path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
128046727/cell_52 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Other diseases diagnosys grouped by sex', data_df, 'other', size=2) | code |
128046727/cell_45 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Normal diagnosys grouped by sex', data_df, 'normal', size=2) | code |
128046727/cell_49 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'AMD diagnosys grouped by sex', data_df, 'amd', size=2) | code |
128046727/cell_32 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('myopia', 'Myopia', data_df, size=2) | code |
128046727/cell_51 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Myopia diagnosys grouped by sex', data_df, 'myopia', size=2) | code |
128046727/cell_59 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import glob
import imageio
import matplotlib.pyplot as plt
import os
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
import imageio
IMAGE_PATH = "/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/Training Images"
def show_images(df, title="Diagnosys", eye_exam="left_fundus"):
print(f"{title}; eye exam: {eye_exam}")
f, ax = plt.subplots(4,4, figsize=(16,16))
for i,idx in enumerate(df.index):
dd = df.iloc[idx]
image_name = dd[eye_exam]
image_path = os.path.join(IMAGE_PATH, image_name)
img_data=imageio.imread(image_path)
ax[i//4, i%4].imshow(img_data)
ax[i//4, i%4].axis('off')
plt.show()
df = data_df.loc[(data_df.cataract == 1) & (data_df.left_diagnosys == 'cataract')].sample(16).reset_index()
df = data_df.loc[(data_df.cataract == 1) & (data_df.right_diagnosys == 'cataract')].sample(16).reset_index()
df = data_df.loc[(data_df.glaucoma == 1) & (data_df.left_diagnosys == 'glaucoma')].sample(16).reset_index()
show_images(df, title='Left eye with glaucoma', eye_exam='left_fundus') | code |
128046727/cell_28 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('glaucoma', 'Glaucoma', data_df, size=2) | code |
128046727/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
data_df.head() | code |
128046727/cell_47 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Glaucoma diagnosys grouped by sex', data_df, 'glaucoma', size=2) | code |
128046727/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
print(f'data shape: {data_df.shape}')
print(f'left fundus: {data_df.left_fundus.nunique()}')
print(f'right fundus: {data_df.right_fundus.nunique()}') | code |
128046727/cell_35 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('left_diagnosys', 'Left eye diagnosys (first 20 values)', data_df, size=4) | code |
128046727/cell_43 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
show_wordcloud(cataract_df['right_diagnosys'], title='Prevalent words in right eye diagnosys for cataract') | code |
128046727/cell_31 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('hypertension', 'Hypertension', data_df, size=2) | code |
128046727/cell_46 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Diabetes diagnosys grouped by sex', data_df, 'diabetes', size=2) | code |
128046727/cell_24 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('age', 'Age', data_df, size=5, show_all=True) | code |
128046727/cell_27 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('diabetes', 'Diabetes', data_df, size=2) | code |
128046727/cell_5 | [
"image_output_1.png"
] | import os
for dirname, _, filenames in os.walk('/kaggle/input'):
print(dirname) | code |
128046727/cell_36 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('right_diagnosys', 'Right eye diagnosys (first 20 values)', data_df, size=4) | code |
106190796/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
round(df.isna().sum() / df.shape[0] * 100, 2) | code |
106190796/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.head() | code |
106190796/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape | code |
106190796/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
sns.countplot(df.Transported) | code |
106190796/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.impute import KNNImputer
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
round(df.isna().sum() / df.shape[0] * 100, 2)
df.drop(['PassengerId', 'Cabin', 'Name'], axis=1, inplace=True)
df.Transported = df.Transported.astype('str')
le = LabelEncoder()
for col in df.select_dtypes(include='object'):
df[col] = le.fit_transform(df[col])
KNNImpute = KNNImputer()
newdf = KNNImpute.fit_transform(df)
df = pd.DataFrame(newdf, columns=df.columns)
#Outliers Detection
fig, ax = plt.subplots(figsize = (15,10))
sns.boxplot(data = df, ax = ax, palette='Reds')
plt.show()
plt.figure(figsize=(10, 7))
sns.heatmap(df.corr(), cmap='Reds', annot=True) | code |
106190796/cell_15 | [
"text_html_output_1.png"
] | from sklearn.impute import KNNImputer
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
round(df.isna().sum() / df.shape[0] * 100, 2)
df.drop(['PassengerId', 'Cabin', 'Name'], axis=1, inplace=True)
df.Transported = df.Transported.astype('str')
le = LabelEncoder()
for col in df.select_dtypes(include='object'):
df[col] = le.fit_transform(df[col])
KNNImpute = KNNImputer()
newdf = KNNImpute.fit_transform(df)
df = pd.DataFrame(newdf, columns=df.columns)
fig, ax = plt.subplots(figsize=(15, 10))
sns.boxplot(data=df, ax=ax, palette='Reds')
plt.show() | code |
106190796/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5) | code |
106190796/cell_17 | [
"text_html_output_1.png"
] | from sklearn.impute import KNNImputer
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
round(df.isna().sum() / df.shape[0] * 100, 2)
df.drop(['PassengerId', 'Cabin', 'Name'], axis=1, inplace=True)
df.Transported = df.Transported.astype('str')
le = LabelEncoder()
for col in df.select_dtypes(include='object'):
df[col] = le.fit_transform(df[col])
KNNImpute = KNNImputer()
newdf = KNNImpute.fit_transform(df)
df = pd.DataFrame(newdf, columns=df.columns)
df.describe() | code |
106190796/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.shape
round(df.isna().sum() / df.shape[0] * 100, 2)
for col in df.select_dtypes(include='object'):
print(f'{col} -- > {df[col].unique()} \nTotal Unique Values --> {df[col].nunique()}\n-----------------------------------') | code |
106190796/cell_5 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/spaceship-titanic/train.csv')
df.sample(5)
df.describe(percentiles=[i / 10 for i in range(1, 10)]) | code |
34136379/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
print(scaler.fit(df)) | code |
34136379/cell_34 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_df = scaler.transform(df)
scaled_df = pd.DataFrame(scaled_df, columns=df.columns)
awesome_song = pd.DataFrame(data=None, columns=df.columns)
awesome_song = awesome_song.append(pd.Series(), ignore_index=True)
awesome_song
awesome_song.iloc[0] = df.iloc[0]
awesome_song.columns | code |
34136379/cell_23 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
df.head() | code |
34136379/cell_30 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_df = scaler.transform(df)
scaled_df = pd.DataFrame(scaled_df, columns=df.columns)
awesome_song = pd.DataFrame(data=None, columns=df.columns)
awesome_song = awesome_song.append(pd.Series(), ignore_index=True)
awesome_song | code |
34136379/cell_33 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_df = scaler.transform(df)
scaled_df = pd.DataFrame(scaled_df, columns=df.columns)
awesome_song = pd.DataFrame(data=None, columns=df.columns)
awesome_song = awesome_song.append(pd.Series(), ignore_index=True)
awesome_song
awesome_song.iloc[0] = df.iloc[0]
awesome_song | code |
34136379/cell_19 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts() | code |
34136379/cell_28 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_df = scaler.transform(df)
scaled_df = pd.DataFrame(scaled_df, columns=df.columns)
scaled_df.head() | code |
34136379/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
df['ArtisT_Name'].unique() | code |
34136379/cell_43 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
df.dtypes.value_counts()
df = pd.get_dummies(df)
df = df.reindex(sorted(df.columns), axis=1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_df = scaler.transform(df)
scaled_df = pd.DataFrame(scaled_df, columns=df.columns)
awesome_song = pd.DataFrame(data=None, columns=df.columns)
awesome_song = awesome_song.append(pd.Series(), ignore_index=True)
awesome_song
awesome_song.iloc[0] = df.iloc[0]
awesome_song.columns
awesome_song = awesome_song.reindex(sorted(awesome_song.columns), axis=1)
awesome_song = scaler.transform(awesome_song)
awesome_song = pd.DataFrame(awesome_song, columns=df.columns)
awesome_song | code |
34136379/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(
corr,
vmin=-1, vmax=1, center=0,
cmap=sns.diverging_palette(20, 220, n=200),
square=True
)
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
def uni_analysis(df):
x = df.select_dtypes(include=['O'])
p_value = []
for i in x:
para = 'Popularity ~ ' + str(i)
model = smf.ols(formula=para, data=df)
results = model.fit()
p_value.append(results.f_pvalue)
df1 = pd.DataFrame(list(zip(x, p_value)), columns=['Variable', 'p_value'])
df1['Drop_column'] = df1['p_value'].apply(lambda x: 'True' if x > 0.05 else 'False')
return df1
uni_analysis(df) | code |
34136379/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False)
import seaborn as sns
corr = df.corr()
ax = sns.heatmap(corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True) | code |
34136379/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/top-50-spotify/top50.csv', encoding='latin-1')
df.sort_values(by=['Popularity'], ascending=False) | code |
128008136/cell_13 | [
"text_plain_output_1.png"
] | !pip install -q -U segmentation-models-pytorch albumentations > /dev/null
import segmentation_models_pytorch as smp | code |
128008136/cell_6 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
DATA_DIR = '/kaggle/input/cvcclinicdb'
metadata_df = pd.read_csv(os.path.join(DATA_DIR, 'metadata.csv'))
metadata_df = metadata_df[['frame_id', 'png_image_path', 'png_mask_path']]
metadata_df['png_image_path'] = metadata_df['png_image_path'].apply(lambda img_pth: os.path.join(DATA_DIR, img_pth))
metadata_df['png_mask_path'] = metadata_df['png_mask_path'].apply(lambda img_pth: os.path.join(DATA_DIR, img_pth))
metadata_df = metadata_df.sample(frac=1).reset_index(drop=True)
valid_df = metadata_df.sample(frac=0.1, random_state=42)
train_df = metadata_df.drop(valid_df.index)
(len(train_df), len(valid_df)) | code |
128008136/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import pandas as pd
DATA_DIR = '/kaggle/input/cvcclinicdb'
metadata_df = pd.read_csv(os.path.join(DATA_DIR, 'metadata.csv'))
metadata_df = metadata_df[['frame_id', 'png_image_path', 'png_mask_path']]
metadata_df['png_image_path'] = metadata_df['png_image_path'].apply(lambda img_pth: os.path.join(DATA_DIR, img_pth))
metadata_df['png_mask_path'] = metadata_df['png_mask_path'].apply(lambda img_pth: os.path.join(DATA_DIR, img_pth))
metadata_df = metadata_df.sample(frac=1).reset_index(drop=True)
valid_df = metadata_df.sample(frac=0.1, random_state=42)
train_df = metadata_df.drop(valid_df.index)
(len(train_df), len(valid_df))
class_dict = pd.read_csv(os.path.join(DATA_DIR, 'class_dict.csv'))
class_names = class_dict['class_names'].tolist()
class_rgb_values = class_dict[['r', 'g', 'b']].values.tolist()
print('All dataset classes and their corresponding RGB values in labels:')
print('Class Names: ', class_names)
print('Class RGB values: ', class_rgb_values) | code |
128008136/cell_15 | [
"text_plain_output_1.png"
] | !pip install torchsummary
from torchsummary import summary
summary(model,(3, 288, 384)) | code |
331059/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
def logloss_err(y, p):
N = len(p)
err = -1 / N * np.sum(y * np.log(p))
return err
p = np.array([[0.2, 0.8], [0.7, 0.3]])
y = np.array([[0, 1], [1, 0]])
logloss_err(y, p) | code |
331059/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
import numpy as np # linear algebra
import os #joining filepath
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def logloss_err(y, p):
N = len(p)
err = -1 / N * np.sum(y * np.log(p))
return err
p = np.array([[0.2, 0.8], [0.7, 0.3]])
y = np.array([[0, 1], [1, 0]])
logloss_err(y, p)
datadir = '../input'
gatrain = pd.read_csv(os.path.join(datadir, 'gender_age_train.csv'), index_col='device_id')
gatest = pd.read_csv(os.path.join(datadir, 'gender_age_test.csv'), index_col='device_id')
phone = pd.read_csv(os.path.join(datadir, 'phone_brand_device_model.csv'))
phone = phone.drop_duplicates('device_id', keep='first').set_index('device_id')
events = pd.read_csv(os.path.join(datadir, 'events.csv'), parse_dates=['timestamp'], index_col='event_id')
appevents = pd.read_csv(os.path.join(datadir, 'app_events.csv'), usecols=['event_id', 'app_id', 'is_active'], dtype={'is_active': bool})
applabels = pd.read_csv(os.path.join(datadir, 'app_labels.csv'))
gatrain['trainrow'] = np.arange(gatrain.shape[0])
brandencoder = LabelEncoder().fit(phone.phone_brand)
phone['brand'] = brandencoder.transform(phone['phone_brand'])
gatrain['brand'] = phone['brand']
gatest['brand'] = phone['brand']
Xtr_brand = csr_matrix((np.ones(gatrain.shape[0]), (gatrain.trainrow, gatrain.brand)))
Xte_brand = csr_matrix((np.ones(gatest.shape[0]), (gatest.testrow, gatest.brand)))
print('Brand features: train shape {}, test shape {}'.format(Xtr_brand.shape, Xte_brand.shape)) | code |
32068117/cell_21 | [
"text_plain_output_4.png",
"text_plain_output_6.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from cleantext import clean
from sentence_transformers import SentenceTransformer
from summarizer import Summarizer
from tqdm import tqdm
import faiss
import numpy as np
import os
import pandas as pd
from sentence_transformers import SentenceTransformer
import faiss
from tqdm import tqdm
from summarizer import Summarizer
import scipy.spatial
import pandas as pd
import numpy as np
import re
import json
import time
import os
from cleantext import clean
def filter_text(text):
text = text.lower()
text = text.replace(',', ' ').replace('-', ' ').replace('_', ' ').replace('/', ' ').replace('“', ' ').replace('"', ' ').replace("'", ' ').replace(';', ' ').replace(':', ' ')
text = text.replace(',', ' ').replace('-', ' ').replace('_', ' ').replace('/', ' ').replace('“', ' ').replace('"', ' ').replace("'", ' ')
text = text.replace('.', ' ').replace(')', ' ').replace('(', ' ').replace('#', ' ').replace('в®', ' ').replace('®', ' ')
text = text.replace('$', ' ').replace('*', ' ').replace('”', ' ').replace('+', ' ').replace('&', ' ').replace('>', ' ').replace('=', ' ')
text = text.replace('[', ' ').replace(']', ' ').replace('?', ' ').replace('\\', ' ').replace('<', ' ')
text = ' '.join([w for w in text.split() if len(w) > 1])
text = ' '.join(text.lower().split()[:30])
return text
def getIndex(corpus, ids):
index = []
index2 = []
index = faiss.IndexFlatIP(corpus.shape[1])
faiss.normalize_L2(corpus)
index.train(corpus)
index2 = faiss.IndexIDMap(index)
index2.add_with_ids(corpus, ids)
return index2
def getEmbed(train, embedder):
corpus = train.astype(str).values.tolist()
df_embeddings = pd.DataFrame(embedder.encode(corpus), index=train.index)
df_model = pd.concat([df_embeddings, train], axis=1, join='inner').reindex(train.index)
return df_model
def writeModel(df_model, index_file_prefix, info_file_prefix):
corpus_embeddings = np.ascontiguousarray(df_model.filter(regex='\\d+', axis=1)).astype('float32')
index = getIndex(corpus_embeddings, df_model.index.values)
faiss.write_index(index, index_file_prefix + df_model.columns[-1])
df_model.iloc[:, -1].to_json(info_file_prefix + df_model.columns[-1] + '.json')
return
def writeModelBody(df_model, df_info, index_file_prefix, info_file_prefix):
corpus_embeddings = np.ascontiguousarray(df_model.filter(regex='\\d+', axis=1)).astype('float32')
index = getIndex(corpus_embeddings, df_model.index.values)
faiss.write_index(index, index_file_prefix + df_model.columns[-1])
df_info.to_json(info_file_prefix + df_model.columns[-1] + '.json')
return
def prepTitle(Tdata):
data = Tdata.dropna(subset=['title'])
data['title'] = data['title'].apply(lambda x: clean(x, no_urls=True, no_emails=True, no_phone_numbers=True))
data['title'] = data['title'].apply(filter_text)
data = data.drop_duplicates(subset=['title'])
return data.title
def prepAbstract(Adata):
data = Adata.dropna(subset=['abstract'])
data['abstract'] = data['abstract'].apply(lambda x: clean(x, no_urls=True, no_emails=True, no_phone_numbers=True))
data['abstract'] = data['abstract'].apply(filter_text)
data = data.drop_duplicates(subset=['abstract'])
return data.abstract
def prepBody(Adata, embedder):
model = Summarizer(model='distilbert-base-uncased')
tests = pd.DataFrame()
data = Adata.dropna(subset=['text'])
for index, row in tqdm(data.iterrows(), total=data.shape[0]):
ggg = row.text.strip('][').split(', ')
ct = [len(i.split()) for i in ggg]
kkk = row.key.strip('][').split(', ')
kkkk = [int(x.strip("'")) for x in kkk]
hh = [row.name] * len(kkkk)
data1 = pd.DataFrame({'text': ggg, 'paraIndex': kkkk, 'paperIndex': hh, 'paraCount': ct})
tests = tests.append(data1)
tests = tests.reset_index(drop=True)
sub1 = tests
sub1_a = sub1.iloc[250000:275000, :]
sub = sub1_a
tqdm.pandas()
sub['body'] = sub['text'].progress_apply(lambda x: model(clean(x, no_urls=True, no_emails=True, no_phone_numbers=True)))
df_embed_abs = getEmbed(sub['body'], embedder)
sub.to_json('body_summary_11.json')
df_embed_abs.to_json('embed_summary_11.json')
return sub
def prepQuery(data):
cdata = clean(data, no_urls=True, no_emails=True, no_phone_numbers=True)
fdata = filter_text(cdata)
return fdata
def loadModel(index_path, info_path):
if os.path.exists(index_path):
index = faiss.read_index(index_path)
if os.path.exists(info_path):
info = pd.read_json(info_path, typ='series')
return (index, info)
def getLocs(D, I, thresh):
ii = I[np.where(D > thresh)]
if len(ii) == 0:
jj = I[np.where(D > thresh - 0.1)]
elif len(ii) == D.shape[1]:
jj = I[np.where(D > thresh + 0.05)]
if len(jj) == 0:
jj = ii
else:
jj = ii
return jj
def getRanks(index, info, query, top, thresh):
faiss.normalize_L2(query)
D, I = index.search(query, top)
inds = getLocs(D, I, thresh)
subset = info.loc[inds]
return subset
def predict(data_in, embedder, thresh, n_closest, index_file_path, info_file_path):
index, info = loadModel(index_file_path, info_file_path)
query = prepQuery(data_in)
query_embedding = np.ascontiguousarray(embedder.encode([query])).astype('float32')
ranks = getRanks(index, info, query_embedding, n_closest, thresh)
return ranks
embedder = SentenceTransformer('/kaggle/input/ethics-transformer/bert-base-ethics_training/')
in_file = '/kaggle/input/covid-processed-data/combined_data3.csv'
index_file_prefix = '/kaggle/working/corpus_index_'
info_file_prefix = '/kaggle/working/corpus_info_'
thresh = 0.6
topRank = 20
isTrainAll = False
isTrainTitle = False
isTrainAbstract = False
isTrainBody = True
if isTrainAll:
isTrainTitle = True
isTrainAbstract = True
isTrainBody = True
isInferAll = False
isInferTitle = False
isInferAbstract = False
isInferBody = False
if isInferAll:
isInferTitle = True
isInferAbstract = True
isInferBody = True
data = pd.read_csv(in_file)
data = data.replace('nan', np.nan, regex=False)
if isTrainBody:
df_train_body = prepBody(data, embedder)
print('Body Corpus len:', len(df_train_body)) | code |
32068117/cell_2 | [
"text_plain_output_1.png"
] | import os
from sentence_transformers import SentenceTransformer
import faiss
from tqdm import tqdm
from summarizer import Summarizer
import scipy.spatial
import pandas as pd
import numpy as np
import re
import json
import time
import os
from cleantext import clean
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068117/cell_1 | [
"text_plain_output_1.png"
] | !pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
!pip install clean-text
!pip install -U sentence-transformers
!pip install tqdm
!pip install faiss-cpu --no-cache
!pip install bert-extractive-summarizer
!pip install spacy==2.1.3 | code |
17118681/cell_20 | [
"text_plain_output_1.png"
] | print('Salvando modelo em arquivo \n')
mp = '.\\mnist_model.h5'
model.save(mp) | code |
17118681/cell_16 | [
"application_vnd.jupyter.stderr_output_1.png"
] | batch_size = 128
max_epochs = 50
print('Iniciando treinamento... ') | code |
17118681/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import keras as K
import tensorflow as tf
import pandas as pd
import seaborn as sns
import os
from matplotlib import pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | code |
17118681/cell_24 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np
import tensorflow as tf
np.random.seed(4)
tf.set_random_seed(13)
mp = '.\\mnist_model.h5'
model.save(mp)
unknown = np.zeros(shape=(28, 28), dtype=np.float32)
for row in range(5, 23):
unknown[row][9] = 180
for rc in range(9, 19):
unknown[rc][rc] = 250
unknown = unknown.reshape(1, 28, 28, 1)
predicted = model.predict(unknown)
str = ['zero', 'um', 'dois', 'tres', 'quatro', 'cinco', 'seis', 'sete', 'oito', 'nove']
index = np.argmax(predicted[0])
digit = str[index]
print(digit) | code |
17118681/cell_22 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import numpy as np
import tensorflow as tf
np.random.seed(4)
tf.set_random_seed(13)
mp = '.\\mnist_model.h5'
model.save(mp)
print('Usando o modelo para previsão de dígitos para a imagem: ')
unknown = np.zeros(shape=(28, 28), dtype=np.float32)
for row in range(5, 23):
unknown[row][9] = 180
for rc in range(9, 19):
unknown[rc][rc] = 250
plt.imshow(unknown, cmap=plt.get_cmap('gray_r'))
plt.show()
unknown = unknown.reshape(1, 28, 28, 1)
predicted = model.predict(unknown)
print('\nO valor do dígito previsto é: ')
print(predicted) | code |
90133914/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# print(df.head())
# print(datetime.fromtimestamp(df['timestamp'][10000] / 1000.0))
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
df.diff().plot(kind='line')
maxidx = df.idxmax()
print(maxidx)
print(df['timestamp'][maxidx['timestamp']]) | code |
90133914/cell_6 | [
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from datetime import datetime, timedelta
from google.cloud import bigquery
from scipy.stats import norm
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# print(df.head())
# print(datetime.fromtimestamp(df['timestamp'][10000] / 1000.0))
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
maxidx = df.idxmax()
from scipy.stats import norm
from datetime import datetime, timedelta
import numpy as np
df = df.diff()
df = df.dropna()
print(df.head())
print(df.describe())
print(df.dtypes)
# convert timedelta type to a float (seconds)
print(df['timestamp'][2].total_seconds())
df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds())
float_summary = df.describe()
print(float_summary)
time_threshold = timedelta(hours=2).total_seconds()
print(float_summary["timestamp"][1]) # mean
print(float_summary["timestamp"][2]) # std
print(time_threshold)
prob_of_greater_than_two_hours = norm.cdf(time_threshold, float_summary['timestamp'][1], float_summary['timestamp'][2])
print(prob_of_greater_than_two_hours)
print((1 - prob_of_greater_than_two_hours) * df.shape[0])
print(df.shape[0])
print(len(df[df['timestamp'] > time_threshold]))
print(df.timestamp.quantile(0.99))
print(df.timestamp.quantile(0.1)) | code |
90133914/cell_1 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_html_output_1.png",
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
print('Size of dataframe: {} Bytes'.format(int(df.memory_usage(index=True, deep=True).sum())))
df.head(10) | code |
90133914/cell_3 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary) | code |
90133914/cell_5 | [
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from datetime import datetime, timedelta
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# print(df.head())
# print(datetime.fromtimestamp(df['timestamp'][10000] / 1000.0))
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
maxidx = df.idxmax()
from scipy.stats import norm
from datetime import datetime, timedelta
import numpy as np
df = df.diff()
df = df.dropna()
print(df.head())
print(df.describe())
print(df.dtypes)
print(df['timestamp'][2].total_seconds())
df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds())
float_summary = df.describe()
print(float_summary)
time_threshold = timedelta(hours=2).total_seconds()
print(float_summary['timestamp'][1])
print(float_summary['timestamp'][2]) | code |
34120483/cell_42 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
from sklearn.naive_bayes import MultinomialNB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=150, penalty='l2', solver='lbfgs', random_state=0)
lr_clf.fit(X_train_onehot, y_train)
lr_pred = lr_clf.predict(X_val_onehot)
from sklearn.metrics import log_loss
logloss_lr = log_loss(y_val, lr_clf.predict_proba(X_val_onehot))
from sklearn.naive_bayes import MultinomialNB
mnb_clf = MultinomialNB()
mnb_clf.fit(X_train_onehot, y_train)
mnb_pred = mnb_clf.predict(X_val_onehot)
logloss_mnb = log_loss(y_val, mnb_clf.predict_proba(X_val_onehot))
rf_clf = RandomForestClassifier(random_state=0, n_estimators=100, max_depth=None, verbose=0, n_jobs=-1)
rf_clf.fit(X_train_onehot, y_train)
rf_pred = rf_clf.predict(X_val_onehot)
logloss_rf = log_loss(y_val, rf_clf.predict_proba(X_val_onehot))
lr_predictions_val = lr_clf.predict_proba(X_val_onehot)
mnb_predictions_val = mnb_clf.predict_proba(X_val_onehot)
rf_predictions_val = rf_clf.predict_proba(X_val_onehot)
predictions_val = 1 / 5 * lr_predictions_val[:, 1] + 1 / 5 * rf_predictions_val[:, 1]
predictions_val = 1 / 3 * lr_predictions_val[:, 1] + 1 / 3 * mnb_predictions_val[:, 1]
predictions_val = np.where(predictions_val > 0.5, 1, 0)
df_actual = pd.read_csv('../input/nlp-getting-started/test.csv')
X_test = df_actual['text_processed']
X_test_onehot = vectorizer.transform(X_test).todense()
lr_predictions = lr_clf.predict_proba(X_test_onehot)
mnb_predictions = mnb_clf.predict_proba(X_test_onehot)
rf_predictions = rf_clf.predict_proba(X_test_onehot)
predictions = 1 / 5 * lr_predictions[:, 1] + 1 / 5 * rf_predictions[:, 1]
predictions = 1 / 3 * lr_predictions[:, 1] + 1 / 3 * mnb_predictions[:, 1]
predictions = np.where(predictions > 0.5, 1, 0)
df_submission = pd.read_csv('../input/nlp-getting-started/test.csv')
df_submission['target'] = predictions
df_submission.to_csv('submission.csv', index=False)
df_submission.head() | code |
34120483/cell_21 | [
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=150, penalty='l2', solver='lbfgs', random_state=0)
lr_clf.fit(X_train_onehot, y_train)
lr_pred = lr_clf.predict(X_val_onehot)
print('accuracy score: ', accuracy_score(lr_pred, y_val))
print(classification_report(y_val, lr_pred)) | code |
34120483/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns #what is seaborn
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
#creating subplots to see distribution of length of tweet
sns.set_style("darkgrid");
f, (ax1, ax2) = plt.subplots(figsize=(12,6),nrows=1, ncols=2,tight_layout=True);
sns.distplot(df_sample[df_sample['target']==1]["length"],bins=30,ax=ax1);
sns.distplot(df_sample[df_sample['target']==0]["length"],bins=30,ax=ax2);
ax1.set_title('\n Distribution of length of tweet labelled Disaster\n');
ax2.set_title('\nDistribution of length of tweet labelled No Disaster\n ');
ax1.set_ylabel('Frequency');
text = ' '.join((post for post in df_sample[df_sample['target'] == 1].text))
wordcloud = WordCloud(max_font_size=90, max_words=50, background_color='white', colormap='inferno').generate(text)
plt.axis('off')
text = ' '.join((post for post in df_sample[df_sample['target'] == 0].text))
wordcloud = WordCloud(max_font_size=90, max_words=50, background_color='white', colormap='inferno').generate(text)
plt.figure(figsize=(10, 10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.title('\nFrequently occuring words related to Non Disaster \n\n', fontsize=18)
plt.axis('off')
plt.show() | code |
34120483/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
from sklearn.naive_bayes import MultinomialNB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.naive_bayes import MultinomialNB
mnb_clf = MultinomialNB()
mnb_clf.fit(X_train_onehot, y_train)
mnb_pred = mnb_clf.predict(X_val_onehot)
logloss_mnb = log_loss(y_val, mnb_clf.predict_proba(X_val_onehot))
print('logloss_mnb:', logloss_mnb) | code |
34120483/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample.head() | code |
34120483/cell_34 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_actual = pd.read_csv('../input/nlp-getting-started/test.csv') | code |
34120483/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int) | code |
34120483/cell_41 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
from sklearn.naive_bayes import MultinomialNB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=150, penalty='l2', solver='lbfgs', random_state=0)
lr_clf.fit(X_train_onehot, y_train)
lr_pred = lr_clf.predict(X_val_onehot)
from sklearn.metrics import log_loss
logloss_lr = log_loss(y_val, lr_clf.predict_proba(X_val_onehot))
from sklearn.naive_bayes import MultinomialNB
mnb_clf = MultinomialNB()
mnb_clf.fit(X_train_onehot, y_train)
mnb_pred = mnb_clf.predict(X_val_onehot)
logloss_mnb = log_loss(y_val, mnb_clf.predict_proba(X_val_onehot))
rf_clf = RandomForestClassifier(random_state=0, n_estimators=100, max_depth=None, verbose=0, n_jobs=-1)
rf_clf.fit(X_train_onehot, y_train)
rf_pred = rf_clf.predict(X_val_onehot)
logloss_rf = log_loss(y_val, rf_clf.predict_proba(X_val_onehot))
lr_predictions_val = lr_clf.predict_proba(X_val_onehot)
mnb_predictions_val = mnb_clf.predict_proba(X_val_onehot)
rf_predictions_val = rf_clf.predict_proba(X_val_onehot)
predictions_val = 1 / 5 * lr_predictions_val[:, 1] + 1 / 5 * rf_predictions_val[:, 1]
predictions_val = 1 / 3 * lr_predictions_val[:, 1] + 1 / 3 * mnb_predictions_val[:, 1]
predictions_val = np.where(predictions_val > 0.5, 1, 0)
df_actual = pd.read_csv('../input/nlp-getting-started/test.csv')
X_test = df_actual['text_processed']
X_test_onehot = vectorizer.transform(X_test).todense()
lr_predictions = lr_clf.predict_proba(X_test_onehot)
mnb_predictions = mnb_clf.predict_proba(X_test_onehot)
rf_predictions = rf_clf.predict_proba(X_test_onehot)
predictions = 1 / 5 * lr_predictions[:, 1] + 1 / 5 * rf_predictions[:, 1]
predictions = 1 / 3 * lr_predictions[:, 1] + 1 / 3 * mnb_predictions[:, 1]
predictions = np.where(predictions > 0.5, 1, 0)
df_submission = pd.read_csv('../input/nlp-getting-started/test.csv')
df_submission['target'] = predictions
df_submission.to_csv('submission.csv', index=False) | code |
34120483/cell_7 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns #what is seaborn
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
sns.set_style('darkgrid')
f, (ax1, ax2) = plt.subplots(figsize=(12, 6), nrows=1, ncols=2, tight_layout=True)
sns.distplot(df_sample[df_sample['target'] == 1]['length'], bins=30, ax=ax1)
sns.distplot(df_sample[df_sample['target'] == 0]['length'], bins=30, ax=ax2)
ax1.set_title('\n Distribution of length of tweet labelled Disaster\n')
ax2.set_title('\nDistribution of length of tweet labelled No Disaster\n ')
ax1.set_ylabel('Frequency') | code |
34120483/cell_18 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
print('vocab length', len(vectorizer.vocabulary_)) | code |
34120483/cell_32 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
from sklearn.naive_bayes import MultinomialNB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=150, penalty='l2', solver='lbfgs', random_state=0)
lr_clf.fit(X_train_onehot, y_train)
lr_pred = lr_clf.predict(X_val_onehot)
from sklearn.metrics import log_loss
logloss_lr = log_loss(y_val, lr_clf.predict_proba(X_val_onehot))
from sklearn.naive_bayes import MultinomialNB
mnb_clf = MultinomialNB()
mnb_clf.fit(X_train_onehot, y_train)
mnb_pred = mnb_clf.predict(X_val_onehot)
logloss_mnb = log_loss(y_val, mnb_clf.predict_proba(X_val_onehot))
rf_clf = RandomForestClassifier(random_state=0, n_estimators=100, max_depth=None, verbose=0, n_jobs=-1)
rf_clf.fit(X_train_onehot, y_train)
rf_pred = rf_clf.predict(X_val_onehot)
logloss_rf = log_loss(y_val, rf_clf.predict_proba(X_val_onehot))
lr_predictions_val = lr_clf.predict_proba(X_val_onehot)
mnb_predictions_val = mnb_clf.predict_proba(X_val_onehot)
rf_predictions_val = rf_clf.predict_proba(X_val_onehot)
predictions_val = 1 / 5 * lr_predictions_val[:, 1] + 1 / 5 * rf_predictions_val[:, 1]
predictions_val = 1 / 3 * lr_predictions_val[:, 1] + 1 / 3 * mnb_predictions_val[:, 1]
predictions_val = np.where(predictions_val > 0.5, 1, 0)
print('accuracy score: ', accuracy_score(predictions_val, y_val))
print(classification_report(y_val, predictions_val)) | code |
34120483/cell_28 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
rf_clf = RandomForestClassifier(random_state=0, n_estimators=100, max_depth=None, verbose=0, n_jobs=-1)
rf_clf.fit(X_train_onehot, y_train)
rf_pred = rf_clf.predict(X_val_onehot)
logloss_rf = log_loss(y_val, rf_clf.predict_proba(X_val_onehot))
print('logloss_rf:', logloss_rf) | code |
34120483/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns #what is seaborn
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
#creating subplots to see distribution of length of tweet
sns.set_style("darkgrid");
f, (ax1, ax2) = plt.subplots(figsize=(12,6),nrows=1, ncols=2,tight_layout=True);
sns.distplot(df_sample[df_sample['target']==1]["length"],bins=30,ax=ax1);
sns.distplot(df_sample[df_sample['target']==0]["length"],bins=30,ax=ax2);
ax1.set_title('\n Distribution of length of tweet labelled Disaster\n');
ax2.set_title('\nDistribution of length of tweet labelled No Disaster\n ');
ax1.set_ylabel('Frequency');
text = ' '.join((post for post in df_sample[df_sample['target'] == 1].text))
wordcloud = WordCloud(max_font_size=90, max_words=50, background_color='white', colormap='inferno').generate(text)
plt.figure(figsize=(10, 10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.title('\nFrequently occuring words related to Disaster \n\n', fontsize=18)
plt.axis('off')
plt.show() | code |
34120483/cell_35 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_actual = pd.read_csv('../input/nlp-getting-started/test.csv')
df_actual.head() | code |
34120483/cell_24 | [
"image_output_1.png"
] | from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
from sklearn.naive_bayes import MultinomialNB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.naive_bayes import MultinomialNB
mnb_clf = MultinomialNB()
mnb_clf.fit(X_train_onehot, y_train)
mnb_pred = mnb_clf.predict(X_val_onehot)
print('accuracy score: ', accuracy_score(mnb_pred, y_val))
print(classification_report(y_val, mnb_pred)) | code |
34120483/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
df_sample.head() | code |
34120483/cell_22 | [
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
from sklearn.linear_model import LogisticRegression
lr_clf = LogisticRegression(max_iter=150, penalty='l2', solver='lbfgs', random_state=0)
lr_clf.fit(X_train_onehot, y_train)
lr_pred = lr_clf.predict(X_val_onehot)
from sklearn.metrics import log_loss
logloss_lr = log_loss(y_val, lr_clf.predict_proba(X_val_onehot))
print('logloss_lr:', logloss_lr) | code |
34120483/cell_27 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,make_scorer
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
vectorizer = TfidfVectorizer(ngram_range=(1, 3), min_df=3, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1, max_features=None)
vectorizer.fit(list(df_sample['text_processed']) + list(df_actual['text_processed']))
X_train_onehot = vectorizer.transform(X_train).todense()
X_val_onehot = vectorizer.transform(X_val).todense()
rf_clf = RandomForestClassifier(random_state=0, n_estimators=100, max_depth=None, verbose=0, n_jobs=-1)
rf_clf.fit(X_train_onehot, y_train)
rf_pred = rf_clf.predict(X_val_onehot)
print('accuracy score: ', accuracy_score(rf_pred, y_val))
print(classification_report(y_val, rf_pred)) | code |
34120483/cell_12 | [
"text_html_output_1.png"
] | from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns #what is seaborn
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['length'] = np.NaN
for i in range(0, len(df_sample['text'])):
df_sample['length'][i] = len(df_sample['text'][i])
df_sample.length = df_sample.length.astype(int)
#creating subplots to see distribution of length of tweet
sns.set_style("darkgrid");
f, (ax1, ax2) = plt.subplots(figsize=(12,6),nrows=1, ncols=2,tight_layout=True);
sns.distplot(df_sample[df_sample['target']==1]["length"],bins=30,ax=ax1);
sns.distplot(df_sample[df_sample['target']==0]["length"],bins=30,ax=ax2);
ax1.set_title('\n Distribution of length of tweet labelled Disaster\n');
ax2.set_title('\nDistribution of length of tweet labelled No Disaster\n ');
ax1.set_ylabel('Frequency');
text = ' '.join((post for post in df_sample[df_sample['target'] == 1].text))
wordcloud = WordCloud(max_font_size=90, max_words=50, background_color='white', colormap='inferno').generate(text)
plt.axis('off')
text = ' '.join((post for post in df_sample[df_sample['target'] == 0].text))
wordcloud = WordCloud(max_font_size=90, max_words=50, background_color='white', colormap='inferno').generate(text)
plt.axis('off')
def text_preprocessing(text):
"""
input: string to be processed
output: preprocssed string
"""
text = text.lower()
text = re.compile('https?://\\S+|www\\.\\S+').sub('', text)
text = text.translate(str.maketrans('', '', PUNCT_TO_REMOVE))
text = ' '.join([word for word in str(text).split() if word not in STOPWORDS])
text = ' '.join([stemmer.stem(word) for word in text.split()])
return text
text_preprocessing('#Flashflood causes #landslide in Gilgit #Pakistan Damage to 20 homes\n farmland roads and bridges #365disasters http://t.co/911F3IXRH0') | code |
34120483/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_sample = pd.read_csv('/kaggle/input/train.csv')
df_actual = pd.read_csv('/kaggle/input/test.csv')
df_sample['target'].value_counts() | code |
33097052/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from pybtex.database.input import bibtex
import pandas as pd | code |
1003788/cell_25 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
plt.figure(figsize=(12, 12))
sns.heatmap(corr, vmax=1, square=True) | code |
1003788/cell_23 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
print(train.select_dtypes(include=['object']).columns.values) | code |
1003788/cell_33 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}})
all_data = all_data.fillna(all_data.mean())
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
all_data = pd.get_dummies(all_data)
matplotlib.rcParams['figure.figsize'] = (12.0, 6.0)
prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])})
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
xt = plt.xticks(rotation=45)
g = sns.FacetGrid(train, col='YrSold', col_wrap=3)
g.map(sns.boxplot, 'MoSold', 'SalePrice', palette='Set2', order=range(1, 13)).set(ylim=(0, 500000))
plt.tight_layout()
fig, ax = plt.subplots(2, 1, figsize = (10, 6))
sns.boxplot(x = 'SaleType', y = 'SalePrice', data = train, ax = ax[0])
sns.boxplot(x = 'SaleCondition', y = 'SalePrice', data = train, ax = ax[1])
plt.tight_layout()
var = 'YearBuilt'
data = pd.concat([train['SalePrice'], train[var]], axis=1)
f, ax = plt.subplots(figsize=(16, 8))
fig = sns.boxplot(x=var, y="SalePrice", data=data)
fig.axis(ymin=0, ymax=800000);
plt.xticks(rotation=90);
sns.violinplot('Functional', 'SalePrice', data=train) | code |
1003788/cell_20 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
sns.distplot(train['SalePrice'], kde=False, color='b', hist_kws={'alpha': 0.9}) | code |
1003788/cell_29 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
xt = plt.xticks(rotation=45)
g = sns.FacetGrid(train, col='YrSold', col_wrap=3)
g.map(sns.boxplot, 'MoSold', 'SalePrice', palette='Set2', order=range(1, 13)).set(ylim=(0, 500000))
plt.tight_layout() | code |
1003788/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head(20) | code |
1003788/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
print('Skewness: %f' % train['SalePrice'].skew())
print('Kurtosis: %f' % train['SalePrice'].kurt()) | code |
1003788/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
train['SalePrice'].describe() | code |
1003788/cell_32 | [
"image_output_1.png"
] | import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}})
all_data = all_data.fillna(all_data.mean())
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
all_data = pd.get_dummies(all_data)
matplotlib.rcParams['figure.figsize'] = (12.0, 6.0)
prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])})
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
xt = plt.xticks(rotation=45)
g = sns.FacetGrid(train, col='YrSold', col_wrap=3)
g.map(sns.boxplot, 'MoSold', 'SalePrice', palette='Set2', order=range(1, 13)).set(ylim=(0, 500000))
plt.tight_layout()
fig, ax = plt.subplots(2, 1, figsize = (10, 6))
sns.boxplot(x = 'SaleType', y = 'SalePrice', data = train, ax = ax[0])
sns.boxplot(x = 'SaleCondition', y = 'SalePrice', data = train, ax = ax[1])
plt.tight_layout()
var = 'YearBuilt'
data = pd.concat([train['SalePrice'], train[var]], axis=1)
f, ax = plt.subplots(figsize=(16, 8))
fig = sns.boxplot(x=var, y='SalePrice', data=data)
fig.axis(ymin=0, ymax=800000)
plt.xticks(rotation=90) | code |
1003788/cell_28 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
plt.figure(figsize=(12, 6))
sns.countplot(x='Neighborhood', data=train)
xt = plt.xticks(rotation=45) | code |
1003788/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
train.head() | code |
1003788/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib
import numpy as np
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}})
all_data = all_data.fillna(all_data.mean())
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
all_data = pd.get_dummies(all_data)
matplotlib.rcParams['figure.figsize'] = (12.0, 6.0)
prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])})
prices.hist() | code |
1003788/cell_17 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
sns.distplot(train['SalePrice']) | code |
1003788/cell_31 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
xt = plt.xticks(rotation=45)
g = sns.FacetGrid(train, col='YrSold', col_wrap=3)
g.map(sns.boxplot, 'MoSold', 'SalePrice', palette='Set2', order=range(1, 13)).set(ylim=(0, 500000))
plt.tight_layout()
fig, ax = plt.subplots(2, 1, figsize=(10, 6))
sns.boxplot(x='SaleType', y='SalePrice', data=train, ax=ax[0])
sns.boxplot(x='SaleCondition', y='SalePrice', data=train, ax=ax[1])
plt.tight_layout() | code |
1003788/cell_24 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
sns.regplot(x='OverallQual', y='SalePrice', data=train, color='Orange') | code |
1003788/cell_27 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition']))
total = train.isnull().sum().sort_values(ascending=False)
percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
corr = train.select_dtypes(include=['float64', 'int64']).iloc[:, 1:].corr()
cor_dict = corr['SalePrice'].to_dict()
del cor_dict['SalePrice']
print('List the numerical features decendingly by their correlation with Sale Price:\n')
for ele in sorted(cor_dict.items(), key=lambda x: -abs(x[1])):
print('{0}: \t{1}'.format(*ele)) | code |
331419/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
def cleanResults(raceColumns,dfResultsTemp,appendScore):
for raceCol in raceColumns:
dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2")
dfResultsTemp.index = dfResultsTemp.index.str.title()
dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','')
dfResultsTemp.index = dfResultsTemp.index.str.strip()
dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Nicolas Parlier','Nico Parlier')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Alejandro Climent Hernã¥_ Ndez', 'Alejandro Climent Hernandez')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Alexandre Caizergues','Alex Caizergues')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Florian Trittel Paul','Florian Trittel')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Jean Guillaume Rivaud','Jean-Guillaume Rivaud')
dfResultsTemp.index = dfResultsTemp.index.str.replace('^Kieran Le$','Kieran Le Borgne')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Marvin Baumeisterschoenian','Marvin Baumeister Schoenian')
dfResultsTemp.index = dfResultsTemp.index.str.replace('Theo De Ramecourt','Theo De-Ramecourt')
dfResultsTemp.index = dfResultsTemp.index.str.replace('James Johnson','James Johnsen')
dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str)
#This code needs cleaning up. Has the important assumptions about what counts as last place and what doesn't count
dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('D\+D|DSQ|D\+0|^-[A-Z0-9]*$|\([A-Z0-9\.-]*\)|UFD|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|\/','')
dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('DNS','')
dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('RET[0-9]*|DNF-[0-9]*|^DNF$|[0-9\.]*DNF',str(len(dfResultsTemp)+1))
dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol])
dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore
return dfResultsTemp
def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults):
for raceCol in raceColumns:
raceIndex = raceName + '-' + raceCol
dfResultsTemp[raceIndex] = dfResultsTemp[raceCol]
del dfResultsTemp[raceCol]
dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer')
return dfResults
dfResults = pd.DataFrame() | code |
73074336/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df | code |
73074336/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape | code |
73074336/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
df.head() | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.