File size: 18,029 Bytes
10e9b7d
6b81dc2
10e9b7d
eccf8e4
a37281a
e49634b
6b81dc2
391c163
e49634b
256b6ef
 
 
 
6b81dc2
 
a37281a
d59f015
e80aab9
3db6293
e80aab9
3460c7e
c33725f
dee0311
564212d
4f47377
 
 
 
 
564212d
dee0311
f71d65e
3460c7e
 
6b81dc2
f71d65e
256b6ef
4f47377
 
f71d65e
256b6ef
 
 
 
 
f71d65e
4f47377
 
 
 
 
f71d65e
256b6ef
4f47377
256b6ef
 
4f47377
256b6ef
 
 
 
 
 
 
 
 
 
4f47377
256b6ef
4f47377
256b6ef
 
 
 
4f47377
256b6ef
 
 
 
 
 
 
4f47377
256b6ef
 
4f47377
 
 
 
 
 
 
 
 
 
f71d65e
4f47377
 
f71d65e
 
 
 
4f47377
f71d65e
 
4f47377
256b6ef
 
4f47377
256b6ef
 
 
 
 
 
 
 
4f47377
256b6ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f47377
 
f71d65e
 
 
 
 
 
4f47377
 
 
 
f71d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f47377
256b6ef
f71d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256b6ef
 
 
 
 
 
 
 
 
 
 
 
 
 
215d7e5
256b6ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71d65e
256b6ef
f71d65e
256b6ef
4f47377
256b6ef
 
f71d65e
 
 
 
256b6ef
 
 
 
f71d65e
 
 
 
256b6ef
 
a37281a
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
from dotenv import load_dotenv
import gradio as gr
import requests

from typing import List, Dict, Union
import requests
import wikipediaapi
import pandas as pd
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import quote

load_dotenv()

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        })
        self.cache = {}
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = agent.answer_question({question})
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer


    def analyze_query(self, query):
        """Analyze the query using regex patterns"""
        return {
            'entities': self._extract_entities(query),
            'intent': self._determine_intent(query.lower()),
            'time_constraints': self._extract_time_constraints(query),
            'quantities': self._extract_quantities(query)
        }

    def _extract_entities(self, text):
        """Simple entity extraction using capitalization patterns"""
        # Find proper nouns (capitalized phrases)
        entities = re.findall(r'([A-Z][a-zA-Z]+(?:\s+[A-Z][a-zA-Z]+)*)', text)
        # Filter out small words and standalone letters
        return [(ent, 'UNKNOWN') for ent in entities if len(ent) > 2 and ' ' in ent]

    def _determine_intent(self, query):
        """Determine intent using keyword patterns"""
        if 'how many' in query:
            return 'count'
        elif 'when' in query or 'date' in query:
            return 'date'
        elif 'who' in query:
            return 'person'
        elif 'what is' in query or 'define' in query:
            return 'definition'
        elif 'list' in query or 'name all' in query:
            return 'list'
        return 'general'

    def _extract_time_constraints(self, text):
        """Extract year ranges from text"""
        constraints = []
        # Match patterns like "between 2000 and 2009"
        range_match = re.search(r'between (\d{4}) and (\d{4})', text)
        if range_match:
            constraints.append(('range', int(range_match.group(1)), int(range_match.group(2))))
        
        # Match patterns like "in 2005"
        year_match = re.search(r'in (\d{4})', text)
        if year_match:
            constraints.append(('point', int(year_match.group(1))))
        
        return constraints

    def _extract_quantities(self, text):
        """Extract numbers from text"""
        return [int(match) for match in re.findall(r'\b(\d+)\b', text)]

    def search_wikipedia(self, query, num_results=3):
        """Search Wikipedia's API"""
        url = "https://en.wikipedia.org/w/api.php"
        params = {
            'action': 'query',
            'list': 'search',
            'srsearch': query,
            'format': 'json',
            'srlimit': num_results
        }
        try:
            response = self.session.get(url, params=params).json()
            return [{
                'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}",
                'title': item['title'],
                'snippet': item['snippet'],
                'source': 'wikipedia'
            } for item in response['query']['search']]
        except Exception as e:
            print(f"Wikipedia search error: {e}")
            return []

    def fetch_page(self, url):
        """Fetch and parse a Wikipedia page"""
        if url in self.cache:
            return self.cache[url]
        
        try:
            response = self.session.get(url, timeout=10)
            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Clean the page content
            for element in soup(['script', 'style', 'nav', 'footer', 'table']):
                element.decompose()
            
            page_data = {
                'url': url,
                'title': soup.title.string if soup.title else '',
                'text': ' '.join(soup.stripped_strings),
                'soup': soup
            }
            
            self.cache[url] = page_data
            return page_data
        except Exception as e:
            print(f"Error fetching {url}: {e}")
            return None

    def answer_question(self, question):
        """Answer a question using Wikipedia"""
        print(f"\nQuestion: {question}")
        
        # Step 1: Analyze the question
        analysis = self.analyze_query(question)
        print(f"Analysis: {analysis}")
        
        # Step 2: Search Wikipedia
        search_results = self.search_wikipedia(question)
        if not search_results:
            return {"answer": "No Wikipedia results found", "source": None}
        
        # Step 3: Fetch and analyze pages
        answers = []
        for result in search_results:
            page = self.fetch_page(result['url'])
            if page:
                answer = self._extract_answer(page, analysis)
                if answer:
                    answers.append({
                        'answer': answer,
                        'source': result['url'],
                        'confidence': self._calculate_confidence(answer, analysis)
                    })
        
        # Step 4: Return the best answer
        if not answers:
            return {"answer": "No answers found in Wikipedia", "source": None}
        
        answers.sort(key=lambda x: x['confidence'], reverse=True)
        best_answer = answers[0]
        
        # Format the output
        result = {
            "question": question,
            "answer": best_answer['answer'],
            "source": best_answer['source'],
            "confidence": f"{best_answer['confidence']:.0%}"
        }
        
        if isinstance(best_answer['answer'], list):
            result['answer'] = "\n- " + "\n- ".join(best_answer['answer'])
        
        return result

    def _extract_answer(self, page, analysis):
        """Extract answer based on intent"""
        if analysis['intent'] == 'count':
            return self._extract_count(page['text'], analysis)
        elif analysis['intent'] == 'date':
            return self._extract_date(page['text'], analysis)
        elif analysis['intent'] == 'list':
            return self._extract_list(page['soup'], analysis)
        else:
            return self._extract_general(page['text'], analysis)

    def _extract_count(self, text, analysis):
        """Extract a count/number from text"""
        entities = [e[0] for e in analysis['entities']]
        pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b'
        matches = re.finditer(pattern, text, re.IGNORECASE)
        counts = [int(match.group(1)) for match in matches]
        return max(counts) if counts else None

    def _extract_date(self, text, analysis):
        """Extract dates from text"""
        date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b'
        dates = [match.group(0) for match in re.finditer(date_pattern, text)]
        entities = [e[0] for e in analysis['entities']]
        return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None)

    def _extract_list(self, soup, analysis):
        """Extract list items from page"""
        entities = [e[0] for e in analysis['entities']]
        items = []
        for list_tag in soup.find_all(['ul', 'ol']):
            list_items = [li.get_text().strip() for li in list_tag.find_all('li')]
            if any(e.lower() in ' '.join(list_items).lower() for e in entities):
                items.extend(list_items)
        return items if items else None

    def _extract_general(self, text, analysis):
        """Extract general information from text"""
        entities = [e[0] for e in analysis['entities']]
        sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
        relevant = [s for s in sentences if any(e.lower() in s.lower() for e in entities)]
        return ' '.join(relevant) if relevant else None

    def _calculate_confidence(self, answer, analysis):
        """Calculate confidence score for an answer"""
        confidence = 0.5  # Base confidence
        
        if analysis['intent'] == 'count' and isinstance(answer, int):
            confidence += 0.3
        elif analysis['intent'] == 'date' and re.match(r'.*\d{4}.*', str(answer)):
            confidence += 0.3
        elif analysis['intent'] == 'list' and isinstance(answer, list):
            confidence += 0.3
        
        if analysis['time_constraints'] and str(answer):
            for constraint in analysis['time_constraints']:
                if constraint[0] == 'range':
                    years = re.findall(r'\b(19|20)\d{2}\b', str(answer))
                    if any(constraint[1] <= int(y) <= constraint[2] for y in years):
                        confidence += 0.2
        
        return min(0.99, max(0.1, confidence))

# Example usage
if __name__ == "__main__":
    agent = BasicAgent()
    
    questions = [
        "How many studio albums did Taylor Swift release between 2010 and 2015?",
        "When was the first iPhone released?",
        "What is the capital of Canada?",
        "List the planets in our solar system"
    ]
    
    for question in questions:
        result = agent.answer_question(question)
        print(f"\nAnswer: {result['answer']}")
        #print(f"Source: {result['source']}")
        #print(f"Confidence: {result['confidence']}")
        #print("="*50)



def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)