path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
130007697/cell_24 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import easyocr
reader = easyocr.Reader(['en'])
frame = cv.imread(img)
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
result_img = read_plate_number(cordinates, frame, reader)
plt.imshow(result_img)
plt.show() | code |
130007697/cell_14 | [
"text_plain_output_1.png"
] | !python train.py --img 640 --batch 16 --epochs 15 --data /kaggle/working/plate_datasets/dataset.yaml --weights yolov5s.pt --cache ram | code |
130007697/cell_12 | [
"text_plain_output_1.png",
"image_output_1.png"
] | !git clone https://github.com/ultralytics/yolov5 # clone
!pip install -r requirements.txt | code |
130007697/cell_5 | [
"image_output_1.png"
] | import cv2 as cv
import matplotlib.pyplot as plt
import cv2 as cv
import matplotlib.pyplot as plt
img = cv.imread('/kaggle/input/car-plate-detection/images/Cars0.png')
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
rec = cv.rectangle(img, (226, 125), (419, 173), (0, 250, 0), 2)
rec = cv.circle(rec, ((226 + 419) // 2, (125 + 173) // 2), 2, (255, 0, 0), 2)
plt.imshow(rec) | code |
320908/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
teams = pd.read_sql_query('select * from Teams', conn)
users = pd.read_sql_query('select * from Users', conn)
teammembers = pd.read_sql_query('select * from TeamMemberships', conn)
teams_q = teammembers.groupby('TeamId').UserId.count()
teams_q = teams_q[teams_q > 1].reset_index()
teammembers_cut = teammembers.merge(teams_q, on='TeamId')
users_q = teammembers_cut.groupby('UserId_x').TeamId.count().reset_index()
teammembers_cut = teammembers_cut.merge(users_q, left_on='UserId_x', right_on='UserId_x')
teammembers_cut = teammembers_cut.merge(teams, left_on='TeamId_x', right_on='Id')
teammembers_cut = teammembers_cut.merge(users, left_on='UserId_x', right_on='Id')
tm4graph = teammembers_cut[['TeamId_x', 'UserId_x']]
tm4graph['TeamId_x'] = 'Team_' + tm4graph['TeamId_x'].astype('str')
tm4graph['UserId_x'] = 'User_' + tm4graph['UserId_x'].astype('str') | code |
320908/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import spdiags, coo_matrix
import networkx as nx
import numpy as np
import numpy as np
import pandas as pd
import plotly
import sqlite3
conn = sqlite3.connect('../input/database.sqlite')
teams = pd.read_sql_query('select * from Teams', conn)
users = pd.read_sql_query('select * from Users', conn)
teammembers = pd.read_sql_query('select * from TeamMemberships', conn)
teams_q = teammembers.groupby('TeamId').UserId.count()
teams_q = teams_q[teams_q > 1].reset_index()
teammembers_cut = teammembers.merge(teams_q, on='TeamId')
users_q = teammembers_cut.groupby('UserId_x').TeamId.count().reset_index()
teammembers_cut = teammembers_cut.merge(users_q, left_on='UserId_x', right_on='UserId_x')
teammembers_cut = teammembers_cut.merge(teams, left_on='TeamId_x', right_on='Id')
teammembers_cut = teammembers_cut.merge(users, left_on='UserId_x', right_on='Id')
tm4graph = teammembers_cut[['TeamId_x', 'UserId_x']]
tm4graph['TeamId_x'] = 'Team_' + tm4graph['TeamId_x'].astype('str')
tm4graph['UserId_x'] = 'User_' + tm4graph['UserId_x'].astype('str')
from scipy.sparse import spdiags, coo_matrix
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
def forceatlas2_layout(G, iterations=10, linlog=False, pos=None, nohubs=False, kr=0.001, k=None, dim=2):
"""
Options values are
g The graph to layout
iterations Number of iterations to do
linlog Whether to use linear or log repulsion
random_init Start with a random position
If false, start with FR
avoidoverlap Whether to avoid overlap of points
degreebased Degree based repulsion
"""
for n in G:
G.node[n]['prevcs'] = 0
G.node[n]['currcs'] = 0
A = nx.to_scipy_sparse_matrix(G, dtype='f')
nnodes, _ = A.shape
try:
A = A.tolil()
except Exception as e:
A = coo_matrix(A).tolil()
if pos is None:
pos = np.asarray(np.random.random((nnodes, dim)), dtype=A.dtype)
else:
pos = pos.astype(A.dtype)
if k is None:
k = np.sqrt(1.0 / nnodes)
t = 0.1
dt = t / float(iterations + 1)
displacement = np.zeros((dim, nnodes))
for iteration in range(iterations):
displacement *= 0
for i in range(A.shape[0]):
delta = (pos[i] - pos).T
distance = np.sqrt((delta ** 2).sum(axis=0))
distance = np.where(distance < 0.01, 0.01, distance)
Ai = np.asarray(A.getrowview(i).toarray())
Dist = k * k / distance ** 2
if nohubs:
Dist = Dist / float(Ai.sum(axis=1) + 1)
if linlog:
Dist = np.log(Dist + 1)
displacement[:, i] += (delta * (Dist - Ai * distance / k)).sum(axis=1)
length = np.sqrt((displacement ** 2).sum(axis=0))
length = np.where(length < 0.01, 0.01, length)
pos += (displacement * t / length).T
t -= dt
return dict(zip(G, pos))
axis = dict(showline=False, zeroline=False, showgrid=False, showticklabels=False, title='')
layout = Layout(title='Kaggle teams/users universe', font=Font(size=12), showlegend=True, autosize=False, width=800, height=800, xaxis=XAxis(axis), yaxis=YAxis(axis), margin=Margin(l=40, r=40, b=85, t=100), hovermode='closest', annotations=Annotations([Annotation(showarrow=False, text='', xref='paper', yref='paper', x=0, y=-0.1, xanchor='left', yanchor='bottom', font=Font(size=14))]))
edges_to_use = 22000
G = nx.Graph()
G.add_edges_from(tm4graph.values[0:edges_to_use])
pos = forceatlas2_layout(G, iterations=300, nohubs=True)
N = G.number_of_nodes()
E = G.edges()
labels = G.nodes()
Xv_teams = [pos[k][0] for k in labels if 'Team' in k]
Yv_teams = [pos[k][1] for k in labels if 'Team' in k]
Xv_users = [pos[k][0] for k in labels if 'User' in k]
Yv_users = [pos[k][1] for k in labels if 'User' in k]
labels_team = [teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.TeamId_x == int(k.replace('Team_', '')), 'TeamName'].values[0] for k in labels if 'Team' in k]
labels_users = [teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.UserId_x == int(k.replace('User_', '')), 'DisplayName'].values[0] for k in labels if 'User' in k]
Xed = []
Yed = []
for edge in E:
Xed += [pos[edge[0]][0], pos[edge[1]][0], None]
Yed += [pos[edge[0]][1], pos[edge[1]][1], None]
trace3 = Scatter(x=Xed, y=Yed, mode='lines', line=Line(color='rgb(200,200,200)', width=2), name='Links', hoverinfo='none')
trace4 = Scatter(x=Xv_teams, y=Yv_teams, mode='markers', name='Teams', marker=Marker(symbol='dot', size=[teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.TeamId_x == int(k.replace('Team_', '')), 'UserId_y'].values[0] for k in labels if 'Team' in k], color='rgb(146,209,81)', line=Line(color='rgb(50,50,50)', width=0.5)), text=map(lambda x: ['Team: ' + u''.join(x[0]).encode('utf8').strip() + '<br>Users: ' + str(','.join(x[1]).encode('utf8')) + '<br>'], zip(labels_team, [teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.TeamId_x == int(k.replace('Team_', '')), 'DisplayName'].values.tolist() for k in labels if 'Team' in k])), hoverinfo='text')
trace5 = Scatter(x=Xv_users, y=Yv_users, mode='markers', name='Users', marker=Marker(symbol='dot', size=[teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.UserId_x == int(k.replace('User_', '')), 'TeamId_y'].values[0] * 0.5 for k in labels if 'User' in k], color='#000000', line=Line(color='rgb(50,50,50)', width=0.5)), text=map(lambda x: ['User: ' + u''.join(x[0]).encode('utf8').strip() + '<br>Teams: ' + str(','.join(x[1]).encode('utf8')) + '<br>'], zip(labels_users, [teammembers_cut.iloc[0:edges_to_use, :].loc[teammembers_cut.UserId_x == int(k.replace('User_', '')), 'TeamName'].values.tolist() for k in labels if 'User' in k])), hoverinfo='text')
data1 = Data([trace3, trace4, trace5])
fig1 = Figure(data=data1, layout=layout)
plotly.offline.iplot(fig1) | code |
16157889/cell_23 | [
"text_plain_output_1.png"
] | from copy import deepcopy
from sklearn.preprocessing import MinMaxScaler
import math
import numpy as np
import pandas as pd
import warnings
import pandas as pd
import warnings
import os
import numpy as np
import folium
from folium import plugins
from sklearn.preprocessing import MinMaxScaler
from copy import deepcopy
import math
import time
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn import mixture
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
all_data = pd.read_csv('../input/globalterrorismdb_0718dist.csv', encoding='ISO-8859-1')
all_data = all_data[['eventid', 'iyear', 'imonth', 'iday', 'extended', 'country', 'region', 'vicinity', 'latitude', 'longitude', 'specificity', 'crit1', 'crit2', 'crit3', 'doubtterr', 'multiple', 'attacktype1', 'success', 'suicide', 'weaptype1', 'targtype1', 'nkill', 'nkillter', 'nwound', 'nwoundte', 'property', 'propextent', 'ishostkid', 'ransom', 'INT_LOG', 'INT_IDEO', 'INT_MISC', 'INT_ANY']]
all_data = all_data.dropna(subset=['latitude'])
all_data = all_data.dropna(subset=['longitude'])
all_data.shape
all_data['specificity'] = pd.to_numeric(all_data['specificity'], downcast='integer')
all_data['doubtterr'] = pd.to_numeric(all_data['doubtterr'], downcast='integer')
all_data['multiple'] = pd.to_numeric(all_data['multiple'], downcast='integer')
all_data['nkill'] = pd.to_numeric(all_data['nkill'], downcast='integer')
all_data['nkillter'] = pd.to_numeric(all_data['nkillter'], downcast='integer')
all_data['nwound'] = pd.to_numeric(all_data['nwound'], downcast='integer')
all_data['nwoundte'] = pd.to_numeric(all_data['nwoundte'], downcast='integer')
all_data['ishostkid'] = pd.to_numeric(all_data['ishostkid'], downcast='integer')
all_data['ransom'] = pd.to_numeric(all_data['ransom'], downcast='integer')
id_ = list(all_data['eventid'])
all_data.drop('eventid', axis=1, inplace=True)
all_data = all_data[['crit1', 'crit2', 'crit3', 'doubtterr', 'multiple', 'attacktype1', 'success', 'suicide', 'weaptype1', 'targtype1', 'nkill', 'nkillter', 'nwound', 'nwoundte', 'property', 'propextent', 'ishostkid', 'ransom']]
"""
author: zhenyu wu
time: 2019/04/07 21:48
function: 对数据样本进行归一化处理,将区间放缩到某个范围内
在MinMaxScaler中是给定了一个明确的最大值与最小值。它的计算公式如下: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) | X_scaled = X_std / (max - min) + min 每个特征中的最小值变成了MIN,最大值变成了MAX。这样做是为了在熵权法取对数过程中避免向下溢出。
params:
data: 数据集
MIN: 下限
MAX: 上限
return:
data_norm: 归一化后的数据集
"""
def normalization(data, MIN=0.002, MAX=0.998):
min_max_scaler = MinMaxScaler(feature_range=(MIN, MAX))
data_norm = min_max_scaler.fit_transform(data)
data_norm = pd.DataFrame(data_norm)
data_norm.columns = data.columns
return data_norm
all_data_norm = normalization(all_data, MIN=0.002, MAX=0.998)
"""
author: zhenyu wu
time: 2019/04/07 21:47
function: 熵权法确定特征权重
params:
data_norm: 数据集
threshold: 阈值
return:
Entropy: 特征的熵值
difference_coefficient: 特征的差异系数
important_features: 重要特征名称序列
entropy_weight: 特征熵权
overall: 样本的重要性分数
"""
def entropy(data_norm, data_id, threshold=0.8):
feature_weight = pd.DataFrame({'temp': list(np.zeros(len(data_norm)))})
for i in data_norm.columns:
Sum = data_norm[i].sum()
temp = data_norm[i] / Sum
feature_weight[i] = temp
feature_weight.drop('temp', axis=1, inplace=True)
Entropy = {}
for i in feature_weight.columns:
Sum = 0
column = list(deepcopy(feature_weight[i]))
for j in range(len(feature_weight)):
Sum += column[j] * math.log(column[j])
Entropy[i] = -1 / math.log(len(feature_weight)) * Sum
important_features = []
for key, value in Entropy.items():
important_features.append(key)
difference_coefficient = {}
for i in important_features:
difference_coefficient[i] = 1 - Entropy[i]
Diff_sum = sum(list(difference_coefficient.values()))
entropy_weight = {}
for i in important_features:
entropy_weight[i] = difference_coefficient[i] / Diff_sum
feature_weight = feature_weight[important_features]
feature_weight = np.mat(feature_weight)
weight = np.array(list(entropy_weight.values()))
overall_merit = weight * feature_weight.T
overall_merit = overall_merit.T
overall_merit = np.array(overall_merit)
overall_list = []
for i in range(len(feature_weight)):
overall_list.append(overall_merit[i][0])
overall = pd.DataFrame({'eventid': data_id, 'overall': overall_list})
overall = overall.sort_values(by=['overall'], ascending=False)
overall.index = list(np.arange(len(data_norm)))
data_norm = data_norm[important_features]
overall = overall.sort_values(by=['eventid'], ascending=True)
overall.index = list(np.arange(len(data_norm)))
feature_names = list(entropy_weight.keys())
entropy_weight = list(entropy_weight.values())
norm_entropy_weight = []
for sub_weight in entropy_weight:
norm_entropy_weight.append(sub_weight / sum(entropy_weight))
entropy_weight = dict(zip(feature_names, norm_entropy_weight))
return (entropy_weight, overall)
"""
author: zhenyu wu
time: 2019/04/09 16:51
function: 利用模糊层次分析法确定指标的权重
params:
r_1_n: r11~r1n的模糊关系
return:
B: FAHP的权重计算结果
"""
def FAHP(r_1_n):
R = np.zeros((len(r_1_n), len(r_1_n)))
E = np.zeros((len(r_1_n), len(r_1_n)))
B = np.zeros(len(r_1_n))
R[0] = r_1_n
col_1 = 1 - R[0]
for i in range(len(r_1_n)):
R[i] = R[0] - (R[0][0] - col_1[i])
e = R.sum(axis=1)
for i in range(len(e)):
for j in range(len(e)):
E[i][j] = (e[i] - e[j]) / (2 * len(e)) + 0.5
e = E.sum(axis=0)
for i in range(len(e)):
B[i] = (2 * e[i] - 1) / (len(e) * (len(e) - 1))
return B
"""
author: zhenyu wu
time: 2019/04/09 17:39
function: 利用模糊层次分析法确定所有指标权重
params:
feature_names: 特征名称
return:
all_fAHP_weight: 所有指标的fAHP权重
"""
def fAHP_weight(feature_names):
r_1_n = [0.5, 0.8, 0.8, 0.8]
level_1_fAHP_weight = FAHP(r_1_n)
r_1_n = [0.5, 0.6, 0.7, 0.8, 0.8]
level_2_std_fAHP_weight = FAHP(r_1_n)
level_2_std_fAHP_weight = list(level_2_std_fAHP_weight / sum(level_2_std_fAHP_weight) * level_1_fAHP_weight[0])
r_1_n = [0.5, 0.7, 0.8, 0.8]
level_2_att_fAHP_weight = FAHP(r_1_n)
level_2_att_fAHP_weight = list(level_2_att_fAHP_weight / sum(level_2_att_fAHP_weight) * level_1_fAHP_weight[1])
level_2_targ_fAHP_weight = [level_1_fAHP_weight[2]]
r_1_n = [0.5, 0.5, 0.4, 0.4, 0.3, 0.4, 0.6, 0.6]
level_2_kill_fAHP_weight = FAHP(r_1_n)
level_2_kill_fAHP_weight = list(level_2_kill_fAHP_weight / sum(level_2_kill_fAHP_weight) * level_1_fAHP_weight[3])
all_fAHP_weight = level_2_std_fAHP_weight + level_2_att_fAHP_weight + level_2_targ_fAHP_weight + level_2_kill_fAHP_weight
all_fAHP_weight = all_fAHP_weight / sum(all_fAHP_weight)
AHP_weight = dict(zip(feature_names, all_fAHP_weight))
return AHP_weight
fAHP_weight = fAHP_weight(all_data_norm.columns)
print(fAHP_weight) | code |
16157889/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import warnings
import pandas as pd
import warnings
import os
import numpy as np
import folium
from folium import plugins
from sklearn.preprocessing import MinMaxScaler
from copy import deepcopy
import math
import time
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn import mixture
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
all_data = pd.read_csv('../input/globalterrorismdb_0718dist.csv', encoding='ISO-8859-1')
all_data.head() | code |
16157889/cell_19 | [
"text_plain_output_1.png"
] | from copy import deepcopy
from sklearn.preprocessing import MinMaxScaler
import math
import numpy as np
import pandas as pd
import warnings
import pandas as pd
import warnings
import os
import numpy as np
import folium
from folium import plugins
from sklearn.preprocessing import MinMaxScaler
from copy import deepcopy
import math
import time
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn import mixture
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
all_data = pd.read_csv('../input/globalterrorismdb_0718dist.csv', encoding='ISO-8859-1')
all_data = all_data[['eventid', 'iyear', 'imonth', 'iday', 'extended', 'country', 'region', 'vicinity', 'latitude', 'longitude', 'specificity', 'crit1', 'crit2', 'crit3', 'doubtterr', 'multiple', 'attacktype1', 'success', 'suicide', 'weaptype1', 'targtype1', 'nkill', 'nkillter', 'nwound', 'nwoundte', 'property', 'propextent', 'ishostkid', 'ransom', 'INT_LOG', 'INT_IDEO', 'INT_MISC', 'INT_ANY']]
all_data = all_data.dropna(subset=['latitude'])
all_data = all_data.dropna(subset=['longitude'])
all_data.shape
all_data['specificity'] = pd.to_numeric(all_data['specificity'], downcast='integer')
all_data['doubtterr'] = pd.to_numeric(all_data['doubtterr'], downcast='integer')
all_data['multiple'] = pd.to_numeric(all_data['multiple'], downcast='integer')
all_data['nkill'] = pd.to_numeric(all_data['nkill'], downcast='integer')
all_data['nkillter'] = pd.to_numeric(all_data['nkillter'], downcast='integer')
all_data['nwound'] = pd.to_numeric(all_data['nwound'], downcast='integer')
all_data['nwoundte'] = pd.to_numeric(all_data['nwoundte'], downcast='integer')
all_data['ishostkid'] = pd.to_numeric(all_data['ishostkid'], downcast='integer')
all_data['ransom'] = pd.to_numeric(all_data['ransom'], downcast='integer')
"""
author: zhenyu wu
time: 2019/04/07 21:48
function: 对数据样本进行归一化处理,将区间放缩到某个范围内
在MinMaxScaler中是给定了一个明确的最大值与最小值。它的计算公式如下: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) | X_scaled = X_std / (max - min) + min 每个特征中的最小值变成了MIN,最大值变成了MAX。这样做是为了在熵权法取对数过程中避免向下溢出。
params:
data: 数据集
MIN: 下限
MAX: 上限
return:
data_norm: 归一化后的数据集
"""
def normalization(data, MIN=0.002, MAX=0.998):
min_max_scaler = MinMaxScaler(feature_range=(MIN, MAX))
data_norm = min_max_scaler.fit_transform(data)
data_norm = pd.DataFrame(data_norm)
data_norm.columns = data.columns
return data_norm
"""
author: zhenyu wu
time: 2019/04/07 21:47
function: 熵权法确定特征权重
params:
data_norm: 数据集
threshold: 阈值
return:
Entropy: 特征的熵值
difference_coefficient: 特征的差异系数
important_features: 重要特征名称序列
entropy_weight: 特征熵权
overall: 样本的重要性分数
"""
def entropy(data_norm, data_id, threshold=0.8):
feature_weight = pd.DataFrame({'temp': list(np.zeros(len(data_norm)))})
for i in data_norm.columns:
Sum = data_norm[i].sum()
temp = data_norm[i] / Sum
feature_weight[i] = temp
feature_weight.drop('temp', axis=1, inplace=True)
Entropy = {}
for i in feature_weight.columns:
Sum = 0
column = list(deepcopy(feature_weight[i]))
for j in range(len(feature_weight)):
Sum += column[j] * math.log(column[j])
Entropy[i] = -1 / math.log(len(feature_weight)) * Sum
important_features = []
for key, value in Entropy.items():
important_features.append(key)
difference_coefficient = {}
for i in important_features:
difference_coefficient[i] = 1 - Entropy[i]
Diff_sum = sum(list(difference_coefficient.values()))
entropy_weight = {}
for i in important_features:
entropy_weight[i] = difference_coefficient[i] / Diff_sum
feature_weight = feature_weight[important_features]
feature_weight = np.mat(feature_weight)
weight = np.array(list(entropy_weight.values()))
overall_merit = weight * feature_weight.T
overall_merit = overall_merit.T
overall_merit = np.array(overall_merit)
overall_list = []
for i in range(len(feature_weight)):
overall_list.append(overall_merit[i][0])
overall = pd.DataFrame({'eventid': data_id, 'overall': overall_list})
overall = overall.sort_values(by=['overall'], ascending=False)
overall.index = list(np.arange(len(data_norm)))
data_norm = data_norm[important_features]
overall = overall.sort_values(by=['eventid'], ascending=True)
overall.index = list(np.arange(len(data_norm)))
feature_names = list(entropy_weight.keys())
entropy_weight = list(entropy_weight.values())
norm_entropy_weight = []
for sub_weight in entropy_weight:
norm_entropy_weight.append(sub_weight / sum(entropy_weight))
entropy_weight = dict(zip(feature_names, norm_entropy_weight))
return (entropy_weight, overall)
print(entropy_weight) | code |
16157889/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import warnings
import pandas as pd
import warnings
import os
import numpy as np
import folium
from folium import plugins
from sklearn.preprocessing import MinMaxScaler
from copy import deepcopy
import math
import time
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn import mixture
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
all_data = pd.read_csv('../input/globalterrorismdb_0718dist.csv', encoding='ISO-8859-1')
all_data = all_data[['eventid', 'iyear', 'imonth', 'iday', 'extended', 'country', 'region', 'vicinity', 'latitude', 'longitude', 'specificity', 'crit1', 'crit2', 'crit3', 'doubtterr', 'multiple', 'attacktype1', 'success', 'suicide', 'weaptype1', 'targtype1', 'nkill', 'nkillter', 'nwound', 'nwoundte', 'property', 'propextent', 'ishostkid', 'ransom', 'INT_LOG', 'INT_IDEO', 'INT_MISC', 'INT_ANY']]
all_data = all_data.dropna(subset=['latitude'])
all_data = all_data.dropna(subset=['longitude'])
all_data.shape | code |
16157889/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
import warnings
import pandas as pd
import warnings
import os
import numpy as np
import folium
from folium import plugins
from sklearn.preprocessing import MinMaxScaler
from copy import deepcopy
import math
import time
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn import mixture
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
all_data = pd.read_csv('../input/globalterrorismdb_0718dist.csv', encoding='ISO-8859-1')
all_data = all_data[['eventid', 'iyear', 'imonth', 'iday', 'extended', 'country', 'region', 'vicinity', 'latitude', 'longitude', 'specificity', 'crit1', 'crit2', 'crit3', 'doubtterr', 'multiple', 'attacktype1', 'success', 'suicide', 'weaptype1', 'targtype1', 'nkill', 'nkillter', 'nwound', 'nwoundte', 'property', 'propextent', 'ishostkid', 'ransom', 'INT_LOG', 'INT_IDEO', 'INT_MISC', 'INT_ANY']]
all_data = all_data.dropna(subset=['latitude'])
all_data = all_data.dropna(subset=['longitude'])
all_data.shape
print('all_data占据内存约: {:.2f} GB'.format(all_data.memory_usage().sum() / 1024 ** 3)) | code |
122250672/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.columns
car.info() | code |
122250672/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
lrmodel = LinearRegression()
lrmodel.fit(X_train, Y_train) | code |
122250672/cell_7 | [
"image_output_1.png"
] | import pandas as pd
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.head() | code |
122250672/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.columns
car.isnull().sum()
car.replace({'Fuel_Type': {'Petrol': 0, 'Diesel': 1, 'CNG': 2}}, inplace=True)
car.replace({'Seller_Type': {'Dealer': 0, 'Individual': 1}}, inplace=True)
car.replace({'Transmission': {'Manual': 0, 'Automatic': 1}}, inplace=True)
corr = car.corr()
sns.heatmap(corr, annot=True, cmap='crest')
plt.show() | code |
122250672/cell_28 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.columns
car.isnull().sum()
car.replace({'Fuel_Type': {'Petrol': 0, 'Diesel': 1, 'CNG': 2}}, inplace=True)
car.replace({'Seller_Type': {'Dealer': 0, 'Individual': 1}}, inplace=True)
car.replace({'Transmission': {'Manual': 0, 'Automatic': 1}}, inplace=True)
corr = car.corr()
X = car.drop(['Car_Name', 'Selling_Price'], axis=1)
Y = car['Selling_Price']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
lrmodel = LinearRegression()
lrmodel.fit(X_train, Y_train)
training_data_prediction = lrmodel.predict(X_train)
Y_pred = lrmodel.predict(X_test)
sns.regplot(x=Y_test, y=Y_pred, data=car, scatter_kws={'color': 'green'}, line_kws={'color': 'blue'}) | code |
122250672/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.columns | code |
122250672/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
car = pd.read_csv('/kaggle/input/car-15/cardata.csv')
car.columns
car.isnull().sum() | code |
34124456/cell_20 | [
"text_plain_output_1.png"
] | def printinfo(name, age):
"""This prints a passed info into this function"""
return
def printinfo(name, age=35):
"""This prints a passed info into this function"""
return
def printinfo(arg1, *vartuple):
"""This prints a variable passed arguments"""
print('Output is: ')
print(arg1)
for var in vartuple:
print(var)
return
printinfo(10)
printinfo(70, 60, 50) | code |
34124456/cell_11 | [
"text_plain_output_1.png"
] | def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
print(str)
return
printme() | code |
34124456/cell_7 | [
"text_plain_output_1.png"
] | def changeme(mylist):
"""This changes a passed list into this function"""
print('Values inside the function before change: ', mylist)
mylist[2] = 50
print('Values inside the function after change: ', mylist)
return
mylist = [10, 20, 30]
changeme(mylist)
print('Values outside the function: ', mylist) | code |
34124456/cell_18 | [
"text_plain_output_1.png"
] | def printinfo(name, age):
"""This prints a passed info into this function"""
return
def printinfo(name, age=35):
"""This prints a passed info into this function"""
print('Name: ', name)
print('Age ', age)
return
printinfo(age=50, name='miki')
printinfo(name='miki') | code |
34124456/cell_28 | [
"text_plain_output_1.png"
] | sum = lambda arg1, arg2: arg1 + arg2
def sum(arg1, arg2):
total = arg1 + arg2
return total
total = sum(10, 20)
total = 0
def sum(arg1, arg2):
total = arg1 + arg2
print('Inside the function local total : ', total)
return total
sum(10, 20)
print('Outside the function global total : ', total) | code |
34124456/cell_16 | [
"text_plain_output_1.png"
] | def printinfo(name, age):
"""This prints a passed info into this function"""
print('Name: ', name)
print('Age ', age)
return
printinfo(age=50, name='miki') | code |
34124456/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
print(str)
return
printme(str='My string') | code |
34124456/cell_22 | [
"text_plain_output_1.png"
] | sum = lambda arg1, arg2: arg1 + arg2
print('Value of total : ', sum(10, 20))
print('Value of total : ', sum(20, 20)) | code |
34124456/cell_12 | [
"text_plain_output_1.png"
] | def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
print(str)
return
printme('Hello World') | code |
34124456/cell_5 | [
"text_plain_output_1.png"
] | def printme(str):
"""This prints a passed string into this function"""
return
def printme(str):
"""This prints a passed string into this function"""
print(str)
return
printme('This is first call to the user defined function!')
printme('Again second call to the same function') | code |
130027592/cell_42 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
model_1 = Pipeline([('tfidf', TfidfVectorizer()), ('clf', MultinomialNB())])
model_1.fit(train_sentences, train_label)
model_1_score = model_1.score(test_sentences, test_label)
model_1_score
model_1_preds = model_1.predict(test_sentences)
model_1_preds | code |
130027592/cell_13 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data.head() | code |
130027592/cell_9 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
fake_data.info() | code |
130027592/cell_34 | [
"text_plain_output_1.png"
] | from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import random
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
random_sen = random.choice(train_sentences)
random_sen
text_vectorizer([random_sen]) | code |
130027592/cell_33 | [
"text_plain_output_1.png"
] | import random
random_sen = random.choice(train_sentences)
random_sen | code |
130027592/cell_20 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data = all_data.dropna()
all_data = all_data.sample(frac=1, random_state=42)
all_data.head() | code |
130027592/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
real_data.head() | code |
130027592/cell_40 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
model_1 = Pipeline([('tfidf', TfidfVectorizer()), ('clf', MultinomialNB())])
model_1.fit(train_sentences, train_label) | code |
130027592/cell_29 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq | code |
130027592/cell_26 | [
"text_plain_output_1.png"
] | sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10] | code |
130027592/cell_48 | [
"text_html_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping]) | code |
130027592/cell_41 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
model_1 = Pipeline([('tfidf', TfidfVectorizer()), ('clf', MultinomialNB())])
model_1.fit(train_sentences, train_label)
model_1_score = model_1.score(test_sentences, test_label)
model_1_score | code |
130027592/cell_54 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
def calculate_results(y_true, y_pred):
model_accuracy = accuracy_score(y_true, y_pred) * 100
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average='weighted')
model_results = {'accuracy': model_accuracy, 'precision': model_precision, 'recall': model_recall, 'f1': model_f1}
return model_results
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10]
model_2_preds = tf.squeeze(tf.round(model_2_probs))
model_2_preds[:20]
model_2_results = calculate_results(y_true=test_label, y_pred=model_2_preds)
model_2_results | code |
130027592/cell_60 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10]
model_2_preds = tf.squeeze(tf.round(model_2_probs))
model_2_preds[:20]
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.LSTM(64, return_sequences=True)(x)
x = layers.LSTM(64)(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_3 = tf.keras.Model(inputs, outputs, name='LSTM_model')
model_3.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_3_history = model_3.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_3.summary() | code |
130027592/cell_50 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary() | code |
130027592/cell_52 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10] | code |
130027592/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
130027592/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
real_data.info() | code |
130027592/cell_49 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
pd.DataFrame(model_2_history.history).plot() | code |
130027592/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data = all_data.dropna()
sns.barplot(x=all_data['target'].unique(), y=all_data['target'].value_counts(), palette='viridis') | code |
130027592/cell_51 | [
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label) | code |
130027592/cell_59 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10]
model_2_preds = tf.squeeze(tf.round(model_2_probs))
model_2_preds[:20]
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.LSTM(64, return_sequences=True)(x)
x = layers.LSTM(64)(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_3 = tf.keras.Model(inputs, outputs, name='LSTM_model')
model_3.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_3_history = model_3.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
pd.DataFrame(model_3_history.history).plot() | code |
130027592/cell_58 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10]
model_2_preds = tf.squeeze(tf.round(model_2_probs))
model_2_preds[:20]
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.LSTM(64, return_sequences=True)(x)
x = layers.LSTM(64)(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_3 = tf.keras.Model(inputs, outputs, name='LSTM_model')
model_3.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_3_history = model_3.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping]) | code |
130027592/cell_28 | [
"text_plain_output_1.png",
"image_output_1.png"
] | sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
(min(sent_lens), max(sent_lens)) | code |
130027592/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
fake_data.head() | code |
130027592/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data = all_data.dropna()
all_data.info() | code |
130027592/cell_38 | [
"text_plain_output_1.png"
] | from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import random
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
random_sen = random.choice(train_sentences)
random_sen
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
print(embedding(text_vectorizer([random_sen]))) | code |
130027592/cell_3 | [
"text_plain_output_1.png"
] | import tensorflow as tf
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
from tensorflow.keras import layers
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import random
from keras.callbacks import EarlyStopping | code |
130027592/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data = all_data.dropna()
all_data['target'].value_counts().hist() | code |
130027592/cell_35 | [
"text_plain_output_1.png"
] | from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
print(f'Most common words in the vocabulary: {news_vocab[:5]}')
print(f'Least common words in the vocabulary: {news_vocab[-5:]}') | code |
130027592/cell_43 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
def calculate_results(y_true, y_pred):
model_accuracy = accuracy_score(y_true, y_pred) * 100
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average='weighted')
model_results = {'accuracy': model_accuracy, 'precision': model_precision, 'recall': model_recall, 'f1': model_f1}
return model_results
model_1 = Pipeline([('tfidf', TfidfVectorizer()), ('clf', MultinomialNB())])
model_1.fit(train_sentences, train_label)
model_1_score = model_1.score(test_sentences, test_label)
model_1_score
model_1_preds = model_1.predict(test_sentences)
model_1_preds
model_1_results = calculate_results(y_true=test_label, y_pred=model_1_preds)
model_1_results | code |
130027592/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
real_data = pd.read_csv('/kaggle/input/fake-news-football/real.csv')
fake_data = pd.read_csv('/kaggle/input/fake-news-football/fake.csv')
all_data = pd.concat([real_data, fake_data], ignore_index=True)
all_data.info() | code |
130027592/cell_22 | [
"text_plain_output_1.png"
] | (type(train_sentences), type(train_label)) | code |
130027592/cell_53 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from keras.callbacks import EarlyStopping
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np # linear algebra
import tensorflow as tf
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
text_vectorizer = TextVectorization(max_tokens=max_tokens, output_sequence_length=output_sequence_length)
text_vectorizer.adapt(train_sentences)
news_vocab = text_vectorizer.get_vocabulary()
(print(f'Number of words in vocabulary: {len(news_vocab)}'),)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding
inputs = layers.Input(shape=(1,), dtype=tf.string)
x = text_vectorizer(inputs)
x = embedding(x)
x = layers.Conv1D(filters=64, kernel_size=5, strides=1, activation='relu', padding='valid')(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation='sigmoid')(x)
model_2 = tf.keras.Model(inputs, outputs, name='conv1D_model')
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_2.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
model_2_history = model_2.fit(train_sentences, train_label, validation_data=(test_sentences, test_label), batch_size=64, epochs=100, verbose=1, callbacks=[early_stopping])
model_2.summary()
model_2.evaluate(test_sentences, test_label)
model_2_probs = model_2.predict(test_sentences)
model_2_probs[:10]
model_2_preds = tf.squeeze(tf.round(model_2_probs))
model_2_preds[:20] | code |
130027592/cell_27 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len | code |
130027592/cell_37 | [
"text_plain_output_1.png"
] | from tensorflow.keras import layers
import numpy as np # linear algebra
sent_lens = [len(sentence.split()) for sentence in train_sentences]
sent_lens[:10]
avg_len = np.mean(sent_lens)
avg_len
out_len_seq = np.percentile(sent_lens, 95)
out_len_seq
max_tokens = 65000
output_sequence_length = int(out_len_seq)
embedding = layers.Embedding(input_dim=max_tokens, output_dim=128, input_length=out_len_seq, embeddings_initializer='uniform')
embedding | code |
122244194/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from tensorflow.keras.callbacks import EarlyStopping
import numpy as np # linear algebra
import os
import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
checkpoint_dir = './check_v2'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True)
e_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
EPOCHS = 100
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, e_stop]) | code |
122244194/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
122244194/cell_7 | [
"image_output_1.png"
] | from tensorflow.keras.callbacks import EarlyStopping
import numpy as np # linear algebra
import os
import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
checkpoint_dir = './check_v2'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True)
e_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
EPOCHS = 100
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, e_stop])
model.summary() | code |
122244194/cell_8 | [
"text_plain_output_1.png"
] | from tensorflow.keras.callbacks import EarlyStopping
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
checkpoint_dir = './check_v2'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True)
e_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
EPOCHS = 100
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, e_stop])
losses = pd.DataFrame(history.history)
losses.plot() | code |
122244194/cell_10 | [
"text_plain_output_1.png"
] | from tensorflow.keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
checkpoint_dir = './check_v2'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True)
e_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
EPOCHS = 100
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, e_stop])
losses = pd.DataFrame(history.history)
fig = plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
plt.plot(history.history['loss'])
plt.title('Modellverlust')
plt.ylabel('Verlust')
plt.xlabel('Epoche')
plt.legend(['Training', 'Validierung'], loc='upper right')
plt.subplot(2, 1, 2)
plt.plot(history.history['accuracy'])
plt.title('Modellgenauigkeit')
plt.ylabel('Genauigkeit')
plt.xlabel('Epoche')
plt.legend(['Training', 'Validierung'], loc='lower right')
plt.tight_layout()
plt.show() | code |
122244194/cell_12 | [
"text_plain_output_1.png"
] | from tensorflow.keras.callbacks import EarlyStopping
import numpy as np # linear algebra
import os
import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import os
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
checkpoint_dir = './check_v2'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True)
e_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
EPOCHS = 100
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback, e_stop])
model.summary()
model = build_model(vocab_size, embedding_dim, rnn_units, batch_size=1)
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
model.build(tf.TensorShape([1, None]))
def generate_text(model, start_string, t, numGen):
num_generate = numGen
input_eval = [char2idx[s] for s in start_string]
input_eval = tf.expand_dims(input_eval, 0)
text_generated = []
temperature = t
model.reset_states()
for i in range(num_generate):
predictions = model(input_eval)
predictions = tf.squeeze(predictions, 0)
predictions = predictions / temperature
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy()
input_eval = tf.expand_dims([predicted_id], 0)
text_generated.append(idx2char[predicted_id])
genText = start_string + ''.join(text_generated)
return genText
print(generate_text(model, start_string=u'Was machst du?', t=0.5, numGen=200)) | code |
122244194/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import tensorflow as tf
with open('/kaggle/input/german-harry-potter/Stein.txt', 'r') as datei:
TEXT = datei.read()
with open('/kaggle/input/german-harry-potter/Orden.txt', 'r') as datei:
Orden = datei.read()
with open('/kaggle/input/german-harry-potter/Kammer.txt', 'r') as datei:
Kammer = datei.read()
with open('/kaggle/input/german-harry-potter/Heiligtuemer.txt', 'r') as datei:
Heil = datei.read()
TEXT = TEXT + ' ' + Orden + ' ' + Kammer + ' ' + Heil
vocab = sorted(set(TEXT))
char2idx = {u: i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
TEXT_as_int = np.array([char2idx[c] for c in TEXT])
seq_length = 200
examples_per_epoch = len(TEXT) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(TEXT_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(chunk):
input_TEXT = chunk[:-1]
target_TEXT = chunk[1:]
return (input_TEXT, target_TEXT)
dataset = sequences.map(split_input_target)
BATCH_SIZE = 128
BUFFER_SIZE = 1300
dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
vocab_size = len(vocab)
embedding_dim = 512
rnn_units = 1024
rnn_units2 = 512
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=[batch_size, None]), tf.keras.layers.GRU(rnn_units, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.GRU(rnn_units2, return_sequences=True, stateful=True, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size)])
return model
model = build_model(vocab_size=len(vocab), embedding_dim=embedding_dim, rnn_units=rnn_units, batch_size=BATCH_SIZE)
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
print(example_batch_predictions.shape, '# (batch_size, sequence_length, vocab_size)') | code |
33108213/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
sns.distplot(ted_data['views']) | code |
33108213/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes | code |
33108213/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
ted_data.head() | code |
33108213/cell_2 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.head() | code |
33108213/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
sns.distplot(ted_data[ted_data['duration'] < 3000]['duration']) | code |
33108213/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33108213/cell_7 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
import seaborn as sns
ax = sns.barplot(x='duration', y='main_speaker', data=ted_data.sort_values('duration', ascending=False)[:20]) | code |
33108213/cell_8 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
ax = sns.barplot(x='views', y='main_speaker', data=ted_data.sort_values('views', ascending=False)[:20]) | code |
33108213/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
ted_data[['title', 'main_speaker', 'comments', 'views', 'duration']].sort_values('comments', ascending=False).head(20) | code |
33108213/cell_3 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum() | code |
33108213/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import scipy.stats as stats
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
# lets check if there is any correlation between views and duration
import scipy.stats as stats
ax = sns.jointplot(x='views', y='duration', data=ted_data)
ax.annotate(stats.pearsonr) # shows the p values
ax = sns.jointplot(x='views', y='comments', data=ted_data)
ax.annotate(stats.pearsonr) | code |
33108213/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
sns.distplot(ted_data[ted_data['views'] < 5000000.0]['views']) | code |
33108213/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import scipy.stats as stats
import seaborn as sns
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns
def date_convert(x):
return pd.to_datetime(x, unit='s')
ted_data['film_date'] = ted_data['film_date'].apply(date_convert)
ted_data['published_date'] = ted_data['published_date'].apply(date_convert)
# lets check who talked the most, top 20
import seaborn as sns
ax = sns.barplot(x="duration", y="main_speaker", data=ted_data.sort_values('duration', ascending=False)[:20])
# lets check who got the most views, top 20
ax = sns.barplot(x="views", y="main_speaker", data=ted_data.sort_values('views', ascending=False)[:20])
import scipy.stats as stats
ax = sns.jointplot(x='views', y='duration', data=ted_data)
ax.annotate(stats.pearsonr) | code |
33108213/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
ted_data = pd.read_csv('/kaggle/input/ted-talks/ted_main.csv')
ted_data.isnull().sum()
ted_data.dtypes
ted_data = ted_data.drop(['name'], axis=1)
ted_data.columns | code |
128046727/cell_42 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
show_wordcloud(cataract_df['left_diagnosys'], title='Prevalent words in left eye diagnosys for cataract') | code |
128046727/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | !pip install openpyxl | code |
128046727/cell_25 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('sex', 'Sex', data_df, size=2) | code |
128046727/cell_57 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import glob
import imageio
import matplotlib.pyplot as plt
import os
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
import imageio
IMAGE_PATH = "/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/Training Images"
def show_images(df, title="Diagnosys", eye_exam="left_fundus"):
print(f"{title}; eye exam: {eye_exam}")
f, ax = plt.subplots(4,4, figsize=(16,16))
for i,idx in enumerate(df.index):
dd = df.iloc[idx]
image_name = dd[eye_exam]
image_path = os.path.join(IMAGE_PATH, image_name)
img_data=imageio.imread(image_path)
ax[i//4, i%4].imshow(img_data)
ax[i//4, i%4].axis('off')
plt.show()
df = data_df.loc[(data_df.cataract == 1) & (data_df.left_diagnosys == 'cataract')].sample(16).reset_index()
df = data_df.loc[(data_df.cataract == 1) & (data_df.right_diagnosys == 'cataract')].sample(16).reset_index()
show_images(df, title='Right eye with cataract', eye_exam='right_fundus') | code |
128046727/cell_56 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import glob
import imageio
import matplotlib.pyplot as plt
import os
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
import imageio
IMAGE_PATH = "/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/Training Images"
def show_images(df, title="Diagnosys", eye_exam="left_fundus"):
print(f"{title}; eye exam: {eye_exam}")
f, ax = plt.subplots(4,4, figsize=(16,16))
for i,idx in enumerate(df.index):
dd = df.iloc[idx]
image_name = dd[eye_exam]
image_path = os.path.join(IMAGE_PATH, image_name)
img_data=imageio.imread(image_path)
ax[i//4, i%4].imshow(img_data)
ax[i//4, i%4].axis('off')
plt.show()
df = data_df.loc[(data_df.cataract == 1) & (data_df.left_diagnosys == 'cataract')].sample(16).reset_index()
show_images(df, title='Left eye with cataract', eye_exam='left_fundus') | code |
128046727/cell_30 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('amd', 'AMD', data_df, size=2) | code |
128046727/cell_33 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('other', 'Other', data_df, size=2) | code |
128046727/cell_20 | [
"text_html_output_1.png"
] | import glob
import os
print(f"train images: {len(os.listdir('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Training Images'))}")
print(f"test images: {len(os.listdir('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Testing Images'))}")
print(f"train images - left eye: {len(glob.glob('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Training Images//*_left.jpg'))}")
print(f"train images - right eye: {len(glob.glob('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Training Images//*_right.jpg'))}")
print(f"test images - left eye: {len(glob.glob('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Testing Images//*_left.jpg'))}")
print(f"test images - right eye: {len(glob.glob('//kaggle//input//ocular-disease-recognition-odir5k//ODIR-5K//ODIR-5K//Testing Images//*_right.jpg'))}") | code |
128046727/cell_40 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
show_wordcloud(data_df['left_diagnosys'], title='Prevalent words in right eye diagnosys') | code |
128046727/cell_29 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('cataract', 'Cataract', data_df, size=2) | code |
128046727/cell_39 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
show_wordcloud(data_df['left_diagnosys'], title='Prevalent words in left eye diagnosys') | code |
128046727/cell_26 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
plot_count('normal', 'Normal', data_df, size=2) | code |
128046727/cell_48 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Cataract diagnosys grouped by sex', data_df, 'cataract', size=2) | code |
128046727/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.head() | code |
128046727/cell_50 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data_df = pd.read_excel('/kaggle/input/ocular-disease-recognition-odir5k/ODIR-5K/ODIR-5K/data.xlsx', engine='openpyxl')
data_df.columns = ['id', 'age', 'sex', 'left_fundus', 'right_fundus', 'left_diagnosys', 'right_diagnosys', 'normal', 'diabetes', 'glaucoma', 'cataract', 'amd', 'hypertension', 'myopia', 'other']
def plot_count(feature, title, df, size=1, show_all=False):
f, ax = plt.subplots(1,1, figsize=(4*size,4))
total = float(len(df))
if show_all:
g = sns.countplot(df[feature], palette='Set3')
g.set_title("{} distribution".format(title))
else:
g = sns.countplot(df[feature], order = df[feature].value_counts().index[:20], palette='Set3')
if(size > 2):
plt.xticks(rotation=90, size=8)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 0.2,
'{:1.2f}%'.format(100*height/total),
ha="center")
g.set_title("Number and percentage of {}".format(title))
plt.show()
stopwords = set(STOPWORDS)
def show_wordcloud(data, title = None):
wordcloud = WordCloud(
background_color='white',
stopwords=stopwords,
max_words=40,
max_font_size=40,
scale=3,
random_state=1,
).generate(str(data))
fig = plt.figure(1, figsize=(12,10))
plt.axis('off')
if title:
fig.suptitle(title, fontsize=20)
fig.subplots_adjust(top=2.3)
plt.imshow(wordcloud)
plt.show()
cataract_df = data_df.loc[data_df.cataract == 1]
def plot_feature_distribution_grouped(feature, title, df, hue, size=4):
plt.figure(figsize=(size*5,size*2))
plt.title(title)
if(size > 2):
plt.xticks(rotation=90, size=8)
g = sns.countplot(df[feature], hue=df[hue], palette='Set3')
plt.xlabel(feature)
plt.legend()
plt.show()
plot_feature_distribution_grouped('sex', 'Hypertension diagnosys grouped by sex', data_df, 'hypertension', size=2) | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.