File size: 15,307 Bytes
8bbef17
c6a9f47
8705301
 
c6a9f47
8bbef17
 
8705301
c6a9f47
8bbef17
 
c6a9f47
 
 
8bbef17
 
c6a9f47
5599ea4
8bbef17
c6a9f47
 
4522002
c6a9f47
 
5599ea4
 
c6a9f47
8bbef17
8705301
c6a9f47
8bbef17
8705301
8bbef17
 
 
c6a9f47
 
8bbef17
5599ea4
 
 
 
 
 
c6a9f47
 
 
 
 
 
 
 
 
 
 
746d859
 
 
 
 
 
 
 
 
 
c6a9f47
 
 
 
 
 
 
 
 
 
 
 
 
52d159a
 
 
c6a9f47
 
3a16e8c
 
 
 
 
 
f8659b6
 
c6a9f47
3a16e8c
5599ea4
3a16e8c
52d159a
 
 
 
3a16e8c
 
 
 
 
 
 
5599ea4
c6a9f47
f8659b6
 
 
 
f840bdc
f8659b6
 
6567523
f8659b6
 
3a16e8c
 
 
 
 
 
 
 
 
 
 
 
 
6567523
f8659b6
3a16e8c
 
 
8705301
52d159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e60ba77
 
 
 
f8659b6
 
 
 
52d159a
 
 
 
 
 
f8659b6
e60ba77
 
 
f8659b6
 
e60ba77
 
f8659b6
e60ba77
 
f8659b6
52d159a
e60ba77
 
 
f8659b6
e60ba77
f8659b6
e60ba77
 
52d159a
e60ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d159a
e60ba77
 
 
 
 
 
 
 
 
 
 
 
 
5599ea4
52d159a
 
 
c6a9f47
746d859
c6a9f47
 
 
 
5599ea4
 
 
c6a9f47
 
5599ea4
746d859
c6a9f47
746d859
 
 
 
 
 
c6a9f47
 
 
 
5599ea4
c6a9f47
746d859
c6a9f47
746d859
c6a9f47
 
 
 
 
 
5599ea4
c6a9f47
 
 
18ee818
c6a9f47
52d159a
 
 
5599ea4
 
 
c6a9f47
5599ea4
c6a9f47
 
5599ea4
c6a9f47
 
 
 
 
 
 
746d859
c6a9f47
746d859
c6a9f47
746d859
52d159a
 
 
 
c6a9f47
746d859
 
c6a9f47
 
 
746d859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a9f47
 
 
746d859
 
c6a9f47
746d859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d159a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import time
import io
import base64
import re
import numpy as np
import fitz  # PyMuPDF
import tempfile
from PIL import Image
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from ultralytics import YOLO
import streamlit as st
from streamlit_chat import message
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_text_splitters import SpacyTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from streamlit.runtime.scriptrunner import get_script_run_ctx
from streamlit import runtime

# Initialize models and environment
os.system("python -m spacy download en_core_web_sm")
model = YOLO("best.pt")
openai_api_key = os.environ.get("openai_api_key")
MAX_FILE_SIZE = 50 * 1024 * 1024  # 50MB

# Utility functions
@st.cache_data(show_spinner=False, ttl=3600)
def clean_text(text):
    return re.sub(r'\s+', ' ', text).strip()

def remove_references(text):
    reference_patterns = [
        r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', 
        r'\bCitations\b', r'\bWorks Cited\b', r'\bReference\b'
    ]
    lines = text.split('\n')
    for i, line in enumerate(lines):
        if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
            return '\n'.join(lines[:i])
    return text

def handle_errors(func):
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            st.session_state.chat_history.append({
                "bot": f"❌ An error occurred: {str(e)}"
            })
            st.rerun()
    return wrapper

def show_progress(message):
    progress_bar = st.progress(0)
    status_text = st.empty()
    for i in range(100):
        time.sleep(0.02)
        progress_bar.progress(i + 1)
        status_text.text(f"{message}... {i+1}%")
    progress_bar.empty()
    status_text.empty()

def scroll_to_bottom():
    ctx = get_script_run_ctx()
    if ctx and runtime.exists():
        js = """
        <script>
            function scrollToBottom() {
                window.parent.document.querySelector('section.main').scrollTo(0, window.parent.document.querySelector('section.main').scrollHeight);
            }
            setTimeout(scrollToBottom, 100);
        </script>
        """
        st.components.v1.html(js, height=0)

# ----------------------------
# Core Processing Functions
# ----------------------------
@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def summarize_pdf_with_citations(_pdf_file_path, num_clusters=10):
    """
    Generates a summary that includes in-text citations based on selected context chunks.
    Each context chunk is numbered (e.g. [1], [2], etc.) and is referenced in the summary.
    After the summary, a reference list is provided mapping each citation number to the full original text excerpt.
    """
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
    
    # Updated prompt instructs the LLM to use the full excerpt in the reference list.
    prompt = ChatPromptTemplate.from_template(
        """Generate a comprehensive summary with the following elements:
1. Key findings and conclusions
2. Main methodologies used
3. Important data points
4. Limitations mentioned

For any information that is directly derived from the provided context excerpts, insert an in-text citation in the format [n] where n corresponds to the excerpt number.

After the summary, please provide a reference list where each citation number is mapped to the full original text excerpt as provided below. Do not simply echo the citation number; include the complete excerpt text.

Context Excerpts:
{contexts}"""
    )
    
    loader = PyMuPDFLoader(_pdf_file_path)
    docs = loader.load()
    full_text = "\n".join(doc.page_content for doc in docs)
    cleaned_full_text = clean_text(remove_references(full_text))
    
    text_splitter = SpacyTextSplitter(chunk_size=500)
    split_contents = text_splitter.split_text(cleaned_full_text)
    
    embeddings = embeddings_model.embed_documents(split_contents)
    kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(embeddings)
    
    citation_indices = []
    for center in kmeans.cluster_centers_:
        distances = np.linalg.norm(embeddings - center, axis=1)
        idx = int(np.argmin(distances))
        citation_indices.append(idx)
    
    # Create a context string with citations including the full original text excerpts
    citation_contexts = []
    for i, idx in enumerate(citation_indices):
        # Using the full excerpt from split_contents for the reference list.
        citation_contexts.append(f"[{i+1}]: {split_contents[idx]}")
    combined_contexts = "\n\n".join(citation_contexts)
    
    chain = prompt | llm | StrOutputParser()
    result = chain.invoke({"contexts": combined_contexts})
    return result



@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def summarize_pdf_with_citations(_pdf_file_path, num_clusters=10):
    """
    Generates a summary that includes in-text citations based on selected context chunks.
    Each context chunk is numbered (e.g. [1], [2], etc.) and is referenced in the summary.
    After the summary, a reference list is provided.
    """
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
    
    prompt = ChatPromptTemplate.from_template(
        """Generate a comprehensive summary with the following elements:
1. Key findings and conclusions
2. Main methodologies used
3. Important data points
4. Limitations mentioned

In your summary, include in-text citations formatted as [1], [2], etc., that refer to the source contexts provided below.
After the summary, provide a reference list mapping each citation number to its corresponding context excerpt.

Contexts:
{contexts}"""
    )
    
    loader = PyMuPDFLoader(_pdf_file_path)
    docs = loader.load()
    full_text = "\n".join(doc.page_content for doc in docs)
    cleaned_full_text = clean_text(remove_references(full_text))
    
    text_splitter = SpacyTextSplitter(chunk_size=500)
    split_contents = text_splitter.split_text(cleaned_full_text)
    
    embeddings = embeddings_model.embed_documents(split_contents)
    kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(embeddings)
    
    citation_indices = []
    for center in kmeans.cluster_centers_:
        distances = np.linalg.norm(embeddings - center, axis=1)
        idx = int(np.argmin(distances))
        citation_indices.append(idx)
    
    # Create a context string with citations (e.g. "[1]: ...", "[2]: ...")
    citation_contexts = []
    for i, idx in enumerate(citation_indices):
        citation_contexts.append(f"[{i+1}]: {split_contents[idx]}")
    combined_contexts = "\n\n".join(citation_contexts)
    
    chain = prompt | llm | StrOutputParser()
    result = chain.invoke({"contexts": combined_contexts})
    return result


@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def qa_pdf(_pdf_file_path, query, num_clusters=5):
    embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
    llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
    
    prompt = ChatPromptTemplate.from_template(
        """Answer this question: {question}
Using only this context: {context}
Format your answer with:
- Clear section headings
- Bullet points for lists
- **Bold** key terms
- Citations from the text"""
    )
    
    loader = PyMuPDFLoader(_pdf_file_path)
    docs = loader.load()
    full_text = "\n".join(doc.page_content for doc in docs)
    cleaned_full_text = clean_text(remove_references(full_text))
    
    text_splitter = SpacyTextSplitter(chunk_size=500)
    split_contents = text_splitter.split_text(cleaned_full_text)
    
    query_embedding = embeddings_model.embed_query(query)
    similarities = cosine_similarity([query_embedding], 
                                     embeddings_model.embed_documents(split_contents))[0]
    top_indices = np.argsort(similarities)[-num_clusters:]
    
    chain = prompt | llm | StrOutputParser()
    return chain.invoke({
        "question": query,
        "context": ' '.join([split_contents[i] for i in top_indices])
    })


@st.cache_data(show_spinner=False, ttl=3600)
@handle_errors
def process_pdf(_pdf_file_path):
    doc = fitz.open(_pdf_file_path)
    all_figures, all_tables = [], []
    scale_factor = 300 / 50  # High-res to low-res ratio
    
    for page in doc:
        low_res = page.get_pixmap(dpi=50)
        low_res_img = np.frombuffer(low_res.samples, dtype=np.uint8).reshape(low_res.height, low_res.width, 3)
        
        results = model.predict(low_res_img)
        boxes = [
            (int(box.xyxy[0][0]), int(box.xyxy[0][1]), 
             int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
            for result in results for box in result.boxes
            if box.conf[0] > 0.8 and int(box.cls[0]) in {3, 4}
        ]
        
        if boxes:
            high_res = page.get_pixmap(dpi=300)
            high_res_img = np.frombuffer(high_res.samples, dtype=np.uint8).reshape(high_res.height, high_res.width, 3)
            
            for (x1, y1, x2, y2, cls) in boxes:
                cropped = high_res_img[int(y1*scale_factor):int(y2*scale_factor),
                                         int(x1*scale_factor):int(x2*scale_factor)]
                if cls == 4:
                    all_figures.append(cropped)
                else:
                    all_tables.append(cropped)
    
    return all_figures, all_tables

def image_to_base64(img):
    buffered = io.BytesIO()
    img = Image.fromarray(img).convert("RGB")
    img.thumbnail((800, 800))  # Optimize image size
    img.save(buffered, format="JPEG", quality=85)
    return base64.b64encode(buffered.getvalue()).decode()

# ----------------------------
# Streamlit UI Setup
# ----------------------------
st.set_page_config(
    page_title="PDF Assistant",
    page_icon="πŸ“„",
    layout="wide",
    initial_sidebar_state="expanded"
)

if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'current_file' not in st.session_state:
    st.session_state.current_file = None

st.title("πŸ“„ Smart PDF Analyzer")
st.markdown("""
<div style="border-left: 4px solid #4CAF50; padding-left: 1rem; margin: 1rem 0;">
    <p style="color: #666; font-size: 0.95rem;">✨ Upload a PDF to:
    <ul style="color: #666; font-size: 0.95rem;">
        <li>Generate structured summaries</li>
        <li>Extract visual content</li>
        <li>Ask contextual questions</li>
    </ul>
    </p>
</div>
""", unsafe_allow_html=True)

uploaded_file = st.file_uploader(
    "Choose PDF file", 
    type="pdf",
    help="Max file size: 50MB",
    on_change=lambda: setattr(st.session_state, 'chat_history', [])
)

if uploaded_file and uploaded_file.size > MAX_FILE_SIZE:
    st.error("File size exceeds 50MB limit")
    st.stop()

if uploaded_file:
    file_path = tempfile.NamedTemporaryFile(delete=False).name
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    
    # Let the user choose whether to include in-text citations in the summary
    include_citations = st.checkbox("Include in-text citations in summary", value=True)
    
    chat_container = st.container()
    with chat_container:
        for idx, chat in enumerate(st.session_state.chat_history):
            col1, col2 = st.columns([1, 4])
            if chat.get("user"):
                with col2:
                    message(chat["user"], is_user=True, key=f"user_{idx}")
            if chat.get("bot"):
                with col1:
                    message(chat["bot"], key=f"bot_{idx}", allow_html=True)
        scroll_to_bottom()

    with st.container():
        col1, col2, col3 = st.columns([3, 2, 2])
        with col1:
            user_input = st.chat_input("Ask about the document...")
        with col2:
            if st.button("πŸ“ Generate Summary", use_container_width=True):
                with st.spinner("Analyzing document structure..."):
                    show_progress("Generating summary")
                    if include_citations:
                        summary = summarize_pdf_with_citations(file_path)
                    else:
                        summary = summarize_pdf(file_path)
                    st.session_state.chat_history.append({
                        "user": "Summary request", 
                        "bot": f"## Document Summary\n{summary}"
                    })
                    st.rerun()
        with col3:
            if st.button("πŸ–ΌοΈ Extract Visuals", use_container_width=True):
                with st.spinner("Identifying figures and tables..."):
                    show_progress("Extracting visuals")
                    figures, tables = process_pdf(file_path)
                    if figures:
                        st.session_state.chat_history.append({
                            "bot": f"Found {len(figures)} figures:"
                        })
                        for fig in figures:
                            st.session_state.chat_history.append({
                                "bot": f'<img src="data:image/jpeg;base64,{image_to_base64(fig)}" style="max-width: 100%;">'
                            })
                    if tables:
                        st.session_state.chat_history.append({
                            "bot": f"Found {len(tables)} tables:"
                        })
                        for tab in tables:
                            st.session_state.chat_history.append({
                                "bot": f'<img src="data:image/jpeg;base64,{image_to_base64(tab)}" style="max-width: 100%;">'
                            })
                    st.rerun()

    if user_input:
        st.session_state.chat_history.append({"user": user_input})
        with st.spinner("Analyzing query..."):
            show_progress("Generating answer")
            answer = qa_pdf(file_path, user_input)
            st.session_state.chat_history[-1]["bot"] = f"## Answer\n{answer}"
            st.rerun()

st.markdown("""
<style>
    .stChatMessage {
        padding: 1.25rem;
        margin: 1rem 0;
        border-radius: 12px;
        box-shadow: 0 2px 8px rgba(0,0,0,0.1);
        transition: transform 0.2s ease;
    }
    .stChatMessage:hover {
        transform: translateY(-2px);
    }
    .stButton>button {
        background: linear-gradient(45deg, #4CAF50, #45a049);
        color: white;
        border: none;
        border-radius: 8px;
        padding: 12px 24px;
        font-size: 16px;
        transition: all 0.3s ease;
    }
    .stButton>button:hover {
        box-shadow: 0 4px 12px rgba(76,175,80,0.3);
        transform: translateY(-1px);
    }
    [data-testid="stFileUploader"] {
        border: 2px dashed #4CAF50;
        border-radius: 12px;
        padding: 2rem;
    }
</style>
""", unsafe_allow_html=True)