Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,42 @@
|
|
1 |
|
2 |
|
3 |
-
|
4 |
-
|
5 |
import os
|
6 |
-
|
7 |
import io
|
8 |
import base64
|
9 |
-
import
|
10 |
import numpy as np
|
11 |
import fitz # PyMuPDF
|
12 |
import tempfile
|
13 |
-
from
|
14 |
from sklearn.cluster import KMeans
|
15 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
16 |
from langchain_core.output_parsers import StrOutputParser
|
17 |
from langchain_community.document_loaders import PyMuPDFLoader
|
18 |
-
from langchain_openai import OpenAIEmbeddings
|
19 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
20 |
from langchain_text_splitters import SpacyTextSplitter
|
21 |
from langchain_core.prompts import ChatPromptTemplate
|
22 |
-
from
|
23 |
-
import
|
24 |
-
from PIL import Image
|
25 |
-
from streamlit_chat import message
|
26 |
-
|
27 |
-
# Load the trained model
|
28 |
|
|
|
|
|
29 |
model = YOLO("best.pt")
|
30 |
openai_api_key = os.environ.get("openai_api_key")
|
31 |
-
|
32 |
-
# Define the class indices for figures, tables, and text
|
33 |
-
figure_class_index = 4
|
34 |
-
table_class_index = 3
|
35 |
|
36 |
# Utility functions
|
|
|
37 |
def clean_text(text):
|
38 |
return re.sub(r'\s+', ' ', text).strip()
|
39 |
|
40 |
def remove_references(text):
|
41 |
reference_patterns = [
|
42 |
-
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b',
|
43 |
-
r'\
|
44 |
]
|
45 |
lines = text.split('\n')
|
46 |
for i, line in enumerate(lines):
|
@@ -48,332 +44,275 @@ def remove_references(text):
|
|
48 |
return '\n'.join(lines[:i])
|
49 |
return text
|
50 |
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
59 |
-
llm = ChatOpenAI(model="gpt-
|
|
|
60 |
prompt = ChatPromptTemplate.from_template(
|
61 |
-
"""
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
## Key points:
|
68 |
-
Contexts: {topic}"""
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
loader = PyMuPDFLoader(pdf_file_path)
|
74 |
docs = loader.load()
|
75 |
full_text = "\n".join(doc.page_content for doc in docs)
|
76 |
cleaned_full_text = clean_text(remove_references(full_text))
|
|
|
77 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
78 |
-
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
79 |
split_contents = text_splitter.split_text(cleaned_full_text)
|
|
|
80 |
embeddings = embeddings_model.embed_documents(split_contents)
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
results = chain.invoke({"topic": ' '.join(extracted_contents)})
|
87 |
-
|
88 |
-
return generate_citations(results, extracted_contents)
|
89 |
-
|
90 |
-
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
|
91 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
92 |
-
llm = ChatOpenAI(model="gpt-
|
|
|
93 |
prompt = ChatPromptTemplate.from_template(
|
94 |
-
"""
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
loader = PyMuPDFLoader(pdf_file_path)
|
104 |
docs = loader.load()
|
105 |
full_text = "\n".join(doc.page_content for doc in docs)
|
106 |
cleaned_full_text = clean_text(remove_references(full_text))
|
|
|
107 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
108 |
-
|
109 |
-
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
110 |
split_contents = text_splitter.split_text(cleaned_full_text)
|
111 |
-
|
112 |
-
|
113 |
query_embedding = embeddings_model.embed_query(query)
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})
|
119 |
-
|
120 |
-
return generate_citations(results, relevant_contents, similarity_threshold)
|
121 |
-
|
122 |
-
def generate_citations(text, contents, similarity_threshold=0.6):
|
123 |
-
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
124 |
-
text_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
|
125 |
-
text_embeddings = embeddings_model.embed_documents(text_sentences)
|
126 |
-
content_embeddings = embeddings_model.embed_documents(contents)
|
127 |
-
similarity_matrix = cosine_similarity(text_embeddings, content_embeddings)
|
128 |
-
|
129 |
-
cited_text = text
|
130 |
-
relevant_sources = []
|
131 |
-
source_mapping = {}
|
132 |
-
sentence_to_source = {}
|
133 |
-
|
134 |
-
for i, sentence in enumerate(text_sentences):
|
135 |
-
if sentence in sentence_to_source:
|
136 |
-
continue
|
137 |
-
max_similarity = max(similarity_matrix[i])
|
138 |
-
if max_similarity >= similarity_threshold:
|
139 |
-
most_similar_idx = np.argmax(similarity_matrix[i])
|
140 |
-
if most_similar_idx not in source_mapping:
|
141 |
-
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
142 |
-
relevant_sources.append((most_similar_idx, contents[most_similar_idx]))
|
143 |
-
citation_idx = source_mapping[most_similar_idx]
|
144 |
-
citation = f"([Source {citation_idx}](#source-{citation_idx}))"
|
145 |
-
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
146 |
-
sentence_to_source[sentence] = citation_idx
|
147 |
-
cited_text = cited_text.replace(sentence, cited_sentence)
|
148 |
-
|
149 |
-
sources_list = "\n\n## Sources:\n"
|
150 |
-
for idx, (original_idx, content) in enumerate(relevant_sources):
|
151 |
-
sources_list += f"""
|
152 |
-
<details style="margin: 1px 0; padding: 5px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; transition: all 0.3s ease;">
|
153 |
-
<summary style="font-weight: bold; cursor: pointer; outline: none; padding: 5px 0; transition: color 0.3s ease;">Source {idx + 1}</summary>
|
154 |
-
<pre style="white-space: pre-wrap; word-wrap: break-word; margin: 1px 0; padding: 10px; background-color: #fff; border-radius: 5px; border: 1px solid #ddd; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);">{content}</pre>
|
155 |
-
</details>
|
156 |
-
"""
|
157 |
-
|
158 |
-
# Add dummy blanks after the last source
|
159 |
-
dummy_blanks = """
|
160 |
-
<div style="margin: 20px 0;"></div>
|
161 |
-
<div style="margin: 20px 0;"></div>
|
162 |
-
<div style="margin: 20px 0;"></div>
|
163 |
-
<div style="margin: 20px 0;"></div>
|
164 |
-
<div style="margin: 20px 0;"></div>
|
165 |
-
"""
|
166 |
-
|
167 |
-
cited_text += sources_list + dummy_blanks
|
168 |
-
return cited_text
|
169 |
-
|
170 |
-
def infer_image_and_get_boxes(image, confidence_threshold=0.8):
|
171 |
-
results = model.predict(image)
|
172 |
-
return [
|
173 |
-
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
174 |
-
for result in results for box in result.boxes
|
175 |
-
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
|
176 |
-
]
|
177 |
-
|
178 |
-
def crop_images_from_boxes(image, boxes, scale_factor):
|
179 |
-
figures = []
|
180 |
-
tables = []
|
181 |
-
for (x1, y1, x2, y2, cls) in boxes:
|
182 |
-
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
|
183 |
-
if cls == figure_class_index:
|
184 |
-
figures.append(cropped_img)
|
185 |
-
elif cls == table_class_index:
|
186 |
-
tables.append(cropped_img)
|
187 |
-
return figures, tables
|
188 |
-
|
189 |
-
def process_pdf(pdf_file_path):
|
190 |
-
doc = fitz.open(pdf_file_path)
|
191 |
-
all_figures = []
|
192 |
-
all_tables = []
|
193 |
-
low_dpi = 50
|
194 |
-
high_dpi = 300
|
195 |
-
scale_factor = high_dpi / low_dpi
|
196 |
-
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
if boxes:
|
203 |
-
|
204 |
-
high_res_img = np.frombuffer(
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
return all_figures, all_tables
|
210 |
|
211 |
def image_to_base64(img):
|
212 |
buffered = io.BytesIO()
|
213 |
-
img = Image.fromarray(img)
|
214 |
-
img.
|
|
|
215 |
return base64.b64encode(buffered.getvalue()).decode()
|
216 |
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
# Streamlit interface
|
221 |
-
|
222 |
-
# Custom CSS for the file uploader
|
223 |
-
uploadercss='''
|
224 |
-
<style>
|
225 |
-
[data-testid='stFileUploader'] {
|
226 |
-
width: max-content;
|
227 |
-
}
|
228 |
-
[data-testid='stFileUploader'] section {
|
229 |
-
padding: 0;
|
230 |
-
float: left;
|
231 |
-
}
|
232 |
-
[data-testid='stFileUploader'] section > input + div {
|
233 |
-
display: none;
|
234 |
-
}
|
235 |
-
[data-testid='stFileUploader'] section + div {
|
236 |
-
float: right;
|
237 |
-
padding-top: 0;
|
238 |
-
}
|
239 |
-
</style>
|
240 |
-
'''
|
241 |
-
|
242 |
-
st.set_page_config(page_title="PDF Reading Assistant", page_icon="📄")
|
243 |
-
|
244 |
-
# Initialize chat history in session state if not already present
|
245 |
if 'chat_history' not in st.session_state:
|
246 |
st.session_state.chat_history = []
|
|
|
|
|
247 |
|
248 |
-
st.title("📄 PDF
|
249 |
-
st.markdown("
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
chat_container = st.container()
|
260 |
-
user_input = st.chat_input("Ask a question about the pdf......", key="user_input")
|
261 |
with chat_container:
|
262 |
-
# Scrollable chat messages
|
263 |
for idx, chat in enumerate(st.session_state.chat_history):
|
|
|
264 |
if chat.get("user"):
|
265 |
-
|
|
|
266 |
if chat.get("bot"):
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
# Handle responses based on user input and button presses
|
281 |
-
if summary_button:
|
282 |
-
with st.spinner("Generating summary..."):
|
283 |
summary = summarize_pdf(file_path)
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
289 |
figures, tables = process_pdf(file_path)
|
290 |
if figures:
|
291 |
-
st.session_state.chat_history.append({
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
297 |
if tables:
|
298 |
-
st.session_state.chat_history.append({
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
st.session_state.chat_history.append({
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
if user_input:
|
306 |
-
st.session_state.chat_history.append({"user": user_input, "bot": None})
|
307 |
-
with st.spinner("Processing..."):
|
308 |
-
answer = qa_pdf(file_path, user_input)
|
309 |
-
st.session_state.chat_history[-1]["bot"] = answer
|
310 |
-
st.rerun()
|
311 |
-
|
312 |
-
# Additional CSS and JavaScript to ensure the chat container is scrollable and scrolls to the bottom
|
313 |
st.markdown("""
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
.
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
background-color: #D1C4E9;
|
346 |
-
}
|
347 |
-
textarea {
|
348 |
-
width: 100%;
|
349 |
-
padding: 1rem;
|
350 |
-
border: 1px solid #ddd;
|
351 |
-
border-radius: 8px;
|
352 |
-
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
|
353 |
-
transition: border-color 0.3s ease, box-shadow 0.3s ease;
|
354 |
-
}
|
355 |
-
textarea:focus {
|
356 |
-
border-color: #4CAF50;
|
357 |
-
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
|
358 |
-
}
|
359 |
-
.stButton > button {
|
360 |
-
width: 100%;
|
361 |
-
background-color: #4CAF50;
|
362 |
-
color: white;
|
363 |
-
border: none;
|
364 |
-
border-radius: 8px;
|
365 |
-
padding: 0.75rem;
|
366 |
-
font-size: 16px;
|
367 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
368 |
-
transition: background-color 0.3s ease, box-shadow 0.3s ease;
|
369 |
-
}
|
370 |
-
.stButton > button:hover {
|
371 |
-
background-color: #45A049;
|
372 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
373 |
-
}
|
374 |
-
</style>
|
375 |
-
<script>
|
376 |
-
const chatContainer = document.getElementById('chat-container');
|
377 |
-
chatContainer.scrollTop = chatContainer.scrollHeight;
|
378 |
-
</script>
|
379 |
-
""", unsafe_allow_html=True)
|
|
|
1 |
|
2 |
|
|
|
|
|
3 |
import os
|
4 |
+
import time
|
5 |
import io
|
6 |
import base64
|
7 |
+
import re
|
8 |
import numpy as np
|
9 |
import fitz # PyMuPDF
|
10 |
import tempfile
|
11 |
+
from PIL import Image
|
12 |
from sklearn.cluster import KMeans
|
13 |
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
+
from ultralytics import YOLO
|
15 |
+
import streamlit as st
|
16 |
+
from streamlit_chat import message
|
17 |
from langchain_core.output_parsers import StrOutputParser
|
18 |
from langchain_community.document_loaders import PyMuPDFLoader
|
19 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
|
20 |
from langchain_text_splitters import SpacyTextSplitter
|
21 |
from langchain_core.prompts import ChatPromptTemplate
|
22 |
+
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
23 |
+
from streamlit import runtime
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Initialize models and environment
|
26 |
+
os.system("python -m spacy download en_core_web_sm")
|
27 |
model = YOLO("best.pt")
|
28 |
openai_api_key = os.environ.get("openai_api_key")
|
29 |
+
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
|
|
|
|
|
|
|
30 |
|
31 |
# Utility functions
|
32 |
+
@st.cache_data(show_spinner=False, ttl=3600)
|
33 |
def clean_text(text):
|
34 |
return re.sub(r'\s+', ' ', text).strip()
|
35 |
|
36 |
def remove_references(text):
|
37 |
reference_patterns = [
|
38 |
+
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b',
|
39 |
+
r'\bCitations\b', r'\bWorks Cited\b', r'\bReference\b'
|
40 |
]
|
41 |
lines = text.split('\n')
|
42 |
for i, line in enumerate(lines):
|
|
|
44 |
return '\n'.join(lines[:i])
|
45 |
return text
|
46 |
|
47 |
+
def handle_errors(func):
|
48 |
+
def wrapper(*args, **kwargs):
|
49 |
+
try:
|
50 |
+
return func(*args, **kwargs)
|
51 |
+
except Exception as e:
|
52 |
+
st.session_state.chat_history.append({
|
53 |
+
"bot": f"❌ An error occurred: {str(e)}"
|
54 |
+
})
|
55 |
+
st.rerun()
|
56 |
+
return wrapper
|
57 |
+
|
58 |
+
def show_progress(message):
|
59 |
+
progress_bar = st.progress(0)
|
60 |
+
status_text = st.empty()
|
61 |
+
for i in range(100):
|
62 |
+
time.sleep(0.02)
|
63 |
+
progress_bar.progress(i + 1)
|
64 |
+
status_text.text(f"{message}... {i+1}%")
|
65 |
+
progress_bar.empty()
|
66 |
+
status_text.empty()
|
67 |
+
|
68 |
+
def scroll_to_bottom():
|
69 |
+
ctx = get_script_run_ctx()
|
70 |
+
if ctx and runtime.exists():
|
71 |
+
js = """
|
72 |
+
<script>
|
73 |
+
function scrollToBottom() {
|
74 |
+
window.parent.document.querySelector('section.main').scrollTo(0, window.parent.document.querySelector('section.main').scrollHeight);
|
75 |
+
}
|
76 |
+
setTimeout(scrollToBottom, 100);
|
77 |
+
</script>
|
78 |
+
"""
|
79 |
+
st.components.v1.html(js, height=0)
|
80 |
+
|
81 |
+
# Core processing functions
|
82 |
+
@st.cache_data(show_spinner=False, ttl=3600)
|
83 |
+
@handle_errors
|
84 |
+
def summarize_pdf(_pdf_file_path, num_clusters=10):
|
85 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
86 |
+
llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
|
87 |
+
|
88 |
prompt = ChatPromptTemplate.from_template(
|
89 |
+
"""Generate a comprehensive summary with these elements:
|
90 |
+
1. Key findings and conclusions
|
91 |
+
2. Main methodologies used
|
92 |
+
3. Important data points
|
93 |
+
4. Limitations mentioned
|
94 |
+
Context: {topic}"""
|
|
|
|
|
95 |
)
|
96 |
+
|
97 |
+
loader = PyMuPDFLoader(_pdf_file_path)
|
|
|
|
|
98 |
docs = loader.load()
|
99 |
full_text = "\n".join(doc.page_content for doc in docs)
|
100 |
cleaned_full_text = clean_text(remove_references(full_text))
|
101 |
+
|
102 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
|
|
103 |
split_contents = text_splitter.split_text(cleaned_full_text)
|
104 |
+
|
105 |
embeddings = embeddings_model.embed_documents(split_contents)
|
106 |
+
kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(embeddings)
|
107 |
+
closest_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1))
|
108 |
+
for center in kmeans.cluster_centers_]
|
109 |
+
|
110 |
+
chain = prompt | llm | StrOutputParser()
|
111 |
+
return chain.invoke({"topic": ' '.join([split_contents[idx] for idx in closest_indices])})
|
112 |
|
113 |
+
@st.cache_data(show_spinner=False, ttl=3600)
|
114 |
+
@handle_errors
|
115 |
+
def qa_pdf(_pdf_file_path, query, num_clusters=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
117 |
+
llm = ChatOpenAI(model="gpt-4", api_key=openai_api_key, temperature=0.3)
|
118 |
+
|
119 |
prompt = ChatPromptTemplate.from_template(
|
120 |
+
"""Answer this question: {question}
|
121 |
+
Using only this context: {context}
|
122 |
+
Format your answer with:
|
123 |
+
- Clear section headings
|
124 |
+
- Bullet points for lists
|
125 |
+
- Bold key terms
|
126 |
+
- Citations from the text"""
|
127 |
)
|
128 |
+
|
129 |
+
loader = PyMuPDFLoader(_pdf_file_path)
|
|
|
|
|
130 |
docs = loader.load()
|
131 |
full_text = "\n".join(doc.page_content for doc in docs)
|
132 |
cleaned_full_text = clean_text(remove_references(full_text))
|
133 |
+
|
134 |
text_splitter = SpacyTextSplitter(chunk_size=500)
|
|
|
|
|
135 |
split_contents = text_splitter.split_text(cleaned_full_text)
|
136 |
+
|
|
|
137 |
query_embedding = embeddings_model.embed_query(query)
|
138 |
+
similarities = cosine_similarity([query_embedding],
|
139 |
+
embeddings_model.embed_documents(split_contents))[0]
|
140 |
+
top_indices = np.argsort(similarities)[-num_clusters:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
chain = prompt | llm | StrOutputParser()
|
143 |
+
return chain.invoke({
|
144 |
+
"question": query,
|
145 |
+
"context": ' '.join([split_contents[i] for i in top_indices])
|
146 |
+
})
|
147 |
+
|
148 |
+
@st.cache_data(show_spinner=False, ttl=3600)
|
149 |
+
@handle_errors
|
150 |
+
def process_pdf(_pdf_file_path):
|
151 |
+
doc = fitz.open(_pdf_file_path)
|
152 |
+
all_figures, all_tables = [], []
|
153 |
+
scale_factor = 300 / 50 # High-res to low-res ratio
|
154 |
+
|
155 |
+
for page in doc:
|
156 |
+
low_res = page.get_pixmap(dpi=50)
|
157 |
+
low_res_img = np.frombuffer(low_res.samples, dtype=np.uint8).reshape(low_res.height, low_res.width, 3)
|
158 |
+
|
159 |
+
results = model.predict(low_res_img)
|
160 |
+
boxes = [
|
161 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]),
|
162 |
+
int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
163 |
+
for result in results for box in result.boxes
|
164 |
+
if box.conf[0] > 0.8 and int(box.cls[0]) in {3, 4}
|
165 |
+
]
|
166 |
|
167 |
if boxes:
|
168 |
+
high_res = page.get_pixmap(dpi=300)
|
169 |
+
high_res_img = np.frombuffer(high_res.samples, dtype=np.uint8).reshape(high_res.height, high_res.width, 3)
|
170 |
+
|
171 |
+
for (x1, y1, x2, y2, cls) in boxes:
|
172 |
+
cropped = high_res_img[int(y1*scale_factor):int(y2*scale_factor),
|
173 |
+
int(x1*scale_factor):int(x2*scale_factor)]
|
174 |
+
if cls == 4:
|
175 |
+
all_figures.append(cropped)
|
176 |
+
else:
|
177 |
+
all_tables.append(cropped)
|
178 |
|
179 |
return all_figures, all_tables
|
180 |
|
181 |
def image_to_base64(img):
|
182 |
buffered = io.BytesIO()
|
183 |
+
img = Image.fromarray(img).convert("RGB")
|
184 |
+
img.thumbnail((800, 800)) # Optimize image size
|
185 |
+
img.save(buffered, format="JPEG", quality=85)
|
186 |
return base64.b64encode(buffered.getvalue()).decode()
|
187 |
|
188 |
+
# Streamlit UI
|
189 |
+
st.set_page_config(
|
190 |
+
page_title="PDF Assistant",
|
191 |
+
page_icon="📄",
|
192 |
+
layout="wide",
|
193 |
+
initial_sidebar_state="expanded"
|
194 |
+
)
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
if 'chat_history' not in st.session_state:
|
197 |
st.session_state.chat_history = []
|
198 |
+
if 'current_file' not in st.session_state:
|
199 |
+
st.session_state.current_file = None
|
200 |
|
201 |
+
st.title("📄 Smart PDF Analyzer")
|
202 |
+
st.markdown("""
|
203 |
+
<div style="border-left: 4px solid #4CAF50; padding-left: 1rem; margin: 1rem 0;">
|
204 |
+
<p style="color: #666; font-size: 0.95rem;">✨ Upload a PDF to:
|
205 |
+
<ul style="color: #666; font-size: 0.95rem;">
|
206 |
+
<li>Generate structured summaries</li>
|
207 |
+
<li>Extract visual content</li>
|
208 |
+
<li>Ask contextual questions</li>
|
209 |
+
</ul>
|
210 |
+
</p>
|
211 |
+
</div>
|
212 |
+
""", unsafe_allow_html=True)
|
213 |
|
214 |
+
uploaded_file = st.file_uploader(
|
215 |
+
"Choose PDF file",
|
216 |
+
type="pdf",
|
217 |
+
help="Max file size: 50MB",
|
218 |
+
on_change=lambda: setattr(st.session_state, 'chat_history', [])
|
219 |
+
)
|
220 |
+
|
221 |
+
if uploaded_file and uploaded_file.size > MAX_FILE_SIZE:
|
222 |
+
st.error("File size exceeds 50MB limit")
|
223 |
+
st.stop()
|
224 |
|
225 |
+
if uploaded_file:
|
226 |
+
file_path = tempfile.NamedTemporaryFile(delete=False).name
|
227 |
+
with open(file_path, "wb") as f:
|
228 |
+
f.write(uploaded_file.getbuffer())
|
229 |
+
|
230 |
chat_container = st.container()
|
|
|
231 |
with chat_container:
|
|
|
232 |
for idx, chat in enumerate(st.session_state.chat_history):
|
233 |
+
col1, col2 = st.columns([1, 4])
|
234 |
if chat.get("user"):
|
235 |
+
with col2:
|
236 |
+
message(chat["user"], is_user=True, key=f"user_{idx}")
|
237 |
if chat.get("bot"):
|
238 |
+
with col1:
|
239 |
+
message(chat["bot"], key=f"bot_{idx}", allow_html=True)
|
240 |
+
scroll_to_bottom()
|
241 |
+
|
242 |
+
with st.container():
|
243 |
+
col1, col2, col3 = st.columns([3, 2, 2])
|
244 |
+
with col1:
|
245 |
+
user_input = st.chat_input("Ask about the document...")
|
246 |
+
with col2:
|
247 |
+
if st.button("📝 Generate Summary", use_container_width=True):
|
248 |
+
with st.spinner("Analyzing document structure..."):
|
249 |
+
show_progress("Generating summary")
|
|
|
|
|
|
|
|
|
250 |
summary = summarize_pdf(file_path)
|
251 |
+
st.session_state.chat_history.append({
|
252 |
+
"user": "Summary request",
|
253 |
+
"bot": f"## Document Summary\n{summary}"
|
254 |
+
})
|
255 |
+
st.rerun()
|
256 |
+
with col3:
|
257 |
+
if st.button("🖼️ Extract Visuals", use_container_width=True):
|
258 |
+
with st.spinner("Identifying figures and tables..."):
|
259 |
+
show_progress("Extracting visuals")
|
260 |
figures, tables = process_pdf(file_path)
|
261 |
if figures:
|
262 |
+
st.session_state.chat_history.append({
|
263 |
+
"bot": f"Found {len(figures)} figures:"
|
264 |
+
})
|
265 |
+
for fig in figures:
|
266 |
+
st.session_state.chat_history.append({
|
267 |
+
"bot": f'<img src="data:image/jpeg;base64,{image_to_base64(fig)}" style="max-width: 100%;">'
|
268 |
+
})
|
269 |
if tables:
|
270 |
+
st.session_state.chat_history.append({
|
271 |
+
"bot": f"Found {len(tables)} tables:"
|
272 |
+
})
|
273 |
+
for tab in tables:
|
274 |
+
st.session_state.chat_history.append({
|
275 |
+
"bot": f'<img src="data:image/jpeg;base64,{image_to_base64(tab)}" style="max-width: 100%;">'
|
276 |
+
})
|
277 |
+
st.rerun()
|
278 |
+
|
279 |
+
if user_input:
|
280 |
+
st.session_state.chat_history.append({"user": user_input})
|
281 |
+
with st.spinner("Analyzing query..."):
|
282 |
+
show_progress("Generating answer")
|
283 |
+
answer = qa_pdf(file_path, user_input)
|
284 |
+
st.session_state.chat_history[-1]["bot"] = f"## Answer\n{answer}"
|
285 |
+
st.rerun()
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
st.markdown("""
|
288 |
+
<style>
|
289 |
+
.stChatMessage {
|
290 |
+
padding: 1.25rem;
|
291 |
+
margin: 1rem 0;
|
292 |
+
border-radius: 12px;
|
293 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
294 |
+
transition: transform 0.2s ease;
|
295 |
+
}
|
296 |
+
.stChatMessage:hover {
|
297 |
+
transform: translateY(-2px);
|
298 |
+
}
|
299 |
+
.stButton>button {
|
300 |
+
background: linear-gradient(45deg, #4CAF50, #45a049);
|
301 |
+
color: white;
|
302 |
+
border: none;
|
303 |
+
border-radius: 8px;
|
304 |
+
padding: 12px 24px;
|
305 |
+
font-size: 16px;
|
306 |
+
transition: all 0.3s ease;
|
307 |
+
}
|
308 |
+
.stButton>button:hover {
|
309 |
+
box-shadow: 0 4px 12px rgba(76,175,80,0.3);
|
310 |
+
transform: translateY(-1px);
|
311 |
+
}
|
312 |
+
[data-testid="stFileUploader"] {
|
313 |
+
border: 2px dashed #4CAF50;
|
314 |
+
border-radius: 12px;
|
315 |
+
padding: 2rem;
|
316 |
+
}
|
317 |
+
</style>
|
318 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|