path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
18139612/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.head()
code
18139612/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() import seaborn as sns sns.pairplot(returns[1:])
code
18139612/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.head()
code
18139612/cell_10
[ "text_html_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.idxmax()
code
18139612/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max() returns = pd.DataFrame() for tick in tickers: returns[tick + 'return'] = Banks_Stock[tick]['Close'].pct_change() returns.idxmax() returns.idxmin() returns.std()
code
18139612/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd tickers = ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC'] Banks_Stock = pd.concat([BAC, C, GS, JPM, MS, WFC], axis=1, keys=tickers) Banks_Stock.columns.names = ['bank ticker', 'stock info'] Banks_Stock.xs(key='Close', axis=1, level='stock info').max()
code
105190066/cell_25
[ "text_plain_output_1.png" ]
from scipy import stats from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show() df_train["SalePrice"] = np.log1p(df_train["SalePrice"]) fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show() y_train = df_train['SalePrice'] df = pd.concat((df_train, df_test)).reset_index(drop=True) df = df.drop(['Id', 'SalePrice'], axis=1) df_1 = df.copy() for feature in ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'MasVnrType', 'MSSubClass']: df_1[feature] = df_1[feature].fillna('None') df_2 = df_1.copy() for feature in ['GarageYrBlt', 'GarageArea', 'GarageCars', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'MasVnrArea']: df_2[feature] = df_2[feature].fillna(0) df_3 = df_2.copy() for feature in ['MSZoning', 'Electrical', 'KitchenQual', 'Exterior1st', 'Exterior2nd', 'SaleType']: df_3[feature] = df_3[feature].fillna(df_3[feature].mode()[0]) df_4 = df_3.copy() df_4['Functional'] = df_4['Functional'].fillna('Typ') df_5 = df_4.copy() df_5 = df_5.drop(['Utilities'], axis=1) df_6 = df_5.copy() df_6['LotFrontage'] = df_6.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) df_7 = df_6.copy() df_7 = pd.get_dummies(df_7) df_8 = df_7.copy() numerical_features = df_8.dtypes[df_8.dtypes != 'object'].index df_train = df_8[:df_train.shape[0]] df_test = df_8[df_train.shape[0]:] lr = LinearRegression() lr.fit(df_train, y_train) y_pred = lr.predict(df_test) y_pred
code
105190066/cell_23
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') y_train = df_train['SalePrice'] df = pd.concat((df_train, df_test)).reset_index(drop=True) df = df.drop(['Id', 'SalePrice'], axis=1) df_1 = df.copy() for feature in ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'MasVnrType', 'MSSubClass']: df_1[feature] = df_1[feature].fillna('None') df_2 = df_1.copy() for feature in ['GarageYrBlt', 'GarageArea', 'GarageCars', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'MasVnrArea']: df_2[feature] = df_2[feature].fillna(0) df_3 = df_2.copy() for feature in ['MSZoning', 'Electrical', 'KitchenQual', 'Exterior1st', 'Exterior2nd', 'SaleType']: df_3[feature] = df_3[feature].fillna(df_3[feature].mode()[0]) df_4 = df_3.copy() df_4['Functional'] = df_4['Functional'].fillna('Typ') df_5 = df_4.copy() df_5 = df_5.drop(['Utilities'], axis=1) df_6 = df_5.copy() df_6['LotFrontage'] = df_6.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) df_7 = df_6.copy() df_7 = pd.get_dummies(df_7) df_8 = df_7.copy() numerical_features = df_8.dtypes[df_8.dtypes != 'object'].index df_train = df_8[:df_train.shape[0]] df_test = df_8[df_train.shape[0]:] lr = LinearRegression() lr.fit(df_train, y_train)
code
105190066/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105190066/cell_7
[ "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show()
code
105190066/cell_8
[ "text_plain_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show() df_train['SalePrice'] = np.log1p(df_train['SalePrice']) fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show()
code
105190066/cell_24
[ "image_output_1.png" ]
from scipy import stats from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df_test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show() df_train["SalePrice"] = np.log1p(df_train["SalePrice"]) fig = plt.figure() res = stats.probplot(df_train['SalePrice'], plot=plt) plt.show() y_train = df_train['SalePrice'] df = pd.concat((df_train, df_test)).reset_index(drop=True) df = df.drop(['Id', 'SalePrice'], axis=1) df_1 = df.copy() for feature in ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'MasVnrType', 'MSSubClass']: df_1[feature] = df_1[feature].fillna('None') df_2 = df_1.copy() for feature in ['GarageYrBlt', 'GarageArea', 'GarageCars', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'MasVnrArea']: df_2[feature] = df_2[feature].fillna(0) df_3 = df_2.copy() for feature in ['MSZoning', 'Electrical', 'KitchenQual', 'Exterior1st', 'Exterior2nd', 'SaleType']: df_3[feature] = df_3[feature].fillna(df_3[feature].mode()[0]) df_4 = df_3.copy() df_4['Functional'] = df_4['Functional'].fillna('Typ') df_5 = df_4.copy() df_5 = df_5.drop(['Utilities'], axis=1) df_6 = df_5.copy() df_6['LotFrontage'] = df_6.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) df_7 = df_6.copy() df_7 = pd.get_dummies(df_7) df_8 = df_7.copy() numerical_features = df_8.dtypes[df_8.dtypes != 'object'].index df_train = df_8[:df_train.shape[0]] df_test = df_8[df_train.shape[0]:] lr = LinearRegression() lr.fit(df_train, y_train) plt.scatter(lr.predict(df_train), y_train) plt.xlabel('y_pred') plt.ylabel('y_true') plt.show()
code
105194794/cell_9
[ "text_plain_output_1.png" ]
liability = 14589 asset = 4000 liability = 4000 asset = 4000 liability = 4000 asset = 4000 if liability >= asset: print(' asset deficiency') else: print('going good')
code
105194794/cell_11
[ "text_plain_output_1.png" ]
liability = 14589 asset = 4000 liability = 4000 asset = 4000 liability = 4000 asset = 4000 liability = 14589 asset = 4000 if liability <= asset: print(' going good') else: print('asset deficiency')
code
105194794/cell_7
[ "text_plain_output_1.png" ]
liability = 14589 asset = 4000 if liability >= asset: print(' asset deficiency') else: print('going good')
code
105194794/cell_8
[ "text_plain_output_1.png" ]
liability = 14589 asset = 4000 liability = 4000 asset = 4000 if liability > asset: print(' asset deficiency') else: print('going good')
code
105194794/cell_3
[ "text_plain_output_1.png" ]
a = 49 b = 2 if a % b == 1: print('odd number') else: print('even number')
code
105194794/cell_5
[ "text_plain_output_1.png" ]
a = 49 b = 2 a = 49 b = 2 if a % b == 1: print('even number') else: print('old number')
code
2030468/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import statsmodels.api as sm df = pd.read_csv('../input/harddrive.csv', usecols=['failure', 'smart_1_normalized'], nrows=100000) x = df['smart_1_normalized'] y = df['failure'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Binomial()).fit() model.summary()
code
2030468/cell_6
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/harddrive.csv', usecols=['failure', 'smart_1_normalized'], nrows=100000) sns.regplot(df['smart_1_normalized'], df['failure'], line_kws={'color': 'k', 'lw': 1})
code
2030468/cell_2
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/harddrive.csv', usecols=['failure', 'smart_1_normalized'], nrows=100000) df.head()
code
2030468/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm
code
2030468/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import statsmodels.api as sm df = pd.read_csv('../input/harddrive.csv', usecols=['failure', 'smart_1_normalized'], nrows=100000) x = df['smart_1_normalized'] y = df['failure'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Binomial()).fit() model.summary() (model.null_deviance, model.deviance)
code
327848/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count()
code
327848/cell_4
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df['Survived'].mean()
code
327848/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() print(class_sex_grouping['Survived'])
code
327848/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import random import numpy as np import pandas as pd from sklearn import datasets, svm, cross_validation, tree, preprocessing, metrics import sklearn.ensemble as ske import tensorflow as tf from tensorflow.contrib import skflow
code
327848/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() class_sex_grouping['Survived'].plot.bar()
code
327848/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() age_grouping['Survived'].plot.bar()
code
327848/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.head()
code
327848/cell_12
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean() class_sex_grouping = titanic_df.groupby(['Pclass', 'Sex']).mean() group_by_age = pd.cut(titanic_df['Age'], np.arange(0, 90, 10)) age_grouping = titanic_df.groupby(group_by_age).mean() titanic_df.count() titanic_df = titanic_df.drop(['Cabin'], axis=1) titanic_df = titanic_df.dropna() titanic_df.count()
code
327848/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) titanic_df.groupby('Pclass').mean()
code
2044953/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() class_1_pass = train_df[train_df['Pclass'] == 1] print('1st Class Passengers :') print(class_1_pass['Fare'].count()) class_1_pass_sur = class_1_pass[class_1_pass['Survived'] == 1] print('Survivor of 1st class passengers: ') print(class_1_pass_sur['Fare'].count()) class_1_pass_female = class_1_pass[class_1_pass['Sex'] == 'female'] print('No of female in 1st class : ') print(class_1_pass_female['PassengerId'].count()) class_1_pass_sur_female = class_1_pass_sur[class_1_pass_sur['Sex'] == 'female'] print('Female survivor of 1st class passengers :') print(class_1_pass_sur_female['PassengerId'].count()) class_1_female_sur_rate = class_1_pass_sur_female['PassengerId'].count() / class_1_pass_female['PassengerId'].count() print('1st class female survivor rate :') print(class_1_female_sur_rate) class_1_pass_child = class_1_pass[class_1_pass['Age'] < 15] print('No of childrn in 1st class : ') print(class_1_pass_child['PassengerId'].count()) class_1_pass_sur_child = class_1_pass_sur[class_1_pass_sur['Age'] < 15] print('Children survivor of 1st class passengers') print(class_1_pass_sur_child['PassengerId'].count()) class_1_child_sur_rate = class_1_pass_sur_child['PassengerId'].count() / class_1_pass_child['PassengerId'].count() print('1st class child survivor rate :') print(class_1_child_sur_rate)
code
2044953/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() class_3_pass = train_df[train_df['Pclass'] == 3] print('3rd Class Passengers :') print(class_3_pass['PassengerId'].count()) class_3_pass_sur = class_3_pass[class_3_pass['Survived'] == 1] print('Survivor of 3rd class passengers: ') print(class_3_pass_sur['PassengerId'].count()) class_3_pass_female = class_3_pass[class_3_pass['Sex'] == 'female'] print('No of female in 3rd class : ') print(class_3_pass_female['PassengerId'].count()) class_3_pass_sur_female = class_3_pass_sur[class_3_pass_sur['Sex'] == 'female'] print('Female survivor of 3rd class passengers :') print(class_3_pass_sur_female['PassengerId'].count()) class_3_female_sur_rate = class_3_pass_sur_female['PassengerId'].count() / class_3_pass_female['PassengerId'].count() print('3rd class female survivor rate :') print(class_3_female_sur_rate) class_3_pass_child = class_3_pass[class_3_pass['Age'] < 15] print('No of childrn in 3rd class : ') print(class_3_pass_child['PassengerId'].count()) class_3_pass_sur_child = class_3_pass_sur[class_3_pass_sur['Age'] < 15] print('Children survivor of 3rd class passengers') print(class_3_pass_sur_child['PassengerId'].count()) class_3_child_sur_rate = class_3_pass_sur_child['PassengerId'].count() / class_3_pass_child['PassengerId'].count() print('3rd class child survivor rate :') print(class_3_child_sur_rate)
code
2044953/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() X_train.head()
code
2044953/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB
code
2044953/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import Imputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() logreg = LogisticRegression() from sklearn.preprocessing import Imputer my_imputer = Imputer() X_train = my_imputer.fit_transform(X_train) X_test = my_imputer.fit_transform(X_test) logreg.fit(X_train, Y_train.values.ravel()) Y_pred = logreg.predict(X_test) logreg.score(X_train, Y_train)
code
2044953/cell_3
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() train_df.info() train_df.describe()
code
2044953/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') test_y = pd.read_csv('../input/gender_submission.csv') X_train = train_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_train['Sex']) X_train = X_train.drop(['Sex'], axis=1) X_train = X_train.join(sex) embarked = pd.get_dummies(X_train['Embarked']) X_train = X_train.drop(['Embarked'], axis=1) X_train = X_train.join(embarked) Y_train = train_df.drop(['PassengerId', 'Ticket', 'Cabin', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Name'], axis=1) X_test = test_df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']] sex = pd.get_dummies(X_test['Sex']) X_test = X_test.drop(['Sex'], axis=1) X_test = X_test.join(sex) embarked = pd.get_dummies(X_test['Embarked']) X_test = X_test.drop(['Embarked'], axis=1) X_test = X_test.join(embarked) Y_test = test_y.drop('PassengerId', axis=1).copy() class_2_pass = train_df[train_df['Pclass'] == 2] print('2nd Class Passengers :') print(class_2_pass['Fare'].count()) class_2_pass_sur = class_2_pass[class_2_pass['Survived'] == 1] print('Survivor of 2nd class passengers: ') print(class_2_pass_sur['Fare'].count()) class_2_pass_female = class_2_pass[class_2_pass['Sex'] == 'female'] print('No of female in 2nd class : ') print(class_2_pass_female['PassengerId'].count()) class_2_pass_sur_female = class_2_pass_sur[class_2_pass_sur['Sex'] == 'female'] print('Female survivor of 2nd class passengers :') print(class_2_pass_sur_female['PassengerId'].count()) class_2_female_sur_rate = class_2_pass_sur_female['PassengerId'].count() / class_2_pass_female['PassengerId'].count() print('2nd class female survivor rate :') print(class_2_female_sur_rate) class_2_pass_child = class_2_pass[class_2_pass['Age'] < 15] print('No of childrn in 2nd class : ') print(class_2_pass_child['PassengerId'].count()) class_2_pass_sur_child = class_2_pass_sur[class_2_pass_sur['Age'] < 15] print('Children survivor of 2nd class passengers') print(class_2_pass_sur_child['PassengerId'].count()) class_2_child_sur_rate = class_2_pass_sur_child['PassengerId'].count() / class_2_pass_child['PassengerId'].count() print('2nd class child survivor rate :') print(class_2_child_sur_rate)
code
16168012/cell_21
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import KFold import matplotlib.pyplot as plt import numpy as np import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures id_feature = 'molecule_name' target_feature = (set(molecule_train) - set(molecule_test)).pop() selected_features = list(molecule_test) selected_features.remove(id_feature) selected_features.remove('atom') X = molecule_train[selected_features] y = molecule_train[target_feature] kfold = KFold(n_splits=N_SPLITS, random_state=RANDOM_STATE, shuffle=SHUFFLE) fold = 0 r2_scores = [] mse_scores = [] lin_reg = LinearRegression() for in_index, oof_index in kfold.split(X, y): fold += 1 X_in, X_oof = (X.loc[in_index], X.loc[oof_index]) y_in, y_oof = (y.loc[in_index], y.loc[oof_index]) lin_reg.fit(X_in, y_in) y_pred = lin_reg.predict(X_oof) r2 = r2_score(y_oof, y_pred) r2_scores.append(r2) mse_score = mean_squared_error(y_oof, y_pred) mse_scores.append(mse_score) plt.plot(y_oof, y_pred) plt.show()
code
16168012/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures molecule_train.head()
code
16168012/cell_25
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import KFold import matplotlib.pyplot as plt import numpy as np import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures id_feature = 'molecule_name' target_feature = (set(molecule_train) - set(molecule_test)).pop() selected_features = list(molecule_test) selected_features.remove(id_feature) selected_features.remove('atom') X = molecule_train[selected_features] y = molecule_train[target_feature] kfold = KFold(n_splits=N_SPLITS, random_state=RANDOM_STATE, shuffle=SHUFFLE) fold = 0 r2_scores = [] mse_scores = [] lin_reg = LinearRegression() for in_index, oof_index in kfold.split(X, y): fold += 1 X_in, X_oof = (X.loc[in_index], X.loc[oof_index]) y_in, y_oof = (y.loc[in_index], y.loc[oof_index]) lin_reg.fit(X_in, y_in) y_pred = lin_reg.predict(X_oof) r2 = r2_score(y_oof, y_pred) r2_scores.append(r2) mse_score = mean_squared_error(y_oof, y_pred) mse_scores.append(mse_score) plt.figure(figsize=FIGSIZE) molecule_train['potential_energy'].plot(kind='kde') molecule_test['potential_energy'].plot(kind='kde') plt.show()
code
16168012/cell_20
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import KFold import numpy as np import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures id_feature = 'molecule_name' target_feature = (set(molecule_train) - set(molecule_test)).pop() selected_features = list(molecule_test) selected_features.remove(id_feature) selected_features.remove('atom') X = molecule_train[selected_features] y = molecule_train[target_feature] kfold = KFold(n_splits=N_SPLITS, random_state=RANDOM_STATE, shuffle=SHUFFLE) fold = 0 r2_scores = [] mse_scores = [] lin_reg = LinearRegression() for in_index, oof_index in kfold.split(X, y): fold += 1 print('- Training Fold: ({}/{})'.format(fold, N_SPLITS)) X_in, X_oof = (X.loc[in_index], X.loc[oof_index]) y_in, y_oof = (y.loc[in_index], y.loc[oof_index]) lin_reg.fit(X_in, y_in) y_pred = lin_reg.predict(X_oof) r2 = r2_score(y_oof, y_pred) r2_scores.append(r2) mse_score = mean_squared_error(y_oof, y_pred) mse_scores.append(mse_score) print('\nkFold Validation Results:') print(' * Average Variance Score (R2): \t{:.4f}'.format(np.mean(r2_scores))) print(' * Average Mean squared error (MSE): \t{:.4f}'.format(np.mean(mse_score)))
code
16168012/cell_2
[ "text_plain_output_1.png" ]
import os import warnings import warnings import numpy as np warnings.simplefilter(action='ignore', category=FutureWarning) import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error, r2_score from sklearn.linear_model import LinearRegression import os print(os.listdir('../input'))
code
16168012/cell_17
[ "text_html_output_1.png" ]
import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures id_feature = 'molecule_name' target_feature = (set(molecule_train) - set(molecule_test)).pop() selected_features = list(molecule_test) selected_features.remove(id_feature) selected_features.remove('atom') print('Selected Features: \t{}'.format(selected_features)) print('Target Feature: \t{}'.format(target_feature)) print('Id Feature: \t\t{}'.format(id_feature))
code
16168012/cell_27
[ "text_html_output_1.png" ]
import pandas as pd FIGSIZE = (10, 6) SAVE_PICKLE = True FREE_MEMORY = True OUTPUT_FILE = 'potential_energy_upd' RANDOM_STATE = 123 N_SPLITS = 3 SHUFFLE = True VERBOSE = False DATA_PATH = '../input' def csv_path(dataset='train', data_path=DATA_PATH): """ """ return '{}/{}.csv'.format(data_path, dataset) def read_data(dataset='train', data_path=DATA_PATH): """ """ index_col = None index_type = ['train', 'test'] if dataset in index_type: index_col = 'id' data_path = csv_path(dataset, data_path=data_path) return pd.read_csv(data_path, index_col=index_col) train = read_data('train') test = read_data('test') molecule_train = pd.DataFrame({'molecule_name': train['molecule_name'].unique()}) molecule_test = pd.DataFrame({'molecule_name': test['molecule_name'].unique()}) structures = read_data('structures') atom_list_df = structures.groupby('molecule_name')['atom'].apply(list) atom_list_df = atom_list_df.to_frame() if FREE_MEMORY: del train del test molecule_train = pd.merge(molecule_train, atom_list_df, how='left', on='molecule_name') molecule_test = pd.merge(molecule_test, atom_list_df, how='left', on='molecule_name') potential_energy = read_data('potential_energy') molecule_train = pd.merge(molecule_train, potential_energy) if FREE_MEMORY: del potential_energy del structures id_feature = 'molecule_name' target_feature = (set(molecule_train) - set(molecule_test)).pop() selected_features = list(molecule_test) selected_features.remove(id_feature) selected_features.remove('atom') potential_energy_upd = pd.concat([molecule_train[[id_feature, target_feature]], molecule_test[[id_feature, target_feature]]], ignore_index=True) potential_energy_upd = potential_energy_upd.sort_values(id_feature) potential_energy_upd.reset_index(drop=True, inplace=True) potential_energy_upd.head()
code
16166680/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] num_vars = [var for var in data.columns if data[var].dtypes != 'O'] print('Number of numerical variables: ', len(num_vars)) data[num_vars].head()
code
16166680/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] print('Number of discrete variables: ', len(discrete_vars))
code
16166680/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') print(data.shape) data.head()
code
16166680/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars def analyse_year_vars(df, var): df = df.copy() df[var] = df['YrSold'] - df[var] for var in year_vars: if var != 'YrSold': analyse_year_vars(data, var) discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] def analyse_discrete(df, var): df = df.copy() for var in discrete_vars: analyse_discrete(data, var) cont_vars = [var for var in num_vars if var not in discrete_vars + year_vars + ['Id']] def analyse_continous(df, var): df = df.copy() df[var].hist(bins=20) plt.ylabel('Number of houses') plt.xlabel(var) plt.title(var) plt.show() for var in cont_vars: analyse_continous(data, var)
code
16166680/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] data.groupby('YrSold')['SalePrice'].median().plot() plt.ylabel('Median House Price') plt.title('Change in House price with the years')
code
16166680/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] data[discrete_vars].head()
code
16166680/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] for var in vars_with_na: print(var, np.round(data[var].isnull().mean(), 3), ' % missing values')
code
16166680/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars for var in year_vars: print(var, data[var].unique()) print()
code
16166680/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] cont_vars = [var for var in num_vars if var not in discrete_vars + year_vars + ['Id']] data[cont_vars].head()
code
16166680/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars def analyse_year_vars(df, var): df = df.copy() df[var] = df['YrSold'] - df[var] for var in year_vars: if var != 'YrSold': analyse_year_vars(data, var) discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] def analyse_discrete(df, var): df = df.copy() df.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.ylabel('SalePrice') plt.show() for var in discrete_vars: analyse_discrete(data, var)
code
16166680/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] num_vars = [var for var in data.columns if data[var].dtypes != 'O'] print('Number of House Id labels: ', len(data.Id.unique())) print('Number of Houses in the Dataset: ', len(data))
code
16166680/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars
code
16166680/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars def analyse_year_vars(df, var): df = df.copy() df[var] = df['YrSold'] - df[var] for var in year_vars: if var != 'YrSold': analyse_year_vars(data, var) discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] def analyse_discrete(df, var): df = df.copy() for var in discrete_vars: analyse_discrete(data, var) cont_vars = [var for var in num_vars if var not in discrete_vars + year_vars + ['Id']] def analyse_continous(df, var): df = df.copy() for var in cont_vars: analyse_continous(data, var) def analyse_transformed_continous(df, var): df = df.copy() df[var] = np.log(df[var]) df[var].hist(bins=20) plt.ylabel('Number of houses') plt.xlabel(var) plt.title(var) plt.show() for var in cont_vars: analyse_transformed_continous(data, var)
code
16166680/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars discrete_vars = [var for var in num_vars if len(data[var].unique()) < 20 and var not in year_vars + ['Id']] cont_vars = [var for var in num_vars if var not in discrete_vars + year_vars + ['Id']] print('Number of continuous variables: ', len(cont_vars))
code
16166680/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) for var in vars_with_na: analyse_na_value(data, var) num_vars = [var for var in data.columns if data[var].dtypes != 'O'] year_vars = [var for var in num_vars if 'Yr' in var or 'Year' in var] year_vars def analyse_year_vars(df, var): df = df.copy() df[var] = df['YrSold'] - df[var] plt.scatter(df[var], df['SalePrice']) plt.ylabel('SalePrice') plt.xlabel(var) plt.show() for var in year_vars: if var != 'YrSold': analyse_year_vars(data, var)
code
16166680/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.pandas.set_option('display.max_columns', None) data = pd.read_csv('houseprice.csv') vars_with_na = [var for var in data.columns if data[var].isnull().sum() > 1] def analyse_na_value(df, var): df = df.copy() df[var] = np.where(df[var].isnull(), 1, 0) df.groupby(var)['SalePrice'].median().plot.bar() plt.title(var) plt.show() for var in vars_with_na: analyse_na_value(data, var)
code
88093938/cell_21
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes
code
88093938/cell_9
[ "image_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.head(5)
code
88093938/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data['club_member_status'].value_counts()
code
88093938/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum() sample_trans_data.info()
code
88093938/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) sns.set_style('whitegrid') customers_data_new['age'].plot(kind='hist')
code
88093938/cell_6
[ "image_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.head(5)
code
88093938/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum()
code
88093938/cell_39
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum() sns.set_style('whitegrid') interval_range_age = pd.interval_range(start=0, freq=10, end=100) customers_data_new['age_group'] = pd.cut(customers_data_new['age'], bins=interval_range_age) customers_data_new.isna().sum() purchases_2019 = sample_trans_data.merge(customers_data_new, how='left', on='customer_id') customers_temp = purchases_2019.groupby(['age_group'])['customer_id'].count() data_temp_customer = pd.DataFrame({'Group Age': customers_temp.index, 'Customers': customers_temp.values}) data_temp_customer = data_temp_customer.sort_values(['Group Age'], ascending=False) plt.figure(figsize=(7, 7)) plt.title(f'Group Age') sns.set_color_codes('pastel') s = sns.barplot(x='Group Age', y='Customers', data=data_temp_customer) s.set_xticklabels(s.get_xticklabels(), rotation=45) locs, labels = plt.xticks() plt.show
code
88093938/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum()
code
88093938/cell_41
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum() sns.set_style('whitegrid') interval_range_age = pd.interval_range(start=0, freq=10, end=100) customers_data_new['age_group'] = pd.cut(customers_data_new['age'], bins=interval_range_age) customers_data_new.isna().sum() purchases_2019 = sample_trans_data.merge(customers_data_new, how='left', on='customer_id') customers_temp = purchases_2019.groupby(['age_group'])['customer_id'].count() data_temp_customer = pd.DataFrame({ 'Group Age' : customers_temp.index, 'Customers' : customers_temp.values }) data_temp_customer = data_temp_customer.sort_values(['Group Age'],ascending=False) plt.figure(figsize=(7,7)) plt.title(f'Group Age') sns.set_color_codes('pastel') s = sns.barplot(x='Group Age', y='Customers', data=data_temp_customer) s.set_xticklabels(s.get_xticklabels(),rotation=45) locs, labels = plt.xticks() plt.show most_age_group_transaction = purchases_2019[purchases_2019['age_group'] == purchases_2019['age_group'].mode()[0]] customers_temp_most = most_age_group_transaction.groupby(['day_trans'])['customer_id'].count() data_temp_customer_most = pd.DataFrame({'Day Transaction': customers_temp_most.index, 'Customers': customers_temp_most.values}) data_temp_customer_most = data_temp_customer_most.sort_values(['Customers'], ascending=False) plt.figure(figsize=(7, 7)) plt.title(f'Day Transaction of Most Age Group Customers') sns.set_color_codes('pastel') s = sns.barplot(x='Day Transaction', y='Customers', data=data_temp_customer_most) s.set_xticklabels(s.get_xticklabels()) locs, labels = plt.xticks() plt.show()
code
88093938/cell_19
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') articles_data_new = articles_data[['article_id', 'prod_name', 'product_type_name', 'product_group_name']].copy() articles_data_new.isna().sum() articles_data_new.info()
code
88093938/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') articles_data_new = articles_data[['article_id', 'prod_name', 'product_type_name', 'product_group_name']].copy() articles_data_new.isna().sum()
code
88093938/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True)
code
88093938/cell_8
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True)
code
88093938/cell_15
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') articles_data[['prod_name', 'product_type_name', 'product_group_name']].describe()
code
88093938/cell_17
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') articles_data_new = articles_data[['article_id', 'prod_name', 'product_type_name', 'product_group_name']].copy() articles_data_new.head(5)
code
88093938/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) interval_range_age = pd.interval_range(start=0, freq=10, end=100) customers_data_new['age_group'] = pd.cut(customers_data_new['age'], bins=interval_range_age) customers_data_new.head(5)
code
88093938/cell_43
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum() sns.set_style('whitegrid') interval_range_age = pd.interval_range(start=0, freq=10, end=100) customers_data_new['age_group'] = pd.cut(customers_data_new['age'], bins=interval_range_age) customers_data_new.isna().sum() purchases_2019 = sample_trans_data.merge(customers_data_new, how='left', on='customer_id') customers_temp = purchases_2019.groupby(['age_group'])['customer_id'].count() data_temp_customer = pd.DataFrame({ 'Group Age' : customers_temp.index, 'Customers' : customers_temp.values }) data_temp_customer = data_temp_customer.sort_values(['Group Age'],ascending=False) plt.figure(figsize=(7,7)) plt.title(f'Group Age') sns.set_color_codes('pastel') s = sns.barplot(x='Group Age', y='Customers', data=data_temp_customer) s.set_xticklabels(s.get_xticklabels(),rotation=45) locs, labels = plt.xticks() plt.show #day transaction of Most Age Group of Customers most_age_group_transaction = purchases_2019[(purchases_2019['age_group']==purchases_2019['age_group'].mode()[0])] customers_temp_most = most_age_group_transaction.groupby(['day_trans'])['customer_id'].count() data_temp_customer_most = pd.DataFrame({ 'Day Transaction' : customers_temp_most.index, 'Customers' : customers_temp_most.values }) data_temp_customer_most = data_temp_customer_most.sort_values(['Customers'],ascending=False) plt.figure(figsize=(7,7)) plt.title(f'Day Transaction of Most Age Group Customers') sns.set_color_codes('pastel') s = sns.barplot(x='Day Transaction', y='Customers', data=data_temp_customer_most) s.set_xticklabels(s.get_xticklabels()) locs, labels = plt.xticks() plt.show() bins = [0, 3, 6, 9, 12] labels = ['Winter', 'Spring', 'Summer', 'Autumn'] purchases_2019['Seasons'] = pd.cut(purchases_2019['month_trans'], bins=bins, labels=labels) purchases_2019.head(5)
code
88093938/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes sample_trans_data = trans_data[trans_data['year_trans'] == 2019] sample_trans_data.isna().sum() sample_trans_data.drop(labels=['t_dat', 'sales_channel_id'], axis=1, inplace=True) sample_trans_data.reset_index(drop=True, inplace=True) sample_trans_data.isna().sum() sample_trans_data.head(5)
code
88093938/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') articles_data.head(5)
code
88093938/cell_22
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') trans_data.dtypes trans_data['t_dat'] = trans_data['t_dat'].astype('datetime64') trans_data.dtypes
code
88093938/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.head(5)
code
88093938/cell_12
[ "text_html_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.info()
code
88093938/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd articles_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/articles.csv') customers_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/customers.csv') submission_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') trans_data = pd.read_csv('/kaggle/input/h-and-m-personalized-fashion-recommendations/transactions_train.csv') customers_data_new = customers_data[customers_data['club_member_status'] == 'ACTIVE'] customers_data_new.drop(labels=['FN', 'Active', 'club_member_status', 'fashion_news_frequency'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) customers_data_new.drop(labels=['postal_code'], axis=1, inplace=True) customers_data_new.reset_index(drop=True, inplace=True) interval_range_age = pd.interval_range(start=0, freq=10, end=100) customers_data_new['age_group'] = pd.cut(customers_data_new['age'], bins=interval_range_age) customers_data_new.isna().sum()
code
106206518/cell_21
[ "text_plain_output_1.png" ]
from heapq import nlargest from spacy.lang.en.stop_words import STOP_WORDS from string import punctuation import spacy text = '"In an attempt to build an AI-ready workforce, Microsoft announced Intelligent Cloud Hub which has been lanched to empower the next generation of students with AI-ready skills. Envisioned as a three-year collaborative program, Intelligent Cloud Hub will support around 100 institutions with AI infrastructure, course content and curriculum, developer support, development tools and give students access to cloud and AI services. As part of the program, the Redmond giant which wants to expand its reach and is planning to build a strong developer ecosystem in India with the program will set up the core AI infrastructure and IoT Hub for the selected campuses. The company will provide AI development tools and Azure AI services such as Microsoft Cognitive Services, Bot Services and Azure Machine Learning.According to Manish Prakash, Country General Manager-PS, Health and Education, Microsoft India, said, With AI being the defining technology of our time, it is transforming lives and industry and the jobs of tomorrow will require a different skillset. This will require more collaborations and training and working with AI. That’s why it has become more critical than ever for educational institutions to integrate new cloud and AI technologies. The program is an attempt to ramp up the institutional set-up and build capabilities among the educators to educate the workforce of tomorrow. The program aims to build up the cognitive skills and in-depth understanding of developing intelligent cloud connected solutions for applications across industry. Earlier in April this year, the company announced Microsoft Professional Program In AI as a learning track open to the public. The program was developed to provide job ready skills to programmers who wanted to hone their skills in AI and data science with a series of online courses which featured hands-on labs and expert instructors as well. This program also included developer-focused AI school that provided a bunch of assets to help build AI skills.' def textSummarizer(text, percentage): nlp = spacy.load('en_core_web_sm') doc = nlp(text) tokens = [token.text for token in doc] freq_of_word = dict() for word in doc: if word.text.lower() not in list(STOP_WORDS): if word.text.lower() not in punctuation: if word.text not in freq_of_word.keys(): freq_of_word[word.text] = 1 else: freq_of_word[word.text] += 1 max_freq = max(freq_of_word.values()) for word in freq_of_word.keys(): freq_of_word[word] = freq_of_word[word] / max_freq sent_tokens = [sent for sent in doc.sents] sent_scores = dict() for sent in sent_tokens: for word in sent: if word.text.lower() in freq_of_word.keys(): if sent not in sent_scores.keys(): sent_scores[sent] = freq_of_word[word.text.lower()] else: sent_scores[sent] += freq_of_word[word.text.lower()] len_tokens = int(len(sent_tokens) * percentage) summary = nlargest(n=len_tokens, iterable=sent_scores, key=sent_scores.get) final_summary = [word.text for word in summary] summary = ' '.join(final_summary) return summary final_summary = textSummarizer(text, 0.2) print('#' * 50) print('Summary of the text') print('Length of summarized text:', len(final_summary)) print('#' * 50) print() print(final_summary)
code
106206518/cell_15
[ "text_plain_output_1.png" ]
text = '"In an attempt to build an AI-ready workforce, Microsoft announced Intelligent Cloud Hub which has been lanched to empower the next generation of students with AI-ready skills. Envisioned as a three-year collaborative program, Intelligent Cloud Hub will support around 100 institutions with AI infrastructure, course content and curriculum, developer support, development tools and give students access to cloud and AI services. As part of the program, the Redmond giant which wants to expand its reach and is planning to build a strong developer ecosystem in India with the program will set up the core AI infrastructure and IoT Hub for the selected campuses. The company will provide AI development tools and Azure AI services such as Microsoft Cognitive Services, Bot Services and Azure Machine Learning.According to Manish Prakash, Country General Manager-PS, Health and Education, Microsoft India, said, With AI being the defining technology of our time, it is transforming lives and industry and the jobs of tomorrow will require a different skillset. This will require more collaborations and training and working with AI. That’s why it has become more critical than ever for educational institutions to integrate new cloud and AI technologies. The program is an attempt to ramp up the institutional set-up and build capabilities among the educators to educate the workforce of tomorrow. The program aims to build up the cognitive skills and in-depth understanding of developing intelligent cloud connected solutions for applications across industry. Earlier in April this year, the company announced Microsoft Professional Program In AI as a learning track open to the public. The program was developed to provide job ready skills to programmers who wanted to hone their skills in AI and data science with a series of online courses which featured hands-on labs and expert instructors as well. This program also included developer-focused AI school that provided a bunch of assets to help build AI skills.' print('Length of original text:', len(text))
code
72086844/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.head()
code
72086844/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) y = train['target'] features = train.drop(['target'], axis=1) features.head()
code
72086844/cell_8
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OrdinalEncoder import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) y = train['target'] features = train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] X = features.copy() X_test = test.copy() ordinal_encoder = OrdinalEncoder() X[object_cols] = ordinal_encoder.fit_transform(features[object_cols]) X_test[object_cols] = ordinal_encoder.transform(test[object_cols]) X.head()
code
50216735/cell_9
[ "text_plain_output_1.png" ]
X_train
code
50216735/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.Sentiment.unique()
code
50216735/cell_6
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.Sentiment.unique() from sklearn.feature_extraction.text import TfidfVectorizer tfv = TfidfVectorizer(min_df=3, max_features=49748, strip_accents='unicode', analyzer='word', token_pattern='\\w{1,}', ngram_range=(1, 3), stop_words='english') train['Phrase'] = train['Phrase'].fillna('') tfv_matrix = tfv.fit_transform(train['Phrase']) tfv_matrix.shape
code
50216735/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50216735/cell_7
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.Sentiment.unique() from sklearn.feature_extraction.text import TfidfVectorizer tfv = TfidfVectorizer(min_df=3, max_features=49748, strip_accents='unicode', analyzer='word', token_pattern='\\w{1,}', ngram_range=(1, 3), stop_words='english') train['Phrase'] = train['Phrase'].fillna('') tfv_matrix = tfv.fit_transform(train['Phrase']) tfv_matrix.shape tfv_matrix
code
50216735/cell_15
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.Sentiment.unique() from sklearn.feature_extraction.text import TfidfVectorizer tfv = TfidfVectorizer(min_df=3, max_features=49748, strip_accents='unicode', analyzer='word', token_pattern='\\w{1,}', ngram_range=(1, 3), stop_words='english') train['Phrase'] = train['Phrase'].fillna('') tfv_matrix = tfv.fit_transform(train['Phrase']) tfv_matrix.shape test['Phrase'] = test['Phrase'].fillna('') tfv_test_matrix = tfv.fit_transform(test['Phrase']) tfv_test_matrix.shape
code
50216735/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.head()
code
50216735/cell_17
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/train.tsv.zip', sep='\t') test = pd.read_csv('/kaggle/input/sentiment-analysis-on-movie-reviews/test.tsv.zip', sep='\t') train.Sentiment.unique() from sklearn.feature_extraction.text import TfidfVectorizer tfv = TfidfVectorizer(min_df=3, max_features=49748, strip_accents='unicode', analyzer='word', token_pattern='\\w{1,}', ngram_range=(1, 3), stop_words='english') train['Phrase'] = train['Phrase'].fillna('') tfv_matrix = tfv.fit_transform(train['Phrase']) tfv_matrix.shape MNB = MultinomialNB() MNB.fit(X_train, Y_train) from sklearn import metrics predicted = MNB.predict(X_test) accuracy_score = metrics.accuracy_score(predicted, Y_test) test['Phrase'] = test['Phrase'].fillna('') tfv_test_matrix = tfv.fit_transform(test['Phrase']) tfv_test_matrix.shape submission = MNB.predict(tfv_test_matrix) submission
code
50216735/cell_14
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.naive_bayes import MultinomialNB MNB = MultinomialNB() MNB.fit(X_train, Y_train) from sklearn import metrics predicted = MNB.predict(X_test) accuracy_score = metrics.accuracy_score(predicted, Y_test) print(str('{:04.2f}'.format(accuracy_score * 100)) + '%')
code