Update app.py
Browse files
app.py
CHANGED
@@ -79,34 +79,103 @@ def scroll_to_bottom():
|
|
79 |
# Core processing functions
|
80 |
@st.cache_data(show_spinner=False, ttl=3600)
|
81 |
@handle_errors
|
82 |
-
def summarize_pdf(
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
86 |
prompt = ChatPromptTemplate.from_template(
|
87 |
-
"""Generate a
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
cleaned_full_text = clean_text(remove_references(full_text))
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
@st.cache_data(show_spinner=False, ttl=3600)
|
112 |
@handle_errors
|
@@ -114,34 +183,50 @@ def qa_pdf(_pdf_file_path, query, num_clusters=5):
|
|
114 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
115 |
llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
|
116 |
|
117 |
-
|
118 |
-
"""Answer this question: {question}
|
119 |
-
Using only this context: {context}
|
120 |
-
Format your answer with:
|
121 |
-
- Clear section headings
|
122 |
-
- Bullet points for lists
|
123 |
-
- Bold key terms
|
124 |
-
- Citations from the text"""
|
125 |
-
)
|
126 |
-
|
127 |
loader = PyMuPDFLoader(_pdf_file_path)
|
128 |
docs = loader.load()
|
129 |
-
full_text = "\n".join(doc.page_content for doc in docs)
|
130 |
-
cleaned_full_text = clean_text(remove_references(full_text))
|
131 |
|
|
|
132 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
|
|
|
|
135 |
query_embedding = embeddings_model.embed_query(query)
|
136 |
-
similarities = cosine_similarity([query_embedding],
|
137 |
-
embeddings_model.embed_documents(split_contents))[0]
|
138 |
top_indices = np.argsort(similarities)[-num_clusters:]
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
chain = prompt | llm | StrOutputParser()
|
141 |
-
|
142 |
"question": query,
|
143 |
-
"context": '
|
|
|
144 |
})
|
|
|
|
|
|
|
145 |
|
146 |
@st.cache_data(show_spinner=False, ttl=3600)
|
147 |
@handle_errors
|
|
|
79 |
# Core processing functions
|
80 |
@st.cache_data(show_spinner=False, ttl=3600)
|
81 |
@handle_errors
|
82 |
+
def summarize_pdf(pdf_file_path, num_clusters=10):
|
83 |
+
# Keep track of page numbers for each chunk
|
84 |
+
loader = PyMuPDFLoader(pdf_file_path)
|
85 |
+
docs = loader.load()
|
86 |
+
|
87 |
+
# Create chunks with page numbers
|
88 |
+
text_splitter = SpacyTextSplitter(chunk_size=500)
|
89 |
+
chunks_with_metadata = []
|
90 |
+
for doc in docs:
|
91 |
+
chunks = text_splitter.split_text(doc.page_content)
|
92 |
+
for chunk in chunks:
|
93 |
+
chunks_with_metadata.append({
|
94 |
+
"text": chunk,
|
95 |
+
"page": doc.metadata["page"] + 1 # Convert to 1-based numbering
|
96 |
+
})
|
97 |
|
98 |
+
# Modified prompt for citation formatting
|
99 |
prompt = ChatPromptTemplate.from_template(
|
100 |
+
"""Generate a summary with inline citations for each key point using [Source X] format.
|
101 |
+
Structure your response as:
|
102 |
+
|
103 |
+
## Comprehensive Summary
|
104 |
+
{summary_content}
|
105 |
+
|
106 |
+
## Source References
|
107 |
+
{sources_list}
|
108 |
+
|
109 |
+
Contexts: {topic}"""
|
110 |
)
|
111 |
|
112 |
+
# Create source mapping
|
113 |
+
sources = [f"Source {i+1}: Page {chunk['page']}"
|
114 |
+
for i, chunk in enumerate(chunks_with_metadata)]
|
|
|
115 |
|
116 |
+
# Generate summary with citations
|
117 |
+
chain = prompt | llm | StrOutputParser()
|
118 |
+
results = chain.invoke({
|
119 |
+
"topic": ' '.join([chunk["text"] for chunk in chunks_with_metadata]),
|
120 |
+
"sources_list": "\n".join(sources)
|
121 |
+
})
|
122 |
+
|
123 |
+
return add_interactive_citations(results, chunks_with_metadata)
|
124 |
+
|
125 |
+
|
126 |
+
def add_interactive_citations(summary_text, source_chunks):
|
127 |
+
# Create source boxes with page numbers and full text
|
128 |
+
sources_html = """<div style="margin-top: 20px; border-top: 2px solid #e0e0e0; padding-top: 15px;">
|
129 |
+
<h4>📚 Source References</h4>"""
|
130 |
|
131 |
+
for idx, chunk in enumerate(source_chunks):
|
132 |
+
sources_html += f"""
|
133 |
+
<div id="source-{idx+1}" style="margin: 10px 0; padding: 10px;
|
134 |
+
border: 1px solid #e0e0e0; border-radius: 5px;
|
135 |
+
transition: all 0.3s ease;">
|
136 |
+
<div style="display: flex; justify-content: space-between;">
|
137 |
+
<strong>Source {idx+1}</strong>
|
138 |
+
<span style="color: #666;">Page {chunk['page']}</span>
|
139 |
+
</div>
|
140 |
+
<div style="margin-top: 5px; color: #444; font-size: 0.9em;">
|
141 |
+
{chunk['text']}
|
142 |
+
</div>
|
143 |
+
</div>
|
144 |
+
"""
|
145 |
+
sources_html += "</div>"
|
146 |
|
147 |
+
# Add click interactions
|
148 |
+
interaction_js = """
|
149 |
+
<script>
|
150 |
+
document.querySelectorAll('[data-citation]').forEach(item => {
|
151 |
+
item.addEventListener('click', function(e) {
|
152 |
+
const sourceId = this.getAttribute('data-source');
|
153 |
+
const sourceDiv = document.getElementById(sourceId);
|
154 |
+
|
155 |
+
// Highlight animation
|
156 |
+
sourceDiv.style.border = '2px solid #4CAF50';
|
157 |
+
sourceDiv.style.boxShadow = '0 2px 8px rgba(76,175,80,0.3)';
|
158 |
+
|
159 |
+
setTimeout(() => {
|
160 |
+
sourceDiv.style.border = '1px solid #e0e0e0';
|
161 |
+
sourceDiv.style.boxShadow = 'none';
|
162 |
+
}, 1000);
|
163 |
+
|
164 |
+
// Smooth scroll
|
165 |
+
sourceDiv.scrollIntoView({behavior: 'smooth'});
|
166 |
+
});
|
167 |
+
});
|
168 |
+
</script>
|
169 |
+
"""
|
170 |
+
|
171 |
+
# Replace citations with interactive elements
|
172 |
+
cited_summary = re.sub(r'\[Source (\d+)\]',
|
173 |
+
lambda m: f'<a data-citation="true" data-source="source-{m.group(1)}" '
|
174 |
+
f'style="cursor: pointer; color: #4CAF50; text-decoration: underline;">'
|
175 |
+
f'[Source {m.group(1)}]</a>',
|
176 |
+
summary_text)
|
177 |
+
|
178 |
+
return f"{cited_summary}{sources_html}{interaction_js}"
|
179 |
|
180 |
@st.cache_data(show_spinner=False, ttl=3600)
|
181 |
@handle_errors
|
|
|
183 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
184 |
llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
|
185 |
|
186 |
+
# Load PDF with page numbers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
loader = PyMuPDFLoader(_pdf_file_path)
|
188 |
docs = loader.load()
|
|
|
|
|
189 |
|
190 |
+
# Create chunks with page metadata
|
191 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
192 |
+
chunks_with_metadata = []
|
193 |
+
for doc in docs:
|
194 |
+
chunks = text_splitter.split_text(doc.page_content)
|
195 |
+
for chunk in chunks:
|
196 |
+
chunks_with_metadata.append({
|
197 |
+
"text": clean_text(chunk),
|
198 |
+
"page": doc.metadata["page"] + 1
|
199 |
+
})
|
200 |
|
201 |
+
# Find relevant chunks
|
202 |
+
embeddings = embeddings_model.embed_documents([chunk["text"] for chunk in chunks_with_metadata])
|
203 |
query_embedding = embeddings_model.embed_query(query)
|
204 |
+
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
|
|
205 |
top_indices = np.argsort(similarities)[-num_clusters:]
|
206 |
|
207 |
+
# Prepare prompt with citation instructions
|
208 |
+
prompt = ChatPromptTemplate.from_template(
|
209 |
+
"""Answer this question with inline citations using [Source X] format:
|
210 |
+
{question}
|
211 |
+
|
212 |
+
Use these verified sources:
|
213 |
+
{context}
|
214 |
+
|
215 |
+
Structure your answer with:
|
216 |
+
- Clear section headings
|
217 |
+
- Bullet points for lists
|
218 |
+
- Citations for all factual claims"""
|
219 |
+
)
|
220 |
+
|
221 |
chain = prompt | llm | StrOutputParser()
|
222 |
+
raw_answer = chain.invoke({
|
223 |
"question": query,
|
224 |
+
"context": '\n\n'.join([f"Source {i+1} (Page {chunks_with_metadata[i]['page']}): {chunks_with_metadata[i]['text']}"
|
225 |
+
for i in top_indices])
|
226 |
})
|
227 |
+
|
228 |
+
return generate_interactive_citations(raw_answer, [chunks_with_metadata[i] for i in top_indices])
|
229 |
+
|
230 |
|
231 |
@st.cache_data(show_spinner=False, ttl=3600)
|
232 |
@handle_errors
|