Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.system("python -m spacy download en_core_web_sm")
|
3 |
import io
|
@@ -13,30 +17,21 @@ from langchain_core.output_parsers import StrOutputParser
|
|
13 |
from langchain_community.document_loaders import PyMuPDFLoader
|
14 |
from langchain_openai import OpenAIEmbeddings
|
15 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
16 |
from langchain_core.prompts import ChatPromptTemplate
|
17 |
from langchain_openai import ChatOpenAI
|
18 |
import re
|
19 |
from PIL import Image
|
|
|
20 |
|
21 |
-
|
22 |
-
# Cached resources
|
23 |
-
@st.cache_resource
|
24 |
-
def load_models():
|
25 |
-
return {
|
26 |
-
"yolo": YOLO("best.pt"),
|
27 |
-
"embeddings": OpenAIEmbeddings(model="text-embedding-3-small",api_key=openai_api_key),
|
28 |
-
"llm": ChatOpenAI(model="gpt-4-turbo", temperature=0.3,api_key=openai_api_key)
|
29 |
-
}
|
30 |
-
|
31 |
-
models = load_models()
|
32 |
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
CHUNK_SIZE = 1000
|
38 |
-
CHUNK_OVERLAP = 200
|
39 |
-
NUM_CLUSTERS = 8
|
40 |
|
41 |
# Utility functions
|
42 |
def clean_text(text):
|
@@ -44,182 +39,341 @@ def clean_text(text):
|
|
44 |
|
45 |
def remove_references(text):
|
46 |
reference_patterns = [
|
47 |
-
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b',
|
48 |
-
r'\
|
49 |
]
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
""
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
docs = loader.load()
|
57 |
full_text = "\n".join(doc.page_content for doc in docs)
|
58 |
-
|
59 |
-
|
60 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
all_figures = []
|
78 |
all_tables = []
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
for
|
81 |
-
low_res_pix = page.get_pixmap(dpi=50)
|
82 |
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
|
83 |
-
|
84 |
-
results = models["yolo"].predict(low_res_img)
|
85 |
-
boxes = [
|
86 |
-
(int(box.xyxy[0][0]), int(box.xyxy[0][1]),
|
87 |
-
int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
88 |
-
for result in results for box in result.boxes
|
89 |
-
if box.conf[0] > 0.8 and int(box.cls[0]) in {FIGURE_CLASS_INDEX, TABLE_CLASS_INDEX}
|
90 |
-
]
|
91 |
|
92 |
if boxes:
|
93 |
-
high_res_pix =
|
94 |
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
if cls == FIGURE_CLASS_INDEX:
|
99 |
-
all_figures.append(img)
|
100 |
-
else:
|
101 |
-
all_tables.append(img)
|
102 |
-
|
103 |
-
return {"figures": all_figures, "tables": all_tables}
|
104 |
-
|
105 |
-
def generate_summary(chunks, embeddings):
|
106 |
-
"""Generate summary using clustered chunks"""
|
107 |
-
kmeans = KMeans(n_clusters=NUM_CLUSTERS, init='k-means++').fit(embeddings)
|
108 |
-
cluster_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1))
|
109 |
-
for center in kmeans.cluster_centers_]
|
110 |
-
selected_chunks = [chunks[i] for i in cluster_indices]
|
111 |
-
|
112 |
-
prompt = ChatPromptTemplate.from_template(
|
113 |
-
"""Create a structured summary with key points from these context sections:
|
114 |
-
{contexts}
|
115 |
-
Format:
|
116 |
-
## Summary
|
117 |
-
[concise overview]
|
118 |
-
## Key Points
|
119 |
-
- [main point 1]
|
120 |
-
- [main point 2]
|
121 |
-
..."""
|
122 |
-
)
|
123 |
-
chain = prompt | models["llm"] | StrOutputParser()
|
124 |
-
return chain.invoke({"contexts": '\n\n'.join(selected_chunks)})
|
125 |
-
|
126 |
-
def answer_question(question, chunks, embeddings):
|
127 |
-
"""Answer question using semantic search"""
|
128 |
-
query_embedding = models["embeddings"].embed_query(question)
|
129 |
-
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
130 |
-
top_indices = np.argsort(similarities)[-5:][::-1]
|
131 |
-
context = '\n'.join([chunks[i] for i in top_indices if similarities[i] > 0.6])
|
132 |
|
133 |
-
|
134 |
-
"""Answer this question: {question}
|
135 |
-
Using only this context: {context}
|
136 |
-
- Be precise and include relevant details
|
137 |
-
- Cite sources as [Source 1], [Source 2], etc."""
|
138 |
-
)
|
139 |
-
chain = prompt | models["llm"] | StrOutputParser()
|
140 |
-
return chain.invoke({"question": question, "context": context})
|
141 |
-
|
142 |
-
# Streamlit UI
|
143 |
-
#st.set_page_config(page_title="PDF Assistant", layout="wide")
|
144 |
-
st.title("π Smart PDF Assistant")
|
145 |
-
|
146 |
-
if "chat" not in st.session_state:
|
147 |
-
st.session_state.chat = []
|
148 |
-
if "processed_data" not in st.session_state:
|
149 |
-
st.session_state.processed_data = None
|
150 |
-
|
151 |
-
# File upload section
|
152 |
-
with st.sidebar:
|
153 |
-
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
|
154 |
-
if uploaded_file:
|
155 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
156 |
-
tmp.write(uploaded_file.getbuffer())
|
157 |
-
st.session_state.processed_data = process_pdf(tmp.name)
|
158 |
-
visuals = extract_visuals(tmp.name)
|
159 |
-
|
160 |
-
# Chat interface
|
161 |
-
col1, col2 = st.columns([3, 1])
|
162 |
-
with col1:
|
163 |
-
st.subheader("Document Interaction")
|
164 |
-
|
165 |
-
for msg in st.session_state.chat:
|
166 |
-
with st.chat_message(msg["role"]):
|
167 |
-
if "image" in msg:
|
168 |
-
st.image(msg["image"], caption=msg.get("caption"))
|
169 |
-
else:
|
170 |
-
st.markdown(msg["content"])
|
171 |
-
|
172 |
-
if prompt := st.chat_input("Ask about the document..."):
|
173 |
-
st.session_state.chat.append({"role": "user", "content": prompt})
|
174 |
-
with st.spinner("Analyzing..."):
|
175 |
-
response = answer_question(
|
176 |
-
prompt,
|
177 |
-
st.session_state.processed_data["chunks"],
|
178 |
-
st.session_state.processed_data["embeddings"]
|
179 |
-
)
|
180 |
-
st.session_state.chat.append({"role": "assistant", "content": response})
|
181 |
-
st.rerun()
|
182 |
-
|
183 |
-
with col2:
|
184 |
-
st.subheader("Document Insights")
|
185 |
-
|
186 |
-
if st.button("Generate Summary"):
|
187 |
-
with st.spinner("Summarizing..."):
|
188 |
-
summary = generate_summary(
|
189 |
-
st.session_state.processed_data["chunks"],
|
190 |
-
st.session_state.processed_data["embeddings"]
|
191 |
-
)
|
192 |
-
st.session_state.chat.append({
|
193 |
-
"role": "assistant",
|
194 |
-
"content": f"## Document Summary\n{summary}"
|
195 |
-
})
|
196 |
-
st.rerun()
|
197 |
-
|
198 |
-
if visuals["figures"]:
|
199 |
-
with st.expander(f"π· Figures ({len(visuals['figures'])})"):
|
200 |
-
for idx, fig in enumerate(visuals["figures"], 1):
|
201 |
-
st.image(fig, caption=f"Figure {idx}")
|
202 |
-
|
203 |
-
if visuals["tables"]:
|
204 |
-
with st.expander(f"π Tables ({len(visuals['tables'])})"):
|
205 |
-
for idx, tbl in enumerate(visuals["tables"], 1):
|
206 |
-
st.image(tbl, caption=f"Table {idx}")
|
207 |
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
<style>
|
211 |
-
[data-testid=
|
212 |
-
|
213 |
-
border-right: 1px solid #eee;
|
214 |
}
|
215 |
-
|
216 |
-
padding:
|
217 |
-
|
218 |
-
border-radius: 10px;
|
219 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
220 |
}
|
221 |
-
[data-testid=
|
222 |
-
|
|
|
|
|
|
|
|
|
223 |
}
|
224 |
</style>
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
import os
|
6 |
os.system("python -m spacy download en_core_web_sm")
|
7 |
import io
|
|
|
17 |
from langchain_community.document_loaders import PyMuPDFLoader
|
18 |
from langchain_openai import OpenAIEmbeddings
|
19 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
20 |
+
from langchain_text_splitters import SpacyTextSplitter
|
21 |
from langchain_core.prompts import ChatPromptTemplate
|
22 |
from langchain_openai import ChatOpenAI
|
23 |
import re
|
24 |
from PIL import Image
|
25 |
+
from streamlit_chat import message
|
26 |
|
27 |
+
# Load the trained model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
model = YOLO("best.pt")
|
30 |
+
openai_api_key = os.environ.get("openai_api_key")
|
31 |
|
32 |
+
# Define the class indices for figures, tables, and text
|
33 |
+
figure_class_index = 4
|
34 |
+
table_class_index = 3
|
|
|
|
|
|
|
35 |
|
36 |
# Utility functions
|
37 |
def clean_text(text):
|
|
|
39 |
|
40 |
def remove_references(text):
|
41 |
reference_patterns = [
|
42 |
+
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b',
|
43 |
+
r'\bWorks Cited\b', r'\bReference\b', r'\breference\b'
|
44 |
]
|
45 |
+
lines = text.split('\n')
|
46 |
+
for i, line in enumerate(lines):
|
47 |
+
if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
|
48 |
+
return '\n'.join(lines[:i])
|
49 |
+
return text
|
50 |
+
|
51 |
+
def save_uploaded_file(uploaded_file):
|
52 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
53 |
+
temp_file.write(uploaded_file.getbuffer())
|
54 |
+
temp_file.close()
|
55 |
+
return temp_file.name
|
56 |
|
57 |
+
def summarize_pdf(pdf_file_path, num_clusters=10):
|
58 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
59 |
+
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3)
|
60 |
+
prompt = ChatPromptTemplate.from_template(
|
61 |
+
"""Could you please provide a concise and comprehensive summary of the given Contexts?
|
62 |
+
The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately.
|
63 |
+
Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section.
|
64 |
+
The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long.
|
65 |
+
example of summary:
|
66 |
+
## Summary:
|
67 |
+
## Key points:
|
68 |
+
Contexts: {topic}"""
|
69 |
+
)
|
70 |
+
output_parser = StrOutputParser()
|
71 |
+
chain = prompt | llm | output_parser
|
72 |
+
|
73 |
+
loader = PyMuPDFLoader(pdf_file_path)
|
74 |
docs = loader.load()
|
75 |
full_text = "\n".join(doc.page_content for doc in docs)
|
76 |
+
cleaned_full_text = clean_text(remove_references(full_text))
|
77 |
+
text_splitter = SpacyTextSplitter(chunk_size=500)
|
78 |
+
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
79 |
+
split_contents = text_splitter.split_text(cleaned_full_text)
|
80 |
+
embeddings = embeddings_model.embed_documents(split_contents)
|
81 |
+
|
82 |
+
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings)
|
83 |
+
closest_point_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1)) for center in kmeans.cluster_centers_]
|
84 |
+
extracted_contents = [split_contents[idx] for idx in closest_point_indices]
|
85 |
+
|
86 |
+
results = chain.invoke({"topic": ' '.join(extracted_contents)})
|
87 |
+
|
88 |
+
return generate_citations(results, extracted_contents)
|
89 |
+
|
90 |
+
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
|
91 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
92 |
+
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3)
|
93 |
+
prompt = ChatPromptTemplate.from_template(
|
94 |
+
"""Please provide a detailed and accurate answer to the given question based on the provided contexts.
|
95 |
+
Ensure that the answer is comprehensive and directly addresses the query.
|
96 |
+
If necessary, include relevant examples or details from the text.
|
97 |
+
Question: {question}
|
98 |
+
Contexts: {contexts}"""
|
99 |
)
|
100 |
+
output_parser = StrOutputParser()
|
101 |
+
chain = prompt | llm | output_parser
|
102 |
+
|
103 |
+
loader = PyMuPDFLoader(pdf_file_path)
|
104 |
+
docs = loader.load()
|
105 |
+
full_text = "\n".join(doc.page_content for doc in docs)
|
106 |
+
cleaned_full_text = clean_text(remove_references(full_text))
|
107 |
+
text_splitter = SpacyTextSplitter(chunk_size=500)
|
108 |
+
|
109 |
+
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
110 |
+
split_contents = text_splitter.split_text(cleaned_full_text)
|
111 |
+
embeddings = embeddings_model.embed_documents(split_contents)
|
112 |
+
|
113 |
+
query_embedding = embeddings_model.embed_query(query)
|
114 |
+
similarity_scores = cosine_similarity([query_embedding], embeddings)[0]
|
115 |
+
top_indices = np.argsort(similarity_scores)[-num_clusters:]
|
116 |
+
relevant_contents = [split_contents[i] for i in top_indices]
|
117 |
+
|
118 |
+
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})
|
119 |
+
|
120 |
+
return generate_citations(results, relevant_contents, similarity_threshold)
|
121 |
+
|
122 |
+
def generate_citations(text, contents, similarity_threshold=0.6):
|
123 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
124 |
+
text_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
|
125 |
+
text_embeddings = embeddings_model.embed_documents(text_sentences)
|
126 |
+
content_embeddings = embeddings_model.embed_documents(contents)
|
127 |
+
similarity_matrix = cosine_similarity(text_embeddings, content_embeddings)
|
128 |
+
|
129 |
+
cited_text = text
|
130 |
+
relevant_sources = []
|
131 |
+
source_mapping = {}
|
132 |
+
sentence_to_source = {}
|
133 |
+
|
134 |
+
for i, sentence in enumerate(text_sentences):
|
135 |
+
if sentence in sentence_to_source:
|
136 |
+
continue
|
137 |
+
max_similarity = max(similarity_matrix[i])
|
138 |
+
if max_similarity >= similarity_threshold:
|
139 |
+
most_similar_idx = np.argmax(similarity_matrix[i])
|
140 |
+
if most_similar_idx not in source_mapping:
|
141 |
+
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
142 |
+
relevant_sources.append((most_similar_idx, contents[most_similar_idx]))
|
143 |
+
citation_idx = source_mapping[most_similar_idx]
|
144 |
+
citation = f"([Source {citation_idx}](#source-{citation_idx}))"
|
145 |
+
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
146 |
+
sentence_to_source[sentence] = citation_idx
|
147 |
+
cited_text = cited_text.replace(sentence, cited_sentence)
|
148 |
+
|
149 |
+
sources_list = "\n\n## Sources:\n"
|
150 |
+
for idx, (original_idx, content) in enumerate(relevant_sources):
|
151 |
+
sources_list += f"""
|
152 |
+
<details style="margin: 1px 0; padding: 5px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; transition: all 0.3s ease;">
|
153 |
+
<summary style="font-weight: bold; cursor: pointer; outline: none; padding: 5px 0; transition: color 0.3s ease;">Source {idx + 1}</summary>
|
154 |
+
<pre style="white-space: pre-wrap; word-wrap: break-word; margin: 1px 0; padding: 10px; background-color: #fff; border-radius: 5px; border: 1px solid #ddd; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);">{content}</pre>
|
155 |
+
</details>
|
156 |
+
"""
|
157 |
+
|
158 |
+
# Add dummy blanks after the last source
|
159 |
+
dummy_blanks = """
|
160 |
+
<div style="margin: 20px 0;"></div>
|
161 |
+
<div style="margin: 20px 0;"></div>
|
162 |
+
<div style="margin: 20px 0;"></div>
|
163 |
+
<div style="margin: 20px 0;"></div>
|
164 |
+
<div style="margin: 20px 0;"></div>
|
165 |
+
"""
|
166 |
+
|
167 |
+
cited_text += sources_list + dummy_blanks
|
168 |
+
return cited_text
|
169 |
|
170 |
+
def infer_image_and_get_boxes(image, confidence_threshold=0.8):
|
171 |
+
results = model.predict(image)
|
172 |
+
return [
|
173 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
174 |
+
for result in results for box in result.boxes
|
175 |
+
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
|
176 |
+
]
|
177 |
+
|
178 |
+
def crop_images_from_boxes(image, boxes, scale_factor):
|
179 |
+
figures = []
|
180 |
+
tables = []
|
181 |
+
for (x1, y1, x2, y2, cls) in boxes:
|
182 |
+
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
|
183 |
+
if cls == figure_class_index:
|
184 |
+
figures.append(cropped_img)
|
185 |
+
elif cls == table_class_index:
|
186 |
+
tables.append(cropped_img)
|
187 |
+
return figures, tables
|
188 |
+
|
189 |
+
def process_pdf(pdf_file_path):
|
190 |
+
doc = fitz.open(pdf_file_path)
|
191 |
all_figures = []
|
192 |
all_tables = []
|
193 |
+
low_dpi = 50
|
194 |
+
high_dpi = 300
|
195 |
+
scale_factor = high_dpi / low_dpi
|
196 |
+
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
|
197 |
|
198 |
+
for page_num, low_res_pix in enumerate(low_res_pixmaps):
|
|
|
199 |
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
|
200 |
+
boxes = infer_image_and_get_boxes(low_res_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
if boxes:
|
203 |
+
high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi)
|
204 |
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
|
205 |
+
figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor)
|
206 |
+
all_figures.extend(figures)
|
207 |
+
all_tables.extend(tables)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
return all_figures, all_tables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
def image_to_base64(img):
|
212 |
+
buffered = io.BytesIO()
|
213 |
+
img = Image.fromarray(img)
|
214 |
+
img.save(buffered, format="PNG")
|
215 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
216 |
+
|
217 |
+
def on_btn_click():
|
218 |
+
del st.session_state.chat_history[:]
|
219 |
+
|
220 |
+
# Streamlit interface
|
221 |
+
|
222 |
+
# Custom CSS for the file uploader
|
223 |
+
uploadercss='''
|
224 |
<style>
|
225 |
+
[data-testid='stFileUploader'] {
|
226 |
+
width: max-content;
|
|
|
227 |
}
|
228 |
+
[data-testid='stFileUploader'] section {
|
229 |
+
padding: 0;
|
230 |
+
float: left;
|
|
|
|
|
231 |
}
|
232 |
+
[data-testid='stFileUploader'] section > input + div {
|
233 |
+
display: none;
|
234 |
+
}
|
235 |
+
[data-testid='stFileUploader'] section + div {
|
236 |
+
float: right;
|
237 |
+
padding-top: 0;
|
238 |
}
|
239 |
</style>
|
240 |
+
'''
|
241 |
+
|
242 |
+
st.set_page_config(page_title="PDF Reading Assistant", page_icon="π")
|
243 |
+
|
244 |
+
# Initialize chat history in session state if not already present
|
245 |
+
if 'chat_history' not in st.session_state:
|
246 |
+
st.session_state.chat_history = []
|
247 |
+
|
248 |
+
st.title("π PDF Reading Assistant")
|
249 |
+
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.")
|
250 |
+
chat_placeholder = st.empty()
|
251 |
+
|
252 |
+
# File uploader for PDF
|
253 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
254 |
+
st.markdown(uploadercss, unsafe_allow_html=True)
|
255 |
+
if uploaded_file:
|
256 |
+
file_path = save_uploaded_file(uploaded_file)
|
257 |
+
|
258 |
+
# Chat container where all messages will be displayed
|
259 |
+
chat_container = st.container()
|
260 |
+
user_input = st.chat_input("Ask a question about the pdf......", key="user_input")
|
261 |
+
with chat_container:
|
262 |
+
# Scrollable chat messages
|
263 |
+
for idx, chat in enumerate(st.session_state.chat_history):
|
264 |
+
if chat.get("user"):
|
265 |
+
message(chat["user"], is_user=True, allow_html=True, key=f"user_{idx}", avatar_style="initials", seed="user")
|
266 |
+
if chat.get("bot"):
|
267 |
+
message(chat["bot"], is_user=False, allow_html=True, key=f"bot_{idx}",seed="bot")
|
268 |
+
|
269 |
+
# Input area and buttons for user interaction
|
270 |
+
with st.form(key="chat_form", clear_on_submit=True,border=False):
|
271 |
+
|
272 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
273 |
+
with col1:
|
274 |
+
summary_button = st.form_submit_button("Generate Summary")
|
275 |
+
with col2:
|
276 |
+
extract_button = st.form_submit_button("Extract Tables and Figures")
|
277 |
+
with col3:
|
278 |
+
st.form_submit_button("Clear message", on_click=on_btn_click)
|
279 |
+
|
280 |
+
# Handle responses based on user input and button presses
|
281 |
+
if summary_button:
|
282 |
+
with st.spinner("Generating summary..."):
|
283 |
+
summary = summarize_pdf(file_path)
|
284 |
+
st.session_state.chat_history.append({"user": "Generate Summary", "bot": summary})
|
285 |
+
st.rerun()
|
286 |
+
|
287 |
+
if extract_button:
|
288 |
+
with st.spinner("Extracting tables and figures..."):
|
289 |
+
figures, tables = process_pdf(file_path)
|
290 |
+
if figures:
|
291 |
+
st.session_state.chat_history.append({"user": "Figures"})
|
292 |
+
|
293 |
+
for idx, figure in enumerate(figures):
|
294 |
+
figure_base64 = image_to_base64(figure)
|
295 |
+
result_html = f'<img src="data:image/png;base64,{figure_base64}" style="width:100%; display:block;" alt="Figure {idx+1}"/>'
|
296 |
+
st.session_state.chat_history.append({"bot": f"Figure {idx+1} {result_html}"})
|
297 |
+
if tables:
|
298 |
+
st.session_state.chat_history.append({"user": "Tables"})
|
299 |
+
for idx, table in enumerate(tables):
|
300 |
+
table_base64 = image_to_base64(table)
|
301 |
+
result_html = f'<img src="data:image/png;base64,{table_base64}" style="width:100%; display:block;" alt="Table {idx+1}"/>'
|
302 |
+
st.session_state.chat_history.append({"bot": f"Table {idx+1} {result_html}"})
|
303 |
+
st.rerun()
|
304 |
+
|
305 |
+
if user_input:
|
306 |
+
st.session_state.chat_history.append({"user": user_input, "bot": None})
|
307 |
+
with st.spinner("Processing..."):
|
308 |
+
answer = qa_pdf(file_path, user_input)
|
309 |
+
st.session_state.chat_history[-1]["bot"] = answer
|
310 |
+
st.rerun()
|
311 |
+
|
312 |
+
# Additional CSS and JavaScript to ensure the chat container is scrollable and scrolls to the bottom
|
313 |
+
st.markdown("""
|
314 |
+
<style>
|
315 |
+
#chat-container {
|
316 |
+
max-height: 500px;
|
317 |
+
overflow-y: auto;
|
318 |
+
padding: 1rem;
|
319 |
+
border: 1px solid #ddd;
|
320 |
+
border-radius: 8px;
|
321 |
+
background-color: #fefefe;
|
322 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
323 |
+
transition: background-color 0.3s ease;
|
324 |
+
}
|
325 |
+
#chat-container:hover {
|
326 |
+
background-color: #f9f9f9;
|
327 |
+
}
|
328 |
+
.stChatMessage {
|
329 |
+
padding: 0.75rem;
|
330 |
+
margin: 0.75rem 0;
|
331 |
+
border-radius: 8px;
|
332 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
333 |
+
transition: background-color 0.3s ease;
|
334 |
+
}
|
335 |
+
.stChatMessage--user {
|
336 |
+
background-color: #E3F2FD;
|
337 |
+
}
|
338 |
+
.stChatMessage--user:hover {
|
339 |
+
background-color: #BBDEFB;
|
340 |
+
}
|
341 |
+
.stChatMessage--bot {
|
342 |
+
background-color: #EDE7F6;
|
343 |
+
}
|
344 |
+
.stChatMessage--bot:hover {
|
345 |
+
background-color: #D1C4E9;
|
346 |
+
}
|
347 |
+
textarea {
|
348 |
+
width: 100%;
|
349 |
+
padding: 1rem;
|
350 |
+
border: 1px solid #ddd;
|
351 |
+
border-radius: 8px;
|
352 |
+
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
|
353 |
+
transition: border-color 0.3s ease, box-shadow 0.3s ease;
|
354 |
+
}
|
355 |
+
textarea:focus {
|
356 |
+
border-color: #4CAF50;
|
357 |
+
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
|
358 |
+
}
|
359 |
+
.stButton > button {
|
360 |
+
width: 100%;
|
361 |
+
background-color: #4CAF50;
|
362 |
+
color: white;
|
363 |
+
border: none;
|
364 |
+
border-radius: 8px;
|
365 |
+
padding: 0.75rem;
|
366 |
+
font-size: 16px;
|
367 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
368 |
+
transition: background-color 0.3s ease, box-shadow 0.3s ease;
|
369 |
+
}
|
370 |
+
.stButton > button:hover {
|
371 |
+
background-color: #45A049;
|
372 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
373 |
+
}
|
374 |
+
</style>
|
375 |
+
<script>
|
376 |
+
const chatContainer = document.getElementById('chat-container');
|
377 |
+
chatContainer.scrollTop = chatContainer.scrollHeight;
|
378 |
+
</script>
|
379 |
+
""", unsafe_allow_html=True)
|