path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73074336/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.shape df.columns df.isnull().sum() df.drop('company', inplace=True, axis=1) df df_Sort_by_adr = df.sort_values(by=['adr'], ascending=False)['name'] df_Sort_by_adr.dataFrame
code
73074336/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.shape df.columns df.tail()
code
73074336/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.shape df.columns df.isnull().sum()
code
73074336/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.info()
code
73074336/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.shape df.columns df.isnull().sum() df.drop('company', inplace=True, axis=1) df df['country'].value_counts(sort=True)[:5]
code
73074336/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv') df.shape df.columns
code
106195752/cell_21
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) print(c.dtype)
code
106195752/cell_4
[ "text_plain_output_1.png" ]
pip install numpy
code
106195752/cell_23
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) print(e.dtype)
code
106195752/cell_30
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) Y = np.ones((3, 4)) Z = np.full((3, 4), 5) print(Z)
code
106195752/cell_33
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) Y = np.ones((3, 4)) Z = np.full((3, 4), 5) I = np.eye(5) D = np.diag([1, 2, 3, 4]) N = np.arange(10) M = np.arange(10, 30) O = np.arange(10, 30, 3) print(N) print(M) print(O)
code
106195752/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) print('rank: ', b.ndim)
code
106195752/cell_29
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) Y = np.ones((3, 4)) print(Y)
code
106195752/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') print(y)
code
106195752/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) print(b.shape)
code
106195752/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) print(b)
code
106195752/cell_32
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) Y = np.ones((3, 4)) Z = np.full((3, 4), 5) I = np.eye(5) D = np.diag([1, 2, 3, 4]) print(D)
code
106195752/cell_28
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) print(X)
code
106195752/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) print('rank: ', a.ndim)
code
106195752/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) print(a.shape)
code
106195752/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) print(a.dtype)
code
106195752/cell_31
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) x = np.array([1, 2, 3, 4, 5]) np.save('my_array', x) y = np.load('my_array.npy') X = np.zeros((3, 4)) Y = np.ones((3, 4)) Z = np.full((3, 4), 5) I = np.eye(5) print(I)
code
106195752/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) e = np.array([1, 2.3, 5]) f = np.array([1, 2.3, 4], dtype=np.int64) print(f.dtype)
code
106195752/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) print(a) print(type(a))
code
106195752/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) start = time.time() np.mean(x) a = np.array([1, 2, 3, 4, 5]) b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) c = np.array(['Hello', 'World']) d = np.array([1, 2, 3, 'Hello']) print(d.dtype)
code
106195752/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import time import time import numpy as np x = np.random.random(100000000) start = time.time() sum(x) / len(x) print('using built-in python function: ', time.time() - start) start = time.time() np.mean(x) print('using NumPy: ', time.time() - start)
code
2022470/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values
code
2022470/cell_25
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.head(2)
code
2022470/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') sns.countplot('Sex', hue='Survived', data=df)
code
2022470/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values sns.countplot('Sex', hue='Survived', data=df) plt.show()
code
2022470/cell_33
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df
code
2022470/cell_29
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r')
code
2022470/cell_39
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') fig = plt.gcf() fig.set_size_inches(10, 8) df['Survived'].mean()
code
2022470/cell_26
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df['Age_band'].value_counts().to_frame().style.background_gradient(cmap='summer')
code
2022470/cell_19
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.head()
code
2022470/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df.groupby(['Sex', 'Survived'])[['Survived']].count().plot(kind='bar')
code
2022470/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Sex'].replace(['female', 'male'], [1, 0], inplace=True)
code
2022470/cell_31
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r')
code
2022470/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum()
code
2022470/cell_37
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', encoding='ISO-8859-1', low_memory=False) df.columns.values df['Age_band'] = 0 df.loc[df['Age'] <= 16, 'Age_band'] = 0 df.loc[(df['Age'] > 16) & (df['Age'] <= 32), 'Age_band'] = 1 df.loc[(df['Age'] > 32) & (df['Age'] <= 48), 'Age_band'] = 2 df.loc[(df['Age'] > 48) & (df['Age'] <= 64), 'Age_band'] = 3 df.loc[df['Age'] > 64, 'Age_band'] = 4 df.Age.isnull().sum() pd.crosstab(df.Pclass, df.Survived, margins=True).style.background_gradient(cmap='summer_r') df['Title'] = None for index, row in enumerate(df['Name']): title = row.split(', ')[1].split('. ')[0] if title in ['Capt', 'Col', 'Don', 'Jonkheer', 'Major', 'Mr', 'Rev', 'Sir']: df.loc[index, 'Title'] = 'Mr' elif title in ['Ms', 'Mme', 'Mrs', 'the Countess', 'Lady']: df.loc[index, 'Title'] = 'Mrs' elif title in ['Master']: df.loc[index, 'Title'] = 'Master' elif title in ['Miss', 'Mlle']: df.loc[index, 'Title'] = 'Ms' else: df.loc[index, 'Title'] = 'Other' pd.crosstab(df.Title, df.Survived, margins=True).style.background_gradient(cmap='summer_r') sns.heatmap(df.corr(), annot=True, cmap='RdYlGn', linewidths=0.2) fig = plt.gcf() fig.set_size_inches(10, 8) plt.show()
code
16139957/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape rd['Longitude'].hist()
code
16139957/cell_4
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_
code
16139957/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()]
code
16139957/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape latitude = rd['Latitude'] longitude = rd['Longitude'] (latitude, longitude) min_lat, max_lat = (min(latitude), max(latitude)) min_lng, max_lng = (min(longitude), max(longitude)) (min_lat, max_lat, min_lng, max_lng)
code
16139957/cell_19
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data date_grid = np.zeros((max(data['Days']) + 1, max(data['Grid']) + 1), dtype='bool') date_grid.shape len(date_grid[date_grid == True]) / date_grid.size
code
16139957/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16139957/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape
code
16139957/cell_18
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data date_grid = np.zeros((max(data['Days']) + 1, max(data['Grid']) + 1), dtype='bool') date_grid.shape date_grid[data['Days'], data['Grid']] = True len(date_grid[date_grid == True])
code
16139957/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape rd['Latitude'].hist()
code
16139957/cell_15
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data max(data['Grid'])
code
16139957/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data (min(data['Days']), max(data['Days']))
code
16139957/cell_3
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days
code
16139957/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data date_grid = np.zeros((max(data['Days']) + 1, max(data['Grid']) + 1), dtype='bool') date_grid.shape
code
16139957/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step) def to_grid(lat, lng): x = (lng - min_lng) // lng_step y = (lat - min_lat) // lat_step return x + GRID_X_DIM * y data = pd.DataFrame(rd['CMPLNT_FR_DT']) data['Days'] = days_ data['Grid'] = to_grid(rd['Latitude'], rd['Longitude']) data = data.dropna() data['Days'] = data['Days'].astype('int32') data['Grid'] = data['Grid'].astype('int32') data
code
16139957/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() rd = raw_data rd = rd[rd['Latitude'] > rd['Latitude'].mean() - 3 * rd['Latitude'].std()][rd['Latitude'] < rd['Latitude'].mean() + 3 * rd['Latitude'].std()] rd = rd[rd['Longitude'] > rd['Longitude'].mean() - 3 * rd['Longitude'].std()][rd['Longitude'] < rd['Longitude'].mean() + 3 * rd['Longitude'].std()] rd.shape latitude = rd['Latitude'] longitude = rd['Longitude'] (latitude, longitude)
code
16139957/cell_12
[ "text_plain_output_1.png" ]
GRID_X_DIM = 120 GRID_Y_DIM = 100 lng_step = (max_lng - min_lng) / (GRID_X_DIM - 1) lat_step = (max_lat - min_lat) / (GRID_Y_DIM - 1) (lng_step, lat_step)
code
16139957/cell_5
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('../input/rows.csv', usecols=['CMPLNT_FR_DT', 'Latitude', 'Longitude']).dropna() first_date = np.datetime64('2006-01-01') days = (pd.to_datetime(raw_data['CMPLNT_FR_DT'], format='%m/%d/%Y', errors='coerce') - first_date).dt.days days days_ = days[days.isnull() == False] days_ = days_[days_ > 0] days_ = days_ days_ min_days = min(days_) max_days = max(days_) (min_days, max_days)
code
16123173/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import calendar import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df['Weekday'] = df.Date.dt.weekday df['Weekday'] = df['Weekday'].apply(lambda x: calendar.day_name[x]) weekdays_total = df.groupby('Weekday').size().plot.bar() totals = [] for i in weekdays_total.patches: totals.append(i.get_height()) total = sum(totals) for i in weekdays_total.patches: weekdays_total.text(i.get_x() + 0.0, i.get_height() - 0, i.get_height(), fontsize=12, color='black')
code
16123173/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.head()
code
16123173/cell_11
[ "text_plain_output_1.png" ]
import calendar import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df['Weekday'] = df.Date.dt.weekday df['Weekday'] = df['Weekday'].apply(lambda x: calendar.day_name[x]) weekdays_total=df.groupby('Weekday').size().plot.bar() totals = [] # find the values and append to list for i in weekdays_total.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # set individual bar lables using above list for i in weekdays_total.patches: # get_x pulls left or right; get_height pushes up or down weekdays_total.text(i.get_x()+.0, i.get_height()-0, \ i.get_height(), fontsize=12, color='black') grouped=df.groupby('Route').size().sort_values(ascending=False) graph_grouped=grouped[:15].plot.bar(title='The most popular destinations weekly', figsize=(12,8)) # find the values and append to list for i in graph_grouped.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # set individual bar lables using above list for i in graph_grouped.patches: # get_x pulls left or right; get_height pushes up or down graph_grouped.text(i.get_x()+.0, i.get_height()-0, \ i.get_height(), fontsize=12, color='black') df['Time'] = df.Time.dt.hour tf=df.loc[df.Weekday.isin(['Monday','Tuesday','Wednesday','Thursday','Friday'])] workdays=tf.groupby(['Time','Weekday']).count()['Route'].unstack().plot(kind='line',linewidth=3.0, title='Other card distribution per hours',\ figsize=(18,10)) workdays plt.xticks(np.arange(0,24,step=1)) kf = df.loc[df.Weekday.isin(['Saturday', 'Sunday'])] weekends = kf.groupby(['Time', 'Weekday']).count()['Route'].unstack().plot(kind='line', linewidth=3.0, title='Other card distribution per hours', figsize=(16, 6)) weekends plt.xticks(np.arange(0, 24, step=1))
code
16123173/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os from datetime import datetime import calendar import matplotlib.pyplot as plt import seaborn as sns print(os.listdir('../input'))
code
16123173/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import calendar import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df['Weekday'] = df.Date.dt.weekday df['Weekday'] = df['Weekday'].apply(lambda x: calendar.day_name[x]) weekdays_total=df.groupby('Weekday').size().plot.bar() totals = [] # find the values and append to list for i in weekdays_total.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # set individual bar lables using above list for i in weekdays_total.patches: # get_x pulls left or right; get_height pushes up or down weekdays_total.text(i.get_x()+.0, i.get_height()-0, \ i.get_height(), fontsize=12, color='black') grouped = df.groupby('Route').size().sort_values(ascending=False) graph_grouped = grouped[:15].plot.bar(title='The most popular destinations weekly', figsize=(12, 8)) for i in graph_grouped.patches: totals.append(i.get_height()) total = sum(totals) for i in graph_grouped.patches: graph_grouped.text(i.get_x() + 0.0, i.get_height() - 0, i.get_height(), fontsize=12, color='black')
code
16123173/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df.info()
code
16123173/cell_10
[ "text_html_output_1.png" ]
import calendar import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df['Weekday'] = df.Date.dt.weekday df['Weekday'] = df['Weekday'].apply(lambda x: calendar.day_name[x]) weekdays_total=df.groupby('Weekday').size().plot.bar() totals = [] # find the values and append to list for i in weekdays_total.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # set individual bar lables using above list for i in weekdays_total.patches: # get_x pulls left or right; get_height pushes up or down weekdays_total.text(i.get_x()+.0, i.get_height()-0, \ i.get_height(), fontsize=12, color='black') grouped=df.groupby('Route').size().sort_values(ascending=False) graph_grouped=grouped[:15].plot.bar(title='The most popular destinations weekly', figsize=(12,8)) # find the values and append to list for i in graph_grouped.patches: totals.append(i.get_height()) # set individual bar lables using above list total = sum(totals) # set individual bar lables using above list for i in graph_grouped.patches: # get_x pulls left or right; get_height pushes up or down graph_grouped.text(i.get_x()+.0, i.get_height()-0, \ i.get_height(), fontsize=12, color='black') df['Time'] = df.Time.dt.hour tf = df.loc[df.Weekday.isin(['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'])] workdays = tf.groupby(['Time', 'Weekday']).count()['Route'].unstack().plot(kind='line', linewidth=3.0, title='Other card distribution per hours', figsize=(18, 10)) workdays plt.xticks(np.arange(0, 24, step=1))
code
16123173/cell_5
[ "image_output_1.png" ]
import calendar import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('../input/flight_schedule.xlsx') df.Date = pd.to_datetime(df.Date) df.Time = df.Time.astype(str) df.Time = pd.to_datetime(df.Time) df['Weekday'] = df.Date.dt.weekday df['Weekday'] = df['Weekday'].apply(lambda x: calendar.day_name[x]) cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] df['Weekday'] = df['Weekday'].astype('category', categories=cats, ordered=True) df
code
34126468/cell_13
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack
code
34126468/cell_9
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits
code
34126468/cell_25
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0]
code
34126468/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple')
code
34126468/cell_6
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana')
code
34126468/cell_40
[ "text_plain_output_1.png" ]
a = set('abracadabra') b = set('alacazam') a
code
34126468/cell_29
[ "text_plain_output_1.png" ]
v = ([1, 2, 3], [3, 2, 1]) v
code
34126468/cell_39
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 'crabgrass' in basket
code
34126468/cell_26
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] t
code
34126468/cell_48
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel del tel['sape'] tel
code
34126468/cell_11
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits fruits.sort() fruits fruits.pop()
code
34126468/cell_7
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4)
code
34126468/cell_28
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] t[0] = 88888
code
34126468/cell_8
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits
code
34126468/cell_15
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop() stack
code
34126468/cell_16
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop() stack.pop() stack.pop() stack
code
34126468/cell_38
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 'orange' in basket
code
34126468/cell_47
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel tel['jack']
code
34126468/cell_35
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] x, y, z = t print(x, y, z)
code
34126468/cell_46
[ "text_plain_output_1.png" ]
tel = {'jack': 4098, 'sape': 4139} tel['guido'] = 4127 tel
code
34126468/cell_14
[ "text_plain_output_1.png" ]
stack = [3, 4, 5] stack.append(6) stack.append(7) stack stack.pop()
code
34126468/cell_10
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine') fruits.index('banana') fruits.index('banana', 4) fruits.reverse() fruits fruits.append('grape') fruits fruits.sort() fruits
code
34126468/cell_27
[ "text_plain_output_1.png" ]
t = (12345, 54321, 'hello!') t[0] u = (t, (1, 2, 3, 4, 5)) u
code
34126468/cell_37
[ "text_plain_output_1.png" ]
basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} print(basket)
code
34126468/cell_5
[ "text_plain_output_1.png" ]
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] fruits.count('apple') fruits.count('tangerine')
code
106194155/cell_11
[ "text_html_output_1.png" ]
data = port.copy() data.head()
code
106194155/cell_15
[ "text_html_output_2.png" ]
import plotly.express as px import plotly.express as px data = port.copy() data.Pstatus.value_counts() import plotly.express as px fig = px.funnel(data, x='sex', y='G3') fig.show()
code
106194155/cell_14
[ "text_plain_output_1.png" ]
data = port.copy() data.Pstatus.value_counts()
code
106194155/cell_12
[ "text_plain_output_1.png" ]
data = port.copy() data.info()
code
129007065/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from gensim.models import KeyedVectors from sklearn.neighbors import NearestNeighbors import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.neighbors import NearestNeighbors from gensim.models import KeyedVectors import numpy as np import ast import pandas as pd data_path = '/kaggle/input/2-recommended-reads-conversion-of-data-to-num/vectorizedData.csv' data = pd.read_csv(data_path) data = data.drop_duplicates(subset=['booktitle', 'authorname'], keep='first') data['word2vec'] = data['word2vec'].apply(lambda x: x.strip('[]')) data['word2vec'] = data['word2vec'].apply(lambda x: x.split()) data['word2vec'] = data['word2vec'].apply(lambda x: [float(y) for y in x]) model_path = '/kaggle/input/googlenewsvectors/GoogleNews-vectors-negative300.bin' word_vectors = KeyedVectors.load_word2vec_format(model_path, binary=True) user_description = 'a space adventure with friends' user_vector = np.mean([word_vectors[word] for word in user_description.split() if word in word_vectors.key_to_index], axis=0) nn_model = NearestNeighbors(n_neighbors=10, metric='cosine') X = np.array(data['word2vec'].tolist()) nn_model.fit(X) distances, indices = nn_model.kneighbors([user_vector]) recommended_books = data.iloc[indices[0]][['booktitle', 'authorname']].values.tolist() print('Kullanıcının girdiği kitaba benzer kitaplar:') for i, book in enumerate(recommended_books): similarity = 1 - distances[0][i] similarity_percent = round(similarity * 100, 2) print(f'{book[0]} by {book[1]} ({similarity_percent}%)')
code
129007065/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129007065/cell_3
[ "image_output_1.png" ]
from gensim.models import KeyedVectors from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.neighbors import NearestNeighbors from gensim.models import KeyedVectors import numpy as np import ast import pandas as pd data_path = '/kaggle/input/2-recommended-reads-conversion-of-data-to-num/vectorizedData.csv' data = pd.read_csv(data_path) data = data.drop_duplicates(subset=['booktitle', 'authorname'], keep='first') data['word2vec'] = data['word2vec'].apply(lambda x: x.strip('[]')) data['word2vec'] = data['word2vec'].apply(lambda x: x.split()) data['word2vec'] = data['word2vec'].apply(lambda x: [float(y) for y in x]) model_path = '/kaggle/input/googlenewsvectors/GoogleNews-vectors-negative300.bin' word_vectors = KeyedVectors.load_word2vec_format(model_path, binary=True) user_description = 'a space adventure with friends' user_vector = np.mean([word_vectors[word] for word in user_description.split() if word in word_vectors.key_to_index], axis=0) nn_model = NearestNeighbors(n_neighbors=10, metric='cosine') X = np.array(data['word2vec'].tolist()) nn_model.fit(X) distances, indices = nn_model.kneighbors([user_vector]) recommended_books = data.iloc[indices[0]][['booktitle', 'authorname']].values.tolist() for i, book in enumerate(recommended_books): similarity = 1 - distances[0][i] similarity_percent = round(similarity * 100, 2) import matplotlib.pyplot as plt books = [book[0] for book in recommended_books] similarity_percents = [round((1 - distance) * 100, 2) for distance in distances[0]] fig, ax = plt.subplots(figsize=(8, 6)) ax.barh(books, similarity_percents, align='center', color='skyblue') ax.set_xlabel('Benzerlik Oranı (%)') ax.set_title('Kullanıcının Girdiği Kitaba Benzer Kitaplar') plt.subplots_adjust(left=0.3) for i, v in enumerate(similarity_percents): ax.text(v + 2, i - 0.15, str(v), color='blue', fontweight='bold') plt.gca().invert_yaxis() plt.show()
code
72111100/cell_13
[ "text_html_output_1.png" ]
train = pd.read_csv('../input/car-price/train set.csv') names = [x.split(' ')[0] for x in list(train['name'])] train.insert(0, 'brand', names) train = train.drop(['name', 'seller_type', 'owner', 'torque', 'fuel'], axis=1) train['engine'] = [int(x.split(' ')[0]) for x in list(train['engine'])] train['mileage'] = [float(x.split(' ')[0]) for x in list(train['mileage'])] train['max_power'] = [float(x.split(' ')[0]) for x in list(train['max_power'])] num_features = [x for x in train.columns if type(train[x][0]) is not str] cat_features = [x for x in train.columns if x not in num_features] import seaborn as sns, matplotlib.pyplot as plt sns.barplot(y=train['brand'], x=train['selling_price']) plt.show()
code
72111100/cell_25
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression as LR, Perceptron from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR train = pd.read_csv('../input/car-price/train set.csv') names = [x.split(' ')[0] for x in list(train['name'])] train.insert(0, 'brand', names) train = train.drop(['name', 'seller_type', 'owner', 'torque', 'fuel'], axis=1) train['engine'] = [int(x.split(' ')[0]) for x in list(train['engine'])] train['mileage'] = [float(x.split(' ')[0]) for x in list(train['mileage'])] train['max_power'] = [float(x.split(' ')[0]) for x in list(train['max_power'])] num_features = [x for x in train.columns if type(train[x][0]) is not str] cat_features = [x for x in train.columns if x not in num_features] X_train = train.drop('selling_price', axis=1).values[0:6850] y_train = train['selling_price'].values[0:6850] from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_X_train = scaler.fit_transform(X_train) from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.metrics import * from math import sqrt mcc = make_scorer(mean_absolute_error) def evaluate_model(model): model = model import sklearn scores = cross_val_score(model, scaled_X_train, y_train, scoring=mcc, cv=5, n_jobs=-1) return scores.mean() models = [KNR(), RNR(), LR(), RFR(n_estimators=300), Perceptron(), SVR(), MLPR()] models_names = ['K_neighbors', 'radius_neighbors', 'linear_regression', 'random_forest_regressor', 'perceptron', 'SVR', 'MLP_Regression'] scores = list() for clf, clf_name in zip(models, models_names): k_mean = evaluate_model(clf) scores.append(k_mean) model = models[3] print(model)
code
72111100/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression as LR, Perceptron from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR train = pd.read_csv('../input/car-price/train set.csv') names = [x.split(' ')[0] for x in list(train['name'])] train.insert(0, 'brand', names) train = train.drop(['name', 'seller_type', 'owner', 'torque', 'fuel'], axis=1) train['engine'] = [int(x.split(' ')[0]) for x in list(train['engine'])] train['mileage'] = [float(x.split(' ')[0]) for x in list(train['mileage'])] train['max_power'] = [float(x.split(' ')[0]) for x in list(train['max_power'])] num_features = [x for x in train.columns if type(train[x][0]) is not str] cat_features = [x for x in train.columns if x not in num_features] X_train = train.drop('selling_price', axis=1).values[0:6850] y_train = train['selling_price'].values[0:6850] from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_X_train = scaler.fit_transform(X_train) from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.metrics import * from math import sqrt mcc = make_scorer(mean_absolute_error) def evaluate_model(model): model = model import sklearn scores = cross_val_score(model, scaled_X_train, y_train, scoring=mcc, cv=5, n_jobs=-1) return scores.mean() models = [KNR(), RNR(), LR(), RFR(n_estimators=300), Perceptron(), SVR(), MLPR()] models_names = ['K_neighbors', 'radius_neighbors', 'linear_regression', 'random_forest_regressor', 'perceptron', 'SVR', 'MLP_Regression'] scores = list() for clf, clf_name in zip(models, models_names): k_mean = evaluate_model(clf) scores.append(k_mean) model = models[3] model.fit(scaled_X_train, y_train)
code