Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,12 @@ from typing import List, Dict, Union
|
|
7 |
import requests
|
8 |
import wikipediaapi
|
9 |
import pandas as pd
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
@@ -15,86 +20,275 @@ load_dotenv()
|
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
-
|
19 |
-
# Custom search tool class
|
20 |
-
class CustomDuckDuckGoSearchTool:
|
21 |
-
def __call__(self, query: str, max_results: int = 5):
|
22 |
-
try:
|
23 |
-
with DDGS() as ddgs:
|
24 |
-
results = []
|
25 |
-
for r in ddgs.text(query):
|
26 |
-
results.append(r)
|
27 |
-
if len(results) >= max_results:
|
28 |
-
break
|
29 |
-
return results
|
30 |
-
except Exception as e:
|
31 |
-
return f"Search error: {str(e)}"
|
32 |
-
|
33 |
-
# Dummy placeholder for `visit_webpage` tool
|
34 |
-
class VisitWebpageTool:
|
35 |
-
def __call__(self, url: str):
|
36 |
-
return f"Pretending to visit: {url}"
|
37 |
-
|
38 |
-
# Final answer tool to format and return the final response
|
39 |
-
class FinalAnswerTool:
|
40 |
-
def __call__(self, results):
|
41 |
-
formatted_answer = "Final Answer:\n"
|
42 |
-
for result in results:
|
43 |
-
formatted_answer += f"- {str(result)}\n"
|
44 |
-
return formatted_answer
|
45 |
-
|
46 |
-
# Dummy model
|
47 |
-
class DummyModel:
|
48 |
-
def call(self, input_text):
|
49 |
-
return f"Model processing: {input_text}"
|
50 |
-
|
51 |
-
# Modified ToolCallingAgent to use FinalAnswerTool
|
52 |
-
class ToolCallingAgent:
|
53 |
-
def __init__(self, tools, model, final_answer_tool, max_steps=10):
|
54 |
-
self.tools = tools
|
55 |
-
self.model = model
|
56 |
-
self.final_answer_tool = final_answer_tool
|
57 |
-
self.max_steps = max_steps
|
58 |
-
|
59 |
-
def run(self, query):
|
60 |
-
print(f"Running agent with query: {query}")
|
61 |
-
tool_outputs = []
|
62 |
-
for tool in self.tools:
|
63 |
-
output = tool(query)
|
64 |
-
print("Tool output:", output)
|
65 |
-
tool_outputs.append(output)
|
66 |
-
# Use the final answer tool to format the collected outputs
|
67 |
-
final_result = self.final_answer_tool(tool_outputs)
|
68 |
-
print(final_result)
|
69 |
-
return final_result
|
70 |
-
|
71 |
-
# Initialize tools and model
|
72 |
-
model = DummyModel()
|
73 |
-
search_tool = CustomDuckDuckGoSearchTool()
|
74 |
-
visit_webpage = VisitWebpageTool()
|
75 |
-
final_answer = FinalAnswerTool()
|
76 |
-
|
77 |
-
# Initialize the agent
|
78 |
-
web_agent = ToolCallingAgent(
|
79 |
-
tools=[search_tool, visit_webpage],
|
80 |
-
model="google/gemma-7b",
|
81 |
-
final_answer_tool=final_answer,
|
82 |
-
max_steps=10
|
83 |
-
)
|
84 |
-
|
85 |
-
# Example usage
|
86 |
-
#web_agent.run("Latest AI tools")
|
87 |
-
|
88 |
# --- Basic Agent Definition ---
|
89 |
class BasicAgent:
|
90 |
def __init__(self):
|
91 |
print("BasicAgent initialized.")
|
92 |
def __call__(self, question: str) -> str:
|
93 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
94 |
-
fixed_answer =
|
95 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
96 |
return fixed_answer
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
100 |
"""
|
|
|
7 |
import requests
|
8 |
import wikipediaapi
|
9 |
import pandas as pd
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
import re
|
13 |
+
from urllib.parse import quote
|
14 |
+
import spacy
|
15 |
+
from googlesearch import search
|
16 |
|
17 |
load_dotenv()
|
18 |
|
|
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# --- Basic Agent Definition ---
|
24 |
class BasicAgent:
|
25 |
def __init__(self):
|
26 |
print("BasicAgent initialized.")
|
27 |
def __call__(self, question: str) -> str:
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
+
fixed_answer = WebSearchAgent.run({question})
|
30 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
31 |
return fixed_answer
|
32 |
|
33 |
+
class WebSearchAgent:
|
34 |
+
def __init__(self):
|
35 |
+
self.nlp = spacy.load("en_core_web_sm")
|
36 |
+
self.session = requests.Session()
|
37 |
+
self.session.headers.update({
|
38 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
39 |
+
})
|
40 |
+
self.cache = {}
|
41 |
+
|
42 |
+
def analyze_query(self, query):
|
43 |
+
"""Analyze the query to determine intent and extract entities"""
|
44 |
+
doc = self.nlp(query)
|
45 |
+
|
46 |
+
analysis = {
|
47 |
+
'entities': [(ent.text, ent.label_) for ent in doc.ents],
|
48 |
+
'intent': self._determine_intent(query.lower()),
|
49 |
+
'time_constraints': self._extract_time_constraints(query),
|
50 |
+
'quantities': self._extract_quantities(query)
|
51 |
+
}
|
52 |
+
return analysis
|
53 |
+
|
54 |
+
def _determine_intent(self, query):
|
55 |
+
"""Determine the intent of the query"""
|
56 |
+
if 'how many' in query:
|
57 |
+
return 'count'
|
58 |
+
elif 'when' in query:
|
59 |
+
return 'date'
|
60 |
+
elif 'who' in query:
|
61 |
+
return 'person'
|
62 |
+
elif 'what is' in query or 'define' in query:
|
63 |
+
return 'definition'
|
64 |
+
elif 'list' in query or 'name all' in query:
|
65 |
+
return 'list'
|
66 |
+
return 'general'
|
67 |
+
|
68 |
+
def _extract_time_constraints(self, text):
|
69 |
+
"""Extract time ranges from text"""
|
70 |
+
constraints = []
|
71 |
+
# Match patterns like "between 2000 and 2009"
|
72 |
+
range_match = re.search(r'between (\d{4}) and (\d{4})', text)
|
73 |
+
if range_match:
|
74 |
+
constraints.append(('range', int(range_match.group(1)), int(range_match.group(2))))
|
75 |
+
|
76 |
+
# Match patterns like "in 2005"
|
77 |
+
year_match = re.search(r'in (\d{4})', text)
|
78 |
+
if year_match:
|
79 |
+
constraints.append(('point', int(year_match.group(1))))
|
80 |
+
|
81 |
+
return constraints
|
82 |
+
|
83 |
+
def _extract_quantities(self, text):
|
84 |
+
"""Extract numerical quantities from text"""
|
85 |
+
return [int(match) for match in re.findall(r'\b(\d+)\b', text)]
|
86 |
+
|
87 |
+
def search_web(self, query, num_results=3):
|
88 |
+
"""Search the web using multiple sources"""
|
89 |
+
sources = {
|
90 |
+
'wikipedia': self._search_wikipedia,
|
91 |
+
'google': self._search_google
|
92 |
+
}
|
93 |
+
|
94 |
+
results = []
|
95 |
+
for source_name, search_func in sources.items():
|
96 |
+
try:
|
97 |
+
results.extend(search_func(query, num_results))
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error searching {source_name}: {e}")
|
100 |
+
|
101 |
+
return results[:num_results*2] # Return max of double the requested results
|
102 |
+
|
103 |
+
def _search_wikipedia(self, query, num_results):
|
104 |
+
"""Search Wikipedia API"""
|
105 |
+
url = "https://en.wikipedia.org/w/api.php"
|
106 |
+
params = {
|
107 |
+
'action': 'query',
|
108 |
+
'list': 'search',
|
109 |
+
'srsearch': query,
|
110 |
+
'format': 'json',
|
111 |
+
'srlimit': num_results
|
112 |
+
}
|
113 |
+
response = self.session.get(url, params=params).json()
|
114 |
+
return [{
|
115 |
+
'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}",
|
116 |
+
'title': item['title'],
|
117 |
+
'snippet': item['snippet'],
|
118 |
+
'source': 'wikipedia'
|
119 |
+
} for item in response['query']['search']]
|
120 |
+
|
121 |
+
def _search_google(self, query, num_results):
|
122 |
+
"""Search Google using python-googlesearch"""
|
123 |
+
return [{
|
124 |
+
'url': url,
|
125 |
+
'source': 'google'
|
126 |
+
} for url in search(query, num_results=num_results, stop=num_results)]
|
127 |
+
|
128 |
+
def fetch_page(self, url):
|
129 |
+
"""Fetch and parse a web page with caching"""
|
130 |
+
if url in self.cache:
|
131 |
+
return self.cache[url]
|
132 |
+
|
133 |
+
try:
|
134 |
+
response = self.session.get(url, timeout=10)
|
135 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
136 |
+
|
137 |
+
# Clean the page content
|
138 |
+
for element in soup(['script', 'style', 'nav', 'footer']):
|
139 |
+
element.decompose()
|
140 |
+
|
141 |
+
page_data = {
|
142 |
+
'url': url,
|
143 |
+
'title': soup.title.string if soup.title else '',
|
144 |
+
'text': ' '.join(soup.stripped_strings),
|
145 |
+
'soup': soup
|
146 |
+
}
|
147 |
+
|
148 |
+
self.cache[url] = page_data
|
149 |
+
return page_data
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Error fetching {url}: {e}")
|
152 |
+
return None
|
153 |
+
|
154 |
+
def extract_answer(self, page, analysis):
|
155 |
+
"""Extract relevant information from a page based on query analysis"""
|
156 |
+
if not page:
|
157 |
+
return None
|
158 |
+
|
159 |
+
if analysis['intent'] == 'count':
|
160 |
+
return self._extract_count(page['text'], analysis)
|
161 |
+
elif analysis['intent'] == 'date':
|
162 |
+
return self._extract_date(page['text'], analysis)
|
163 |
+
elif analysis['intent'] == 'list':
|
164 |
+
return self._extract_list(page['soup'], analysis)
|
165 |
+
else:
|
166 |
+
return self._extract_general(page['text'], analysis)
|
167 |
+
|
168 |
+
def _extract_count(self, text, analysis):
|
169 |
+
"""Extract a count/number from text"""
|
170 |
+
entities = [e[0] for e in analysis['entities']]
|
171 |
+
pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b'
|
172 |
+
matches = re.finditer(pattern, text, re.IGNORECASE)
|
173 |
+
|
174 |
+
counts = [int(match.group(1))) for match in matches]
|
175 |
+
return max(counts) if counts else None
|
176 |
+
|
177 |
+
def _extract_date(self, text, analysis):
|
178 |
+
"""Extract dates from text"""
|
179 |
+
date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b'
|
180 |
+
dates = [match.group(0) for match in re.finditer(date_pattern, text)]
|
181 |
+
|
182 |
+
entities = [e[0] for e in analysis['entities']]
|
183 |
+
return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None)
|
184 |
+
|
185 |
+
def _extract_list(self, soup, analysis):
|
186 |
+
"""Extract list items from page"""
|
187 |
+
entities = [e[0] for e in analysis['entities']]
|
188 |
+
items = []
|
189 |
+
|
190 |
+
for list_tag in soup.find_all(['ul', 'ol']):
|
191 |
+
list_items = [li.get_text().strip() for li in list_tag.find_all('li')]
|
192 |
+
if any(e.lower() in ' '.join(list_items).lower() for e in entities):
|
193 |
+
items.extend(list_items)
|
194 |
+
|
195 |
+
return items if items else None
|
196 |
+
|
197 |
+
def _extract_general(self, text, analysis):
|
198 |
+
"""Extract general information from text"""
|
199 |
+
entities = [e[0] for e in analysis['entities']]
|
200 |
+
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
|
201 |
+
|
202 |
+
relevant = [s for s in sentences if any(e.lower() in s.lower() for e in entities)]
|
203 |
+
return ' '.join(relevant) if relevant else None
|
204 |
+
|
205 |
+
def answer_question(self, question, num_sources=3):
|
206 |
+
"""Main method to answer a question"""
|
207 |
+
print(f"Processing question: {question}")
|
208 |
+
|
209 |
+
# Step 1: Analyze the question
|
210 |
+
analysis = self.analyze_query(question)
|
211 |
+
print(f"Analysis: {analysis}")
|
212 |
+
|
213 |
+
# Step 2: Search the web
|
214 |
+
search_results = self.search_web(question, num_sources)
|
215 |
+
print(f"Found {len(search_results)} potential sources")
|
216 |
+
|
217 |
+
# Step 3: Fetch and analyze pages
|
218 |
+
answers = []
|
219 |
+
for result in search_results:
|
220 |
+
page = self.fetch_page(result['url'])
|
221 |
+
if page:
|
222 |
+
answer = self.extract_answer(page, analysis)
|
223 |
+
if answer:
|
224 |
+
answers.append({
|
225 |
+
'answer': answer,
|
226 |
+
'source': result['url'],
|
227 |
+
'confidence': self._calculate_confidence(answer, analysis)
|
228 |
+
})
|
229 |
+
|
230 |
+
# Step 4: Return the best answer
|
231 |
+
if not answers:
|
232 |
+
return {"status": "No answers found"}
|
233 |
+
|
234 |
+
answers.sort(key=lambda x: x['confidence'], reverse=True)
|
235 |
+
return {
|
236 |
+
"question": question,
|
237 |
+
"best_answer": answers[0]['answer'],
|
238 |
+
"source": answers[0]['source'],
|
239 |
+
"confidence": answers[0]['confidence'],
|
240 |
+
"all_answers": answers
|
241 |
+
}
|
242 |
+
|
243 |
+
def _calculate_confidence(self, answer, analysis):
|
244 |
+
"""Calculate confidence score for an answer"""
|
245 |
+
confidence = 0.5 # Base confidence
|
246 |
+
|
247 |
+
# Type matching
|
248 |
+
if analysis['intent'] == 'count' and isinstance(answer, int):
|
249 |
+
confidence += 0.3
|
250 |
+
elif analysis['intent'] == 'date' and re.match(r'.*\d{4}.*', str(answer)):
|
251 |
+
confidence += 0.3
|
252 |
+
elif analysis['intent'] == 'list' and isinstance(answer, list):
|
253 |
+
confidence += 0.3
|
254 |
+
|
255 |
+
# Time constraints
|
256 |
+
if analysis['time_constraints'] and str(answer):
|
257 |
+
for constraint in analysis['time_constraints']:
|
258 |
+
if constraint[0] == 'range':
|
259 |
+
years = re.findall(r'\b(19|20)\d{2}\b', str(answer))
|
260 |
+
if any(constraint[1] <= int(y) <= constraint[2] for y in years):
|
261 |
+
confidence += 0.2
|
262 |
+
|
263 |
+
return min(0.99, max(0.1, confidence)) # Keep within bounds
|
264 |
+
|
265 |
+
# Example usage
|
266 |
+
if __name__ == "__main__":
|
267 |
+
agent = WebSearchAgent()
|
268 |
+
|
269 |
+
questions = [
|
270 |
+
"How many studio albums were published by Taylor Swift between 2010 and 2015?",
|
271 |
+
"When was Albert Einstein born?",
|
272 |
+
"What is the capital of Australia?",
|
273 |
+
"List the members of The Beatles"
|
274 |
+
]
|
275 |
+
|
276 |
+
for question in questions:
|
277 |
+
print("\n" + "="*50)
|
278 |
+
print(f"Question: {question}")
|
279 |
+
result = agent.answer_question(question)
|
280 |
+
|
281 |
+
print("\nBest Answer:")
|
282 |
+
if isinstance(result['best_answer'], list):
|
283 |
+
for item in result['best_answer']:
|
284 |
+
print(f"- {item}")
|
285 |
+
else:
|
286 |
+
print(result['best_answer'])
|
287 |
+
|
288 |
+
print(f"\nSource: {result['source']}")
|
289 |
+
print(f"Confidence: {result['confidence']:.0%}")
|
290 |
+
|
291 |
+
|
292 |
|
293 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
294 |
"""
|