_sets=[train_data, val_data], verbose_eval=500, num_boost_round=4000, early_stopping_rounds=100)
code
128045262/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes df['LOCATION START DATE'].nunique()
code
128045262/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns
code
128045262/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes
code
128045262/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10)
code
128045262/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes df['LOCATION END DATE'].nunique()
code
128045262/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes df['LOCATION'].nunique()
code
128045262/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes df['CITY'].nunique()
code
128045262/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns df.info()
code
128045262/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns pd.set_option('display.max_columns', None) from IPython.display import Image import plotly.express as px from IPython.display import Image from wordcloud import WordCloud, STOPWORDS df = pd.read_csv('/kaggle/input/listing-of-business/Listing of Active Businesses.csv') df.sample(10) df.columns dtypes = pd.DataFrame(df.dtypes, columns=['DataTypes']) dtypes print('Shape of the Dataset is {} Rows and {} Columns.'.format(len(df), len(df.columns)))
code
129014537/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94mNumber of rows in train data: {train.shape[0]}') print(f'\x1b[94mNumber of columns in train data: {train.shape[1]}') print(f'\x1b[94mNumber of values in train data: {train.count().sum()}') print(f'\x1b[94mNumber missing values in train data: {sum(train.isna().sum())}')
code