Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import io
|
@@ -26,8 +27,6 @@ model = YOLO("best.pt")
|
|
26 |
openai_api_key = os.environ.get("openai_api_key")
|
27 |
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
|
28 |
|
29 |
-
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
30 |
-
|
31 |
# Utility functions
|
32 |
@st.cache_data(show_spinner=False, ttl=3600)
|
33 |
def clean_text(text):
|
@@ -81,154 +80,69 @@ def scroll_to_bottom():
|
|
81 |
# Core processing functions
|
82 |
@st.cache_data(show_spinner=False, ttl=3600)
|
83 |
@handle_errors
|
84 |
-
def summarize_pdf(
|
85 |
-
|
86 |
-
|
87 |
-
docs = loader.load()
|
88 |
-
|
89 |
-
# Create chunks with page numbers
|
90 |
-
text_splitter = SpacyTextSplitter(chunk_size=500)
|
91 |
-
chunks_with_metadata = []
|
92 |
-
for doc in docs:
|
93 |
-
chunks = text_splitter.split_text(doc.page_content)
|
94 |
-
for chunk in chunks:
|
95 |
-
chunks_with_metadata.append({
|
96 |
-
"text": chunk,
|
97 |
-
"page": doc.metadata["page"] + 1 # Convert to 1-based numbering
|
98 |
-
})
|
99 |
|
100 |
-
# Modified prompt for citation formatting
|
101 |
prompt = ChatPromptTemplate.from_template(
|
102 |
-
"""Generate a summary with
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
## Source References
|
109 |
-
{sources_list}
|
110 |
-
|
111 |
-
Contexts: {topic}"""
|
112 |
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# Generate summary with citations
|
119 |
-
chain = prompt | llm | StrOutputParser()
|
120 |
-
results = chain.invoke({
|
121 |
-
"topic": ' '.join([chunk["text"] for chunk in chunks_with_metadata]),
|
122 |
-
"sources_list": "\n".join(sources)
|
123 |
-
})
|
124 |
-
|
125 |
-
return add_interactive_citations(results, chunks_with_metadata)
|
126 |
-
|
127 |
-
|
128 |
-
def add_interactive_citations(summary_text, source_chunks):
|
129 |
-
# Create source boxes with page numbers and full text
|
130 |
-
sources_html = """<div style="margin-top: 20px; border-top: 2px solid #e0e0e0; padding-top: 15px;">
|
131 |
-
<h4>📚 Source References</h4>"""
|
132 |
-
|
133 |
-
for idx, chunk in enumerate(source_chunks):
|
134 |
-
sources_html += f"""
|
135 |
-
<div id="source-{idx+1}" style="margin: 10px 0; padding: 10px;
|
136 |
-
border: 1px solid #e0e0e0; border-radius: 5px;
|
137 |
-
transition: all 0.3s ease;">
|
138 |
-
<div style="display: flex; justify-content: space-between;">
|
139 |
-
<strong>Source {idx+1}</strong>
|
140 |
-
<span style="color: #666;">Page {chunk['page']}</span>
|
141 |
-
</div>
|
142 |
-
<div style="margin-top: 5px; color: #444; font-size: 0.9em;">
|
143 |
-
{chunk['text']}
|
144 |
-
</div>
|
145 |
-
</div>
|
146 |
-
"""
|
147 |
-
sources_html += "</div>"
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
<script>
|
152 |
-
document.querySelectorAll('[data-citation]').forEach(item => {
|
153 |
-
item.addEventListener('click', function(e) {
|
154 |
-
const sourceId = this.getAttribute('data-source');
|
155 |
-
const sourceDiv = document.getElementById(sourceId);
|
156 |
-
|
157 |
-
// Highlight animation
|
158 |
-
sourceDiv.style.border = '2px solid #4CAF50';
|
159 |
-
sourceDiv.style.boxShadow = '0 2px 8px rgba(76,175,80,0.3)';
|
160 |
-
|
161 |
-
setTimeout(() => {
|
162 |
-
sourceDiv.style.border = '1px solid #e0e0e0';
|
163 |
-
sourceDiv.style.boxShadow = 'none';
|
164 |
-
}, 1000);
|
165 |
-
|
166 |
-
// Smooth scroll
|
167 |
-
sourceDiv.scrollIntoView({behavior: 'smooth'});
|
168 |
-
});
|
169 |
-
});
|
170 |
-
</script>
|
171 |
-
"""
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
f'[Source {m.group(1)}]</a>',
|
178 |
-
summary_text)
|
179 |
|
180 |
-
|
|
|
181 |
|
182 |
@st.cache_data(show_spinner=False, ttl=3600)
|
183 |
@handle_errors
|
184 |
def qa_pdf(_pdf_file_path, query, num_clusters=5):
|
185 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
# Load PDF with page numbers
|
189 |
loader = PyMuPDFLoader(_pdf_file_path)
|
190 |
docs = loader.load()
|
|
|
|
|
191 |
|
192 |
-
# Create chunks with page metadata
|
193 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
194 |
-
|
195 |
-
for doc in docs:
|
196 |
-
chunks = text_splitter.split_text(doc.page_content)
|
197 |
-
for chunk in chunks:
|
198 |
-
chunks_with_metadata.append({
|
199 |
-
"text": clean_text(chunk),
|
200 |
-
"page": doc.metadata["page"] + 1
|
201 |
-
})
|
202 |
|
203 |
-
# Find relevant chunks
|
204 |
-
embeddings = embeddings_model.embed_documents([chunk["text"] for chunk in chunks_with_metadata])
|
205 |
query_embedding = embeddings_model.embed_query(query)
|
206 |
-
similarities = cosine_similarity([query_embedding],
|
|
|
207 |
top_indices = np.argsort(similarities)[-num_clusters:]
|
208 |
|
209 |
-
# Prepare prompt with citation instructions
|
210 |
-
prompt = ChatPromptTemplate.from_template(
|
211 |
-
"""Answer this question with inline citations using [Source X] format:
|
212 |
-
{question}
|
213 |
-
|
214 |
-
Use these verified sources:
|
215 |
-
{context}
|
216 |
-
|
217 |
-
Structure your answer with:
|
218 |
-
- Clear section headings
|
219 |
-
- Bullet points for lists
|
220 |
-
- Citations for all factual claims"""
|
221 |
-
)
|
222 |
-
|
223 |
chain = prompt | llm | StrOutputParser()
|
224 |
-
|
225 |
"question": query,
|
226 |
-
"context": '
|
227 |
-
for i in top_indices])
|
228 |
})
|
229 |
-
|
230 |
-
return generate_interactive_citations(raw_answer, [chunks_with_metadata[i] for i in top_indices])
|
231 |
-
|
232 |
|
233 |
@st.cache_data(show_spinner=False, ttl=3600)
|
234 |
@handle_errors
|
|
|
1 |
+
|
2 |
import os
|
3 |
import time
|
4 |
import io
|
|
|
27 |
openai_api_key = os.environ.get("openai_api_key")
|
28 |
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
|
29 |
|
|
|
|
|
30 |
# Utility functions
|
31 |
@st.cache_data(show_spinner=False, ttl=3600)
|
32 |
def clean_text(text):
|
|
|
80 |
# Core processing functions
|
81 |
@st.cache_data(show_spinner=False, ttl=3600)
|
82 |
@handle_errors
|
83 |
+
def summarize_pdf(_pdf_file_path, num_clusters=10):
|
84 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
85 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
87 |
prompt = ChatPromptTemplate.from_template(
|
88 |
+
"""Generate a comprehensive summary with these elements:
|
89 |
+
1. Key findings and conclusions
|
90 |
+
2. Main methodologies used
|
91 |
+
3. Important data points
|
92 |
+
4. Limitations mentioned
|
93 |
+
Context: {topic}"""
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
|
96 |
+
loader = PyMuPDFLoader(_pdf_file_path)
|
97 |
+
docs = loader.load()
|
98 |
+
full_text = "\n".join(doc.page_content for doc in docs)
|
99 |
+
cleaned_full_text = clean_text(remove_references(full_text))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
text_splitter = SpacyTextSplitter(chunk_size=500)
|
102 |
+
split_contents = text_splitter.split_text(cleaned_full_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
embeddings = embeddings_model.embed_documents(split_contents)
|
105 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(embeddings)
|
106 |
+
closest_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1))
|
107 |
+
for center in kmeans.cluster_centers_]
|
|
|
|
|
108 |
|
109 |
+
chain = prompt | llm | StrOutputParser()
|
110 |
+
return chain.invoke({"topic": ' '.join([split_contents[idx] for idx in closest_indices])})
|
111 |
|
112 |
@st.cache_data(show_spinner=False, ttl=3600)
|
113 |
@handle_errors
|
114 |
def qa_pdf(_pdf_file_path, query, num_clusters=5):
|
115 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
116 |
+
llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
|
117 |
+
|
118 |
+
prompt = ChatPromptTemplate.from_template(
|
119 |
+
"""Answer this question: {question}
|
120 |
+
Using only this context: {context}
|
121 |
+
Format your answer with:
|
122 |
+
- Clear section headings
|
123 |
+
- Bullet points for lists
|
124 |
+
- Bold key terms
|
125 |
+
- Citations from the text"""
|
126 |
+
)
|
127 |
|
|
|
128 |
loader = PyMuPDFLoader(_pdf_file_path)
|
129 |
docs = loader.load()
|
130 |
+
full_text = "\n".join(doc.page_content for doc in docs)
|
131 |
+
cleaned_full_text = clean_text(remove_references(full_text))
|
132 |
|
|
|
133 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
134 |
+
split_contents = text_splitter.split_text(cleaned_full_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
|
|
|
|
136 |
query_embedding = embeddings_model.embed_query(query)
|
137 |
+
similarities = cosine_similarity([query_embedding],
|
138 |
+
embeddings_model.embed_documents(split_contents))[0]
|
139 |
top_indices = np.argsort(similarities)[-num_clusters:]
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
chain = prompt | llm | StrOutputParser()
|
142 |
+
return chain.invoke({
|
143 |
"question": query,
|
144 |
+
"context": ' '.join([split_contents[i] for i in top_indices])
|
|
|
145 |
})
|
|
|
|
|
|
|
146 |
|
147 |
@st.cache_data(show_spinner=False, ttl=3600)
|
148 |
@handle_errors
|