path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2025290/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) lircross = cross_val_score(LiR, X, y, cv=10) print('Accuracy: %0.2f(+/- %0.2f)' % (lircross.mean(), lircross.std() * 2))
code
2025290/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number])
code
2025290/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestnum.isnull().sum() housetestnum['LotFrontage'].fillna(housetestnum['LotFrontage'].mean(), inplace=True) housetestnum['MasVnrArea'].fillna(housetestnum['MasVnrArea'].mean(), inplace=True) housetestnum['BsmtFinSF1'].fillna(housetestnum['BsmtFinSF1'].mean(), inplace=True) housetestnum['BsmtFinSF2'].fillna(housetestnum['BsmtFinSF2'].mean(), inplace=True) housetestnum['BsmtUnfSF'].fillna(housetestnum['BsmtUnfSF'].mean(), inplace=True) housetestnum['TotalBsmtSF'].fillna(housetestnum['TotalBsmtSF'].mean(), inplace=True) housetestnum['BsmtFullBath'].fillna(housetestnum['BsmtFullBath'].mean(), inplace=True) housetestnum['BsmtHalfBath'].fillna(housetestnum['BsmtHalfBath'].mean(), inplace=True) housetestnum['GarageCars'].fillna(housetestnum['GarageCars'].mean(), inplace=True) housetestnum['GarageArea'].fillna(housetestnum['GarageArea'].mean(), inplace=True) housetestnum['GarageYrBlt'].fillna(housetestnum['GarageYrBlt'].value_counts().idxmax(), inplace=True)
code
2025290/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfnum['LotFrontage'].fillna(housedfnum['LotFrontage'].mean(), inplace=True) housedfnum['MasVnrArea'].fillna(housedfnum['MasVnrArea'].mean(), inplace=True) housedfnum['GarageYrBlt'].fillna(housedfnum['GarageYrBlt'].value_counts().idxmax(), inplace=True)
code
2025290/cell_40
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object]) housetestcat.isnull().sum() housetestcat1 = housetestcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housetestcat1.isnull().sum()
code
2025290/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum()
code
2025290/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object]) housetestcat.isnull().sum() housetestcat1 = housetestcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1)
code
2025290/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice
code
2025290/cell_41
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object]) housetestcat.isnull().sum() housetestcat1 = housetestcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housetestcat1.isnull().sum() housetestcat1['MasVnrType'].fillna(housetestcat1['MasVnrType'].value_counts().idxmax(), inplace=True) housetestcat1['BsmtQual'].fillna(housetestcat1['BsmtQual'].value_counts().idxmax(), inplace=True) housetestcat1['BsmtCond'].fillna(housetestcat1['BsmtCond'].value_counts().idxmax(), inplace=True) housetestcat1['BsmtExposure'].fillna(housetestcat1['BsmtExposure'].value_counts().idxmax(), inplace=True) housetestcat1['BsmtFinType1'].fillna(housetestcat1['BsmtFinType1'].value_counts().idxmax(), inplace=True) housetestcat1['BsmtFinType2'].fillna(housetestcat1['BsmtFinType2'].value_counts().idxmax(), inplace=True) housetestcat1['GarageType'].fillna(housetestcat1['GarageType'].value_counts().idxmax(), inplace=True) housetestcat1['GarageFinish'].fillna(housetestcat1['GarageFinish'].value_counts().idxmax(), inplace=True) housetestcat1['GarageQual'].fillna(housetestcat1['GarageQual'].value_counts().idxmax(), inplace=True) housetestcat1['GarageCond'].fillna(housetestcat1['GarageCond'].value_counts().idxmax(), inplace=True)
code
2025290/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv')
code
2025290/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat1['MasVnrType'].fillna(housedfcat1['MasVnrType'].value_counts().idxmax(), inplace=True) housedfcat1['BsmtQual'].fillna(housedfcat1['BsmtQual'].value_counts().idxmax(), inplace=True) housedfcat1['BsmtCond'].fillna(housedfcat1['BsmtCond'].value_counts().idxmax(), inplace=True) housedfcat1['BsmtExposure'].fillna(housedfcat1['BsmtExposure'].value_counts().idxmax(), inplace=True) housedfcat1['BsmtFinType1'].fillna(housedfcat1['BsmtFinType1'].value_counts().idxmax(), inplace=True) housedfcat1['BsmtFinType2'].fillna(housedfcat1['BsmtFinType2'].value_counts().idxmax(), inplace=True) housedfcat1['Electrical'].fillna(housedfcat1['Electrical'].value_counts().idxmax(), inplace=True) housedfcat1['GarageType'].fillna(housedfcat1['GarageType'].value_counts().idxmax(), inplace=True) housedfcat1['GarageFinish'].fillna(housedfcat1['GarageFinish'].value_counts().idxmax(), inplace=True) housedfcat1['GarageQual'].fillna(housedfcat1['GarageQual'].value_counts().idxmax(), inplace=True) housedfcat1['GarageCond'].fillna(housedfcat1['GarageCond'].value_counts().idxmax(), inplace=True)
code
2025290/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y)
code
2025290/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y)
code
2025290/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestnum.isnull().sum()
code
2025290/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv')
code
2025290/cell_38
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestnum.isnull().sum() housetestnum.isnull().sum() le = LabelEncoder() housetestnum['MSSubClass'] = le.fit_transform(housetestnum['MSSubClass'].values) housetestnum['OverallQual'] = le.fit_transform(housetestnum['OverallQual'].values) housetestnum['OverallCond'] = le.fit_transform(housetestnum['OverallCond'].values) housetestnum['YearBuilt'] = le.fit_transform(housetestnum['YearBuilt'].values) housetestnum['YearRemodAdd'] = le.fit_transform(housetestnum['YearRemodAdd'].values) housetestnum['YrSold'] = le.fit_transform(housetestnum['YrSold'].values) housetestnum['GarageYrBlt'] = le.fit_transform(housetestnum['GarageYrBlt'].values)
code
2025290/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum()
code
2025290/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1)
code
2025290/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object]) housetestcat.isnull().sum()
code
2025290/cell_43
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object]) housetestnum.isnull().sum() housetestnum.isnull().sum() housetestcat.isnull().sum() le = LabelEncoder() housetestnum['MSSubClass'] = le.fit_transform(housetestnum['MSSubClass'].values) housetestnum['OverallQual'] = le.fit_transform(housetestnum['OverallQual'].values) housetestnum['OverallCond'] = le.fit_transform(housetestnum['OverallCond'].values) housetestnum['YearBuilt'] = le.fit_transform(housetestnum['YearBuilt'].values) housetestnum['YearRemodAdd'] = le.fit_transform(housetestnum['YearRemodAdd'].values) housetestnum['YrSold'] = le.fit_transform(housetestnum['YrSold'].values) housetestnum['GarageYrBlt'] = le.fit_transform(housetestnum['GarageYrBlt'].values) housetestcat1 = housetestcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housetestcat1.isnull().sum() housetestcat1['MSZoning'] = le.fit_transform(housetestcat1['MSZoning'].astype(str)) housetestcat1['Utilities'] = le.fit_transform(housetestcat1['Utilities'].astype(str))
code
2025290/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2)) housetest = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/test.csv') housetest.isnull().sum() housetestnum = housetest.select_dtypes(include=[np.number]) housetestcat = housetest.select_dtypes(include=[object])
code
2025290/cell_24
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X)
code
2025290/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape
code
2025290/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) lircross = cross_val_score(LiR, X, y, cv=10) lircross
code
2025290/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1)
code
2025290/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform) housefinal = pd.concat([housedfnum, housedfcat2], axis=1) housefinal.shape LiR = LinearRegression() y = housefinal['SalePrice'] X = housefinal.drop(['Id', 'SalePrice'], axis=1) LiR.fit(X, y) LiR.score(X, y) predictedprice = LiR.predict(X) priceresidual = housefinal.SalePrice - predictedprice np.sqrt(np.mean(priceresidual ** 2))
code
2025290/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object]) le = LabelEncoder() housedfnum['MSSubClass'] = le.fit_transform(housedfnum['MSSubClass'].values) housedfnum['OverallQual'] = le.fit_transform(housedfnum['OverallQual'].values) housedfnum['OverallCond'] = le.fit_transform(housedfnum['OverallCond'].values) housedfnum['YearBuilt'] = le.fit_transform(housedfnum['YearBuilt'].values) housedfnum['YearRemodAdd'] = le.fit_transform(housedfnum['YearRemodAdd'].values) housedfnum['YrSold'] = le.fit_transform(housedfnum['YrSold'].values) housedfnum['GarageYrBlt'] = le.fit_transform(housedfnum['GarageYrBlt'].values) housedfcat1 = housedfcat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) housedfcat2 = housedfcat1.apply(le.fit_transform)
code
2025290/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd houseprice = pd.read_csv('C:/Users/hp/Desktop/KAGGLE/Ames Houses DATA/train.csv') houseprice.isnull().sum() housedfnum = houseprice.select_dtypes(include=[np.number]) housedfcat = houseprice.select_dtypes(include=[object])
code
329572/cell_23
[ "text_html_output_1.png" ]
c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 100)] var_list, p_var_list = (get_vars(c_ids), get_vars(c_ids, percent=True))
code
329572/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) def demandVar(c_id, df, percent=False): """ Get the amounts by which product demand changed week-to-week for a given set of client ids. Returned object is a pandas dataframe with NaN entries where the product was not ordered the week before or after. """ for week in range(4, 10): try: vals_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Demanda_uni_equil.values prod_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Producto_ID.values dict_a = {p: v for p, v in zip(prod_a, vals_a)} vals_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Demanda_uni_equil.values prod_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Producto_ID.values dict_b = {p: v for p, v in zip(prod_b, vals_b)} dict_merge = {} for key in np.unique(np.concatenate((prod_a, prod_b))): try: if percent: try: dict_merge[key] = (dict_b[key].astype(int) - dict_a[key].astype(int)) / (dict_b[key].astype(int) + dict_a[key].astype(int)) except: dict_merge[key] = 0.0 else: dict_merge[key] = dict_b[key].astype(int) - dict_a[key].astype(int) except: dict_merge[key] = np.nan if week == 4: df_return = pd.DataFrame({'week_3-4': list(dict_merge.values())}, index=list(dict_merge.keys())) else: df_new = pd.DataFrame({'week_' + str(week - 1) + '-' + str(week): list(dict_merge.values())}, index=list(dict_merge.keys())) df_return = pd.merge(df_return, df_new, how='outer', left_index=True, right_index=True) except: return df_return c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 5)] c_ids var = demandVar(c_id=c_ids[0], df=df) var var = demandVar(c_id=c_ids[1], df=df, percent=True) var def get_vars(c_ids, percent=False): """ Return a list of variations in the demand week-to-week on individual products for a set of clients. """ return_list = [[] for _ in range(len(c_ids))] for i, c_id in enumerate(c_ids): var = demandVar(c_id, df, percent) for col in var.columns: return_list[i] += list(var[col].dropna()) return return_list var_list = get_vars(c_ids) colors = ['blue', 'red', 'green', 'turquoise', 'brown'] fig, ax = plt.subplots(1, 2) plt.suptitle('Change in demand on individual poducts for 5 clients') for i in range(5): ax[0].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20) ax[0].set_ylim(0, 0.2) ax[0].set_xlabel('Change in demand') ax[0].set_ylabel('Normed frequency') for i in range(5): ax[1].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20) ax[1].set_ylim(0, 1)
code
329572/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) df.Demanda_uni_equil.hist(bins=100, log=True) plt.xlabel('Demand per week') plt.ylabel('Number of clients')
code
329572/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) print('plotting {0:.2f} % of data'.format(100 * (demand_sorted < 30).sum() / len(demand_sorted))) demand_sorted[demand_sorted < 30].hist(bins=30) plt.xlabel('Demand per week') plt.ylabel('Number of clients')
code
329572/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) def demandVar(c_id, df, percent=False): """ Get the amounts by which product demand changed week-to-week for a given set of client ids. Returned object is a pandas dataframe with NaN entries where the product was not ordered the week before or after. """ for week in range(4, 10): try: vals_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Demanda_uni_equil.values prod_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Producto_ID.values dict_a = {p: v for p, v in zip(prod_a, vals_a)} vals_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Demanda_uni_equil.values prod_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Producto_ID.values dict_b = {p: v for p, v in zip(prod_b, vals_b)} dict_merge = {} for key in np.unique(np.concatenate((prod_a, prod_b))): try: if percent: try: dict_merge[key] = (dict_b[key].astype(int) - dict_a[key].astype(int)) / (dict_b[key].astype(int) + dict_a[key].astype(int)) except: dict_merge[key] = 0.0 else: dict_merge[key] = dict_b[key].astype(int) - dict_a[key].astype(int) except: dict_merge[key] = np.nan if week == 4: df_return = pd.DataFrame({'week_3-4': list(dict_merge.values())}, index=list(dict_merge.keys())) else: df_new = pd.DataFrame({'week_' + str(week - 1) + '-' + str(week): list(dict_merge.values())}, index=list(dict_merge.keys())) df_return = pd.merge(df_return, df_new, how='outer', left_index=True, right_index=True) except: return df_return c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 5)] c_ids var = demandVar(c_id=c_ids[0], df=df) var var = demandVar(c_id=c_ids[1], df=df, percent=True) var
code
329572/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) def demandVar(c_id, df, percent=False): """ Get the amounts by which product demand changed week-to-week for a given set of client ids. Returned object is a pandas dataframe with NaN entries where the product was not ordered the week before or after. """ for week in range(4, 10): try: vals_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Demanda_uni_equil.values prod_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Producto_ID.values dict_a = {p: v for p, v in zip(prod_a, vals_a)} vals_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Demanda_uni_equil.values prod_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Producto_ID.values dict_b = {p: v for p, v in zip(prod_b, vals_b)} dict_merge = {} for key in np.unique(np.concatenate((prod_a, prod_b))): try: if percent: try: dict_merge[key] = (dict_b[key].astype(int) - dict_a[key].astype(int)) / (dict_b[key].astype(int) + dict_a[key].astype(int)) except: dict_merge[key] = 0.0 else: dict_merge[key] = dict_b[key].astype(int) - dict_a[key].astype(int) except: dict_merge[key] = np.nan if week == 4: df_return = pd.DataFrame({'week_3-4': list(dict_merge.values())}, index=list(dict_merge.keys())) else: df_new = pd.DataFrame({'week_' + str(week - 1) + '-' + str(week): list(dict_merge.values())}, index=list(dict_merge.keys())) df_return = pd.merge(df_return, df_new, how='outer', left_index=True, right_index=True) except: return df_return c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 5)] c_ids var = demandVar(c_id=c_ids[0], df=df) var
code
329572/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) def demandVar(c_id, df, percent=False): """ Get the amounts by which product demand changed week-to-week for a given set of client ids. Returned object is a pandas dataframe with NaN entries where the product was not ordered the week before or after. """ for week in range(4, 10): try: vals_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Demanda_uni_equil.values prod_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Producto_ID.values dict_a = {p: v for p, v in zip(prod_a, vals_a)} vals_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Demanda_uni_equil.values prod_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Producto_ID.values dict_b = {p: v for p, v in zip(prod_b, vals_b)} dict_merge = {} for key in np.unique(np.concatenate((prod_a, prod_b))): try: if percent: try: dict_merge[key] = (dict_b[key].astype(int) - dict_a[key].astype(int)) / (dict_b[key].astype(int) + dict_a[key].astype(int)) except: dict_merge[key] = 0.0 else: dict_merge[key] = dict_b[key].astype(int) - dict_a[key].astype(int) except: dict_merge[key] = np.nan if week == 4: df_return = pd.DataFrame({'week_3-4': list(dict_merge.values())}, index=list(dict_merge.keys())) else: df_new = pd.DataFrame({'week_' + str(week - 1) + '-' + str(week): list(dict_merge.values())}, index=list(dict_merge.keys())) df_return = pd.merge(df_return, df_new, how='outer', left_index=True, right_index=True) except: return df_return c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 5)] c_ids var = demandVar(c_id=c_ids[0], df=df) var var = demandVar(c_id=c_ids[1], df=df, percent=True) var def get_vars(c_ids, percent=False): """ Return a list of variations in the demand week-to-week on individual products for a set of clients. """ return_list = [[] for _ in range(len(c_ids))] for i, c_id in enumerate(c_ids): var = demandVar(c_id, df, percent) for col in var.columns: return_list[i] += list(var[col].dropna()) return return_list var_list = get_vars(c_ids) colors = ['blue', 'red', 'green', 'turquoise', 'brown'] fig, ax = plt.subplots(1,2) plt.suptitle('Change in demand on individual poducts for 5 clients') for i in range(5): ax[0].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20) ax[0].set_ylim(0,0.2) ax[0].set_xlabel('Change in demand') ax[0].set_ylabel('Normed frequency') for i in range(5): ax[1].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20) ax[1].set_ylim(0,1) var_list = get_vars(c_ids, percent=True) colors = ['blue', 'red', 'green', 'turquoise', 'brown'] fig, ax = plt.subplots(1, 2) plt.suptitle('Percent change in demand on individual poducts for 5 clients') for i in range(5): ax[0].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20) ax[0].set_ylim(0, 2) ax[0].set_xlabel('Change in demand') ax[0].set_ylabel('Normed frequency') for i in range(5): ax[1].hist(var_list[i], color=colors[i], normed=True, alpha=0.5, bins=20)
code
329572/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) demand_sorted = df.Demanda_uni_equil.sort_values(ascending=True) def demandVar(c_id, df, percent=False): """ Get the amounts by which product demand changed week-to-week for a given set of client ids. Returned object is a pandas dataframe with NaN entries where the product was not ordered the week before or after. """ for week in range(4, 10): try: vals_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Demanda_uni_equil.values prod_a = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week - 1)].Producto_ID.values dict_a = {p: v for p, v in zip(prod_a, vals_a)} vals_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Demanda_uni_equil.values prod_b = df[(df.Cliente_ID.values == c_id) & (df.Semana.values == week)].Producto_ID.values dict_b = {p: v for p, v in zip(prod_b, vals_b)} dict_merge = {} for key in np.unique(np.concatenate((prod_a, prod_b))): try: if percent: try: dict_merge[key] = (dict_b[key].astype(int) - dict_a[key].astype(int)) / (dict_b[key].astype(int) + dict_a[key].astype(int)) except: dict_merge[key] = 0.0 else: dict_merge[key] = dict_b[key].astype(int) - dict_a[key].astype(int) except: dict_merge[key] = np.nan if week == 4: df_return = pd.DataFrame({'week_3-4': list(dict_merge.values())}, index=list(dict_merge.keys())) else: df_new = pd.DataFrame({'week_' + str(week - 1) + '-' + str(week): list(dict_merge.values())}, index=list(dict_merge.keys())) df_return = pd.merge(df_return, df_new, how='outer', left_index=True, right_index=True) except: return df_return c_ids = [df.Cliente_ID.values[int(i)] for i in np.linspace(0, len(df) - 1, 5)] c_ids
code
329572/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd types = {'Semana': np.uint8, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} df = pd.read_csv('../input/train.csv', usecols=types.keys(), dtype=types) df.Demanda_uni_equil.hist(bins=100) plt.xlabel('Demand per week') plt.ylabel('Number of clients')
code
2026814/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min)
code
2026814/cell_2
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import tensorflow as tf import pandas as pd import numpy as np from sklearn.model_selection import StratifiedShuffleSplit from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from tqdm import tqdm
code
2026814/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min) fig, ax = plt.subplots(2, 4, figsize=[12, 8]) ax[0, 0].imshow(X_train[0, :, :, 0]) ax[0, 1].imshow(X_train[0, :, :, 2]) ax[0, 2].imshow(X_train[2, :, :, 0]) ax[0, 3].imshow(X_train[2, :, :, 2]) ax[1, 0].imshow(X_train[1, :, :, 0]) ax[1, 1].imshow(X_train[1, :, :, 2]) ax[1, 2].imshow(X_train[6, :, :, 0]) ax[1, 3].imshow(X_train[6, :, :, 2])
code
2026814/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import numpy as np import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) lbl = OneHotEncoder() lbl.fit([[0], [1]]) y = lbl.transform(y).toarray()
code
2026814/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from tqdm import tqdm import numpy as np import pandas as pd import tensorflow as tf data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) lbl = OneHotEncoder() lbl.fit([[0], [1]]) y = lbl.transform(y).toarray() X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min) def get_batches(x, y, batch_size=10): n_batches = len(x) // batch_size for ii in range(0, n_batches * batch_size, batch_size): if ii != (n_batches - 1) * batch_size: X, Y = (x[ii:ii + batch_size], y[ii:ii + batch_size]) else: X, Y = (x[ii:], y[ii:]) yield (X, Y) inputs = tf.placeholder(tf.float32, [None, 75, 75, 3]) labels = tf.placeholder(tf.int32) conv1 = tf.layers.conv2d(inputs=inputs, filters=8, kernel_size=(7, 7), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv3 = tf.layers.conv2d(inputs=pool2, filters=16, kernel_size=(3, 3), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 2), strides=(2, 2), padding='SAME') flat = tf.reshape(pool3, [-1, 1600]) fc1 = tf.layers.dense(flat, units=256, use_bias=True, activation=tf.nn.relu) dp1 = tf.layers.dropout(fc1, rate=0.25) fc2 = tf.layers.dense(dp1, units=64, use_bias=True, activation=tf.nn.relu) dp2 = tf.layers.dropout(fc2, rate=0.25) logits = tf.layers.dense(dp2, units=2, use_bias=True) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.cast(labels, tf.float32)) cost = tf.reduce_mean(loss) predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost) n_epoches = 100 batch_size = 32 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(n_epoches): for X_batch, y_batch in get_batches(train_data, train_label, batch_size): feed_dict = {inputs: X_batch, labels: y_batch} train_cost, _ = sess.run([cost, optimizer], feed_dict=feed_dict) feed_dict = {inputs: X_train, labels: y} train_accuracy = sess.run(accuracy, feed_dict=feed_dict) feed_dict = {inputs: val_data, labels: val_label} val_accuracy = sess.run(accuracy, feed_dict=feed_dict) saver.save(sess, 'checkpoints/cnn_100.ckpt') test_batch_size = 128 test_pred_res = [] with tf.Session() as sess: saver.restore(sess, 'checkpoints/cnn_100.ckpt') for i in tqdm(range(0, X_test.shape[0], test_batch_size)): test_batch = X_test[i:i + test_batch_size, :, :, :] feed_dict = {inputs: test_batch} test_pred = sess.run(predicted, feed_dict=feed_dict) test_pred_res.append(test_pred.tolist()) test_pred_res = np.concatenate(test_pred_res) cnn_submit = submission.copy() cnn_submit.is_iceberg = test_pred_res[:, 1] cnn_submit.to_csv('./cnn_100_submit.csv')
code
2026814/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import numpy as np import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) lbl = OneHotEncoder() lbl.fit([[0], [1]]) y = lbl.transform(y).toarray() X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min) train_data, train_label = (X_train[:1400, :, :, :], y[:1400, :]) val_data, val_label = (X_train[1400:, :, :, :], y[1400:, :])
code
2026814/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import numpy as np import pandas as pd import tensorflow as tf data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) lbl = OneHotEncoder() lbl.fit([[0], [1]]) y = lbl.transform(y).toarray() X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min) def get_batches(x, y, batch_size=10): n_batches = len(x) // batch_size for ii in range(0, n_batches * batch_size, batch_size): if ii != (n_batches - 1) * batch_size: X, Y = (x[ii:ii + batch_size], y[ii:ii + batch_size]) else: X, Y = (x[ii:], y[ii:]) yield (X, Y) inputs = tf.placeholder(tf.float32, [None, 75, 75, 3]) labels = tf.placeholder(tf.int32) conv1 = tf.layers.conv2d(inputs=inputs, filters=8, kernel_size=(7, 7), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv3 = tf.layers.conv2d(inputs=pool2, filters=16, kernel_size=(3, 3), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 2), strides=(2, 2), padding='SAME') flat = tf.reshape(pool3, [-1, 1600]) fc1 = tf.layers.dense(flat, units=256, use_bias=True, activation=tf.nn.relu) dp1 = tf.layers.dropout(fc1, rate=0.25) fc2 = tf.layers.dense(dp1, units=64, use_bias=True, activation=tf.nn.relu) dp2 = tf.layers.dropout(fc2, rate=0.25) logits = tf.layers.dense(dp2, units=2, use_bias=True) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.cast(labels, tf.float32)) cost = tf.reduce_mean(loss) predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost) n_epoches = 100 batch_size = 32 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(n_epoches): for X_batch, y_batch in get_batches(train_data, train_label, batch_size): feed_dict = {inputs: X_batch, labels: y_batch} train_cost, _ = sess.run([cost, optimizer], feed_dict=feed_dict) feed_dict = {inputs: X_train, labels: y} train_accuracy = sess.run(accuracy, feed_dict=feed_dict) feed_dict = {inputs: val_data, labels: val_label} val_accuracy = sess.run(accuracy, feed_dict=feed_dict) print('epoch {}, train accuracy: {:5f}, validation accuracy: {:.5f}'.format(epoch + 1, train_accuracy, val_accuracy)) saver.save(sess, 'checkpoints/cnn_100.ckpt')
code
2026814/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id')
code
2026814/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from tqdm import tqdm import numpy as np import pandas as pd import tensorflow as tf data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) lbl = OneHotEncoder() lbl.fit([[0], [1]]) y = lbl.transform(y).toarray() X_min = np.min(X_train) X_max = np.max(X_train) X_train = (X_train - X_min) / (X_max - X_min) X_test = (X_test - X_min) / (X_max - X_min) def get_batches(x, y, batch_size=10): n_batches = len(x) // batch_size for ii in range(0, n_batches * batch_size, batch_size): if ii != (n_batches - 1) * batch_size: X, Y = (x[ii:ii + batch_size], y[ii:ii + batch_size]) else: X, Y = (x[ii:], y[ii:]) yield (X, Y) inputs = tf.placeholder(tf.float32, [None, 75, 75, 3]) labels = tf.placeholder(tf.int32) conv1 = tf.layers.conv2d(inputs=inputs, filters=8, kernel_size=(7, 7), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=(2, 2), strides=(2, 2), padding='SAME') conv3 = tf.layers.conv2d(inputs=pool2, filters=16, kernel_size=(3, 3), strides=(1, 1), padding='SAME', activation=tf.nn.relu, use_bias=True) pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=(2, 2), strides=(2, 2), padding='SAME') flat = tf.reshape(pool3, [-1, 1600]) fc1 = tf.layers.dense(flat, units=256, use_bias=True, activation=tf.nn.relu) dp1 = tf.layers.dropout(fc1, rate=0.25) fc2 = tf.layers.dense(dp1, units=64, use_bias=True, activation=tf.nn.relu) dp2 = tf.layers.dropout(fc2, rate=0.25) logits = tf.layers.dense(dp2, units=2, use_bias=True) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.cast(labels, tf.float32)) cost = tf.reduce_mean(loss) predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost) n_epoches = 100 batch_size = 32 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(n_epoches): for X_batch, y_batch in get_batches(train_data, train_label, batch_size): feed_dict = {inputs: X_batch, labels: y_batch} train_cost, _ = sess.run([cost, optimizer], feed_dict=feed_dict) feed_dict = {inputs: X_train, labels: y} train_accuracy = sess.run(accuracy, feed_dict=feed_dict) feed_dict = {inputs: val_data, labels: val_label} val_accuracy = sess.run(accuracy, feed_dict=feed_dict) saver.save(sess, 'checkpoints/cnn_100.ckpt') test_batch_size = 128 test_pred_res = [] with tf.Session() as sess: saver.restore(sess, 'checkpoints/cnn_100.ckpt') for i in tqdm(range(0, X_test.shape[0], test_batch_size)): test_batch = X_test[i:i + test_batch_size, :, :, :] feed_dict = {inputs: test_batch} test_pred = sess.run(predicted, feed_dict=feed_dict) test_pred_res.append(test_pred.tolist()) test_pred_res = np.concatenate(test_pred_res)
code
2026814/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd data_path = './data' train = pd.read_json(data_path + '/' + 'train.json') test = pd.read_json(data_path + '/' + 'test.json') submission = pd.read_csv(data_path + '/' + 'sample_submission.csv').set_index('id') train_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_1]) train_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in train.band_2]) X_train = np.concatenate([train_band_1[:, :, :, np.newaxis], train_band_2[:, :, :, np.newaxis], ((train_band_1 + train_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) test_band_1 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_1]) test_band_2 = np.array([np.array(band).astype(np.float32).reshape((75, 75)) for band in test.band_2]) X_test = np.concatenate([test_band_1[:, :, :, np.newaxis], test_band_2[:, :, :, np.newaxis], ((test_band_1 + test_band_2) / 2)[:, :, :, np.newaxis]], axis=-1) y = np.array([target for target in train.is_iceberg]).reshape((-1, 1)) print('train_band_1 shape: {}'.format(train_band_1.shape)) print('train_band_2 shape: {}'.format(train_band_2.shape)) print('train_train shape: {}'.format(X_train.shape)) print('train label shape: {}'.format(y.shape)) print('test_band_1 shape: {}'.format(test_band_1.shape)) print('test_band_2 shape: {}'.format(test_band_2.shape)) print('test_train shape: {}'.format(X_test.shape))
code
105180335/cell_9
[ "text_html_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('The data in Groceries is:', groceries.values) print('The index of Groceries is:', groceries.index)
code
105180335/cell_25
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import numpy as np print('Original grocery list of fruits:\n', fruits) print() print('EXP(X) = \n', np.exp(fruits)) print() print('SQRT(X) =\n', np.sqrt(fruits)) print() print('POW(X,2) =\n', np.power(fruits, 2))
code
105180335/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts print('shopping_carts has shape:', shopping_carts.shape) print('shopping_carts has dimension:', shopping_carts.ndim) print('shopping_carts has a total of:', shopping_carts.size, 'elements') print() print('The data in shopping_carts is:\n', shopping_carts.values) print() print('The row index in shopping_carts is:', shopping_carts.index) print() print('The column index in shopping_carts is:', shopping_carts.columns)
code
105180335/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits print('Original grocery list of fruits:\n ', fruits) print() print('fruits + 2:\n', fruits + 2) print() print('fruits - 2:\n', fruits - 2) print() print('fruits * 2:\n', fruits * 2) print() print('fruits / 2:\n', fruits / 2) print()
code
105180335/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts
code
105180335/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('Original Grocery List:\n', groceries) groceries.drop('apples', inplace=True) print() print('Grocery List after removing apples in place:\n', groceries)
code
105180335/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} print(type(items))
code
105180335/cell_39
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df
code
105180335/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits print('Original grocery list of fruits:\n ', fruits) print() print('Amount of bananas + 2 = ', fruits['bananas'] + 2) print() print('Amount of apples - 2 = ', fruits.iloc[0] - 2) print() print('We double the amount of apples and oranges:\n', fruits[['apples', 'oranges']] * 2) print() print('We half the amount of apples and oranges:\n', fruits.loc[['apples', 'oranges']] / 2)
code
105180335/cell_48
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items store_items.insert(4, 'shoes', [8, 5]) store_items
code
105180335/cell_41
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items
code
105180335/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('The data in Groceries is:', groceries.values) print('checking if we have eggs in the groceies:', 'egg' in groceries) print('checking if we have bananas in the groceies:', 'bananas' in groceries)
code
105180335/cell_50
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items new_items = [{'bikes': 20, 'pants': 30, 'watches': 35, 'glasses': 4}] new_store = pd.DataFrame(new_items, index=['store 3']) new_store
code
105180335/cell_45
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items store_items['shirts'] = [15, 2] store_items
code
105180335/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('Original Grocery List:\n', groceries) print() print('We remove apples (out of place):\n', groceries.drop('apples')) print() print('Grocery List after removing apples out of place:\n', groceries)
code
105180335/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df
code
105180335/cell_51
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items store_items.insert(4, 'shoes', [8, 5]) store_items new_items = [{'bikes': 20, 'pants': 30, 'watches': 35, 'glasses': 4}] new_store = pd.DataFrame(new_items, index=['store 3']) new_store store_items = store_items.append(new_store) store_items
code
105180335/cell_8
[ "text_html_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('Groceries has shape:', groceries.shape) print('Groceries has dimension:', groceries.ndim) print('Groceries has a total of', groceries.size, 'elements')
code
105180335/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('Original Grocery List:\n', groceries) groceries['eggs'] = 2 print() print('Modified Grocery List:\n', groceries)
code
105180335/cell_38
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart
code
105180335/cell_47
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items store_items['new watches'] = store_items['watches'][1:] store_items
code
105180335/cell_43
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items print() print('How many bikes are in each store:\n', store_items[['bikes']]) print() print('How many bikes and pants are in each store:\n', store_items[['bikes', 'pants']]) print() print('What items are in Store 1:\n', store_items.loc[['store 1']]) print() print('How many bikes are in Store 2:', store_items['bikes']['store 2'])
code
105180335/cell_46
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart alice_sel_shopping_cart = pd.DataFrame(items, index=['glasses', 'bike'], columns=['Alice']) alice_sel_shopping_cart data = {'Integers': [1, 2, 3], 'Floats': [4.5, 8.2, 9.6]} df = pd.DataFrame(data) df items = [{'bikes': 15, 'pants': 20, 'watches': 35}, {'bikes': 12, 'pants': 30, 'watches': 40, 'glass': 10}] store_items = pd.DataFrame(items, index=['store 1', 'store 2']) store_items store_items['suits'] = store_items['pants'] + store_items['shirts'] store_items
code
105180335/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries print('How many eggs do we need to buy:', groceries['eggs']) print() print('Do we need milk and bread:\n', groceries[['milk', 'bread']]) print() print('How many eggs and apples do we need to buy:\n', groceries.loc[['eggs', 'apples']]) print() print('How many eggs and apples do we need to buy:\n', groceries[[0, 1]]) print() print('Do we need bread:\n', groceries[-1]) print() print('How many eggs do we need to buy:', groceries[0]) print() print('Do we need milk and bread:\n', groceries.iloc[[2, 3]])
code
105180335/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits
code
105180335/cell_37
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart sel_shopping_cart = pd.DataFrame(items, index=['pants', 'book']) sel_shopping_cart
code
105180335/cell_5
[ "text_html_output_1.png" ]
import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries
code
105180335/cell_36
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd groceries = pd.Series(data=[20, 6, 'Yes', 'No'], index=['eggs', 'apples', 'milk', 'bread']) groceries fruits = pd.Series(data=[10, 6, 3], index=['apples', 'oranges', 'bananas']) fruits import pandas as pd items = {'Bob': pd.Series(data=[245, 25, 55], index=['bike', 'pants', 'watch']), 'Alice': pd.Series(data=[40, 110, 500, 45], index=['book', 'glasses', 'bike', 'pants'])} shopping_carts = pd.DataFrame(items) shopping_carts data = {'Bob': pd.Series([245, 25, 55]), 'Alice': pd.Series([40, 110, 500, 45])} df = pd.DataFrame(data) df bob_shopping_cart = pd.DataFrame(items, columns=['Bob']) bob_shopping_cart
code
128045003/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks top_loudest_tracks.plot.barh() plt.show()
code
128045003/cell_9
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) ds.describe()
code
128045003/cell_4
[ "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.info()
code
128045003/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_style('darkgrid') ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks top_loudest_tracks.plot.barh() top_dancable_songs = ds[['danceability', 'artists', 'name']].sort_values(by='danceability', ascending=False)[:5] top_dancable_songs top_instrumental_songs = ds[['instrumentalness', 'artists', 'name']].dropna(subset=['artists']).sort_values(by='instrumentalness', ascending=False)[:5] top_instrumental_songs interest_feature_cols = ['loudness', 'acousticness', 'danceability', 'duration_ms', 'energy', 'instrumentalness', 'liveness', 'speechiness'] for feature_cols in interest_feature_cols: pos_data = ds[ds['mode'] == 1][feature_cols] neg_data = ds[ds['mode'] == 0][feature_cols] pos_data = pd.melt(pos_data.to_frame(), value_name=f'{feature_cols}_pos') neg_data = pd.melt(neg_data.to_frame(), value_name=f'{feature_cols}_neg') plt.figure(figsize=(12, 7)) sns.histplot(data=pos_data, x=f'{feature_cols}_pos', bins=40, color='green', alpha=0.5, label='Positive') sns.histplot(data=neg_data, x=f'{feature_cols}_neg', bins=40, color='red', alpha=0.5, label='Negative') plt.legend(loc='upper right') plt.title(f'Positive and Negative Histogram for {feature_cols}') plt.show()
code
128045003/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns
code
128045003/cell_2
[ "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds
code
128045003/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() plt.show()
code
128045003/cell_7
[ "text_html_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns)
code
128045003/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_style('darkgrid') ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks top_loudest_tracks.plot.barh() top_dancable_songs = ds[['danceability', 'artists', 'name']].sort_values(by='danceability', ascending=False)[:5] top_dancable_songs top_instrumental_songs = ds[['instrumentalness', 'artists', 'name']].dropna(subset=['artists']).sort_values(by='instrumentalness', ascending=False)[:5] top_instrumental_songs plt.figure(figsize=(12, 7)) plt.pie(x='instrumentalness', autopct='%1.2f%%', data=top_instrumental_songs, labels=top_instrumental_songs.artists) plt.title('Top 5 Instrumental Tracks by Genre') plt.show()
code
128045003/cell_8
[ "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) ds.head()
code
128045003/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_dancable_songs = ds[['danceability', 'artists', 'name']].sort_values(by='danceability', ascending=False)[:5] top_dancable_songs
code
128045003/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_style('darkgrid') ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks top_loudest_tracks.plot.barh() top_dancable_songs = ds[['danceability', 'artists', 'name']].sort_values(by='danceability', ascending=False)[:5] top_dancable_songs plt.figure(figsize=(12, 7)) sns.catplot(x='danceability', y='artists', data=top_dancable_songs, kind='bar', height=10, aspect=1.5) plt.title('Top 5 Dancable Tracks') plt.show()
code
128045003/cell_3
[ "image_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum()
code
128045003/cell_17
[ "text_html_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_instrumental_songs = ds[['instrumentalness', 'artists', 'name']].dropna(subset=['artists']).sort_values(by='instrumentalness', ascending=False)[:5] top_instrumental_songs
code
128045003/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_style('darkgrid') ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_ten_genre.plot.barh() top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks top_loudest_tracks.plot.barh() plt.figure(figsize=(12, 7)) sns.barplot(x='loudness', y='artists', data=top_loudest_tracks) plt.title('Top 5 loudest Tracks') plt.show()
code
128045003/cell_10
[ "text_html_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre
code
128045003/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape ds.columns len(ds.columns) top_ten_genre = ds.groupby('artists').count().sort_values(by='name', ascending=False)['name'][:10] top_ten_genre top_loudest_tracks = ds[['loudness', 'artists']].sort_values(by='loudness', ascending=False)[:5] top_loudest_tracks
code
128045003/cell_5
[ "text_html_output_1.png" ]
import pandas as pd ds = pd.read_csv('/kaggle/input/spotify-datacsv/spotify_data.csv', dtype={'19': float}) ds ds.isna().sum() ds.shape
code
50219835/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50219835/cell_8
[ "text_plain_output_1.png" ]
from pytorch_tabnet.tab_model import TabNetClassifier from pytorch_tabnet.tab_model import TabNetClassifier clf = TabNetClassifier() clf.fit(X_train, y_train, eval_set=[(X_test, y_test)], max_epochs=2)
code
50219835/cell_3
[ "text_plain_output_1.png" ]
!pip install pytorch-tabnet
code
18140562/cell_21
[ "image_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_score, train_test_split from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import seaborn as sns from imblearn.over_sampling import SMOTE from nltk.tokenize import word_tokenize from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) from sklearn.preprocessing import LabelEncoder from xgboost import XGBClassifier from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score, train_test_split from sklearn.metrics import confusion_matrix, accuracy_score df_train = pd.read_excel('../input/Data_Train.xlsx') df_test = pd.read_excel('../input/Data_Test.xlsx') df_train.sample(5) df_train.isna().sum() X = df_train['STORY'] y = df_train['SECTION'] tfidf_vec = TfidfVectorizer(ngram_range=(1, 2), stop_words=stop_words) tfidf_vec.fit(X) x_vec = tfidf_vec.transform(X) svc = LinearSVC(C=10.0) svc = LinearSVC(C=10.0) svc.fit(x_train_vec, y_train) y_preds = svc.predict(x_eval_vec) accuracy_score(y_preds, y_eval)
code
18140562/cell_25
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import cross_val_score, train_test_split from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import seaborn as sns from imblearn.over_sampling import SMOTE from nltk.tokenize import word_tokenize from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) from sklearn.preprocessing import LabelEncoder from xgboost import XGBClassifier from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score, train_test_split from sklearn.metrics import confusion_matrix, accuracy_score df_train = pd.read_excel('../input/Data_Train.xlsx') df_test = pd.read_excel('../input/Data_Test.xlsx') df_train.sample(5) df_train.isna().sum() X = df_train['STORY'] y = df_train['SECTION'] tfidf_vec = TfidfVectorizer(ngram_range=(1, 2), stop_words=stop_words) tfidf_vec.fit(X) x_vec = tfidf_vec.transform(X) svc = LinearSVC(C=10.0) svc = LinearSVC(C=10.0) svc.fit(x_train_vec, y_train) y_preds = svc.predict(x_eval_vec) svc = LinearSVC(C=10.0) svc.fit(x_vec, y)
code
18140562/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_excel('../input/Data_Train.xlsx') df_test = pd.read_excel('../input/Data_Test.xlsx') df_train.sample(5)
code
18140562/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_excel('../input/Data_Train.xlsx') df_test = pd.read_excel('../input/Data_Test.xlsx') df_train.sample(5) df_train.isna().sum()
code