Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
|
5 |
-
import
|
6 |
-
import requests
|
7 |
-
import json
|
8 |
from typing import List, Dict, Union
|
9 |
-
|
10 |
import wikipediaapi
|
11 |
import pandas as pd
|
12 |
-
|
13 |
-
|
14 |
|
15 |
# (Keep Constants as is)
|
16 |
# --- Constants ---
|
@@ -19,96 +18,34 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
19 |
|
20 |
# --- Basic Agent Definition ---
|
21 |
class BasicAgent:
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
self.wiki = wikipediaapi.Wikipedia('en')
|
|
|
26 |
|
27 |
print("BasicAgent initialized.")
|
28 |
|
29 |
def __call__(self, question: str) -> str:
|
30 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
31 |
-
fixed_answer = self.agent.
|
32 |
print(f"Agent returning answer: {fixed_answer}")
|
33 |
return fixed_answer
|
34 |
|
35 |
-
# Initialize Vosk if available
|
36 |
-
self.vosk_model = None
|
37 |
-
try:
|
38 |
-
from vosk import Model, KaldiRecognizer
|
39 |
-
model_path = "vosk-model-small-en-us-0.15"
|
40 |
-
if os.path.exists(model_path):
|
41 |
-
self.vosk_model = Model(model_path)
|
42 |
-
except ImportError:
|
43 |
-
pass
|
44 |
-
|
45 |
-
def transcribe_audio(self, audio_path: str) -> str:
|
46 |
-
"""Speech-to-text using Vosk or basic audio processing"""
|
47 |
-
# Convert to WAV if needed
|
48 |
-
if not audio_path.endswith('.wav'):
|
49 |
-
try:
|
50 |
-
sound = AudioSegment.from_file(audio_path)
|
51 |
-
audio_path = "temp.wav"
|
52 |
-
sound.export(audio_path, format="wav")
|
53 |
-
except:
|
54 |
-
return "Audio conversion failed"
|
55 |
-
|
56 |
-
# Try Vosk first if available
|
57 |
-
if self.vosk_model:
|
58 |
-
try:
|
59 |
-
from vosk import KaldiRecognizer
|
60 |
-
import wave
|
61 |
-
wf = wave.open(audio_path, "rb")
|
62 |
-
rec = KaldiRecognizer(self.vosk_model, wf.getframerate())
|
63 |
-
|
64 |
-
results = []
|
65 |
-
while True:
|
66 |
-
data = wf.readframes(4000)
|
67 |
-
if len(data) == 0:
|
68 |
-
break
|
69 |
-
if rec.AcceptWaveform(data):
|
70 |
-
results.append(json.loads(rec.Result()))
|
71 |
-
|
72 |
-
final = json.loads(rec.FinalResult())
|
73 |
-
if final['text']:
|
74 |
-
results.append(final)
|
75 |
-
return " ".join([r['text'] for r in results if 'text' in r])
|
76 |
-
except Exception as e:
|
77 |
-
return f"Vosk Error: {str(e)}"
|
78 |
-
|
79 |
-
# Fallback: Return audio metadata
|
80 |
-
try:
|
81 |
-
sound = AudioSegment.from_file(audio_path)
|
82 |
-
return f"Audio file: {sound.duration_seconds} seconds, {sound.channels} channels"
|
83 |
-
except:
|
84 |
-
return "Audio processing failed"
|
85 |
|
86 |
-
def transcribe_audio(self, audio_path: str) -> str:
|
87 |
-
"""Speech-to-text using Vosk or basic audio processing"""
|
88 |
-
# Convert to WAV if needed
|
89 |
-
if not audio_path.endswith('.wav'):
|
90 |
-
try:
|
91 |
-
sound = AudioSegment.from_file(audio_path)
|
92 |
-
audio_path = "temp.wav"
|
93 |
-
sound.export(audio_path, format="wav")
|
94 |
-
except:
|
95 |
-
return "Audio conversion failed"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
def call_llm(self, prompt: str, model: str = "llama3") -> str:
|
100 |
-
"""Call local Ollama LLM"""
|
101 |
-
payload = {
|
102 |
-
"model": model,
|
103 |
-
"prompt": prompt,
|
104 |
-
"stream": False
|
105 |
-
}
|
106 |
try:
|
107 |
-
response =
|
108 |
-
response.
|
109 |
-
|
110 |
-
|
111 |
-
return f"LLM Error: {str(e)}"
|
112 |
|
113 |
def web_search(self, query: str) -> List[Dict]:
|
114 |
"""Use SearxNG meta-search engine"""
|
@@ -138,12 +75,9 @@ class BasicAgent:
|
|
138 |
|
139 |
try:
|
140 |
if ext == '.pdf':
|
141 |
-
|
142 |
-
reader = PdfReader(f)
|
143 |
-
return "\n".join([page.extract_text() for page in reader.pages])
|
144 |
elif ext in ('.doc', '.docx'):
|
145 |
-
|
146 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
147 |
elif ext == '.csv':
|
148 |
return pd.read_csv(file_path).to_string()
|
149 |
elif ext in ('.xls', '.xlsx'):
|
@@ -153,20 +87,34 @@ class BasicAgent:
|
|
153 |
except Exception as e:
|
154 |
return f"Error processing document: {str(e)}"
|
155 |
|
156 |
-
def
|
157 |
-
"""
|
158 |
try:
|
159 |
-
#
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
def process_request(self, request: Union[str, Dict]) -> str:
|
172 |
"""
|
@@ -176,7 +124,6 @@ class BasicAgent:
|
|
176 |
- Complex multi-step requests
|
177 |
"""
|
178 |
if isinstance(request, dict):
|
179 |
-
# Complex request handling
|
180 |
if 'steps' in request:
|
181 |
results = []
|
182 |
for step in request['steps']:
|
@@ -184,11 +131,11 @@ class BasicAgent:
|
|
184 |
results.append(self.web_search(step['query']))
|
185 |
elif step['type'] == 'process':
|
186 |
results.append(self.process_document(step['file']))
|
187 |
-
return self.
|
188 |
return "Unsupported request format"
|
189 |
|
190 |
-
|
191 |
-
|
192 |
|
193 |
|
194 |
|
|
|
1 |
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
|
6 |
+
import google.generativeai as genai
|
|
|
|
|
7 |
from typing import List, Dict, Union
|
8 |
+
import requests
|
9 |
import wikipediaapi
|
10 |
import pandas as pd
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
|
14 |
# (Keep Constants as is)
|
15 |
# --- Constants ---
|
|
|
18 |
|
19 |
# --- Basic Agent Definition ---
|
20 |
class BasicAgent:
|
21 |
+
def __init__(self, model_name: str = "gemini-pro"):
|
22 |
+
"""
|
23 |
+
Multi-modal agent powered by Google Gemini with:
|
24 |
+
- Web search
|
25 |
+
- Wikipedia access
|
26 |
+
- Document processing
|
27 |
+
"""
|
28 |
+
self.model = genai.GenerativeModel(model_name)
|
29 |
self.wiki = wikipediaapi.Wikipedia('en')
|
30 |
+
self.searx_url = "https://searx.space/search" # Public Searx instance
|
31 |
|
32 |
print("BasicAgent initialized.")
|
33 |
|
34 |
def __call__(self, question: str) -> str:
|
35 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
36 |
+
fixed_answer = self.agent.process_request(question)
|
37 |
print(f"Agent returning answer: {fixed_answer}")
|
38 |
return fixed_answer
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def generate_response(self, prompt: str) -> str:
|
43 |
+
"""Get response from Gemini"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
try:
|
45 |
+
response = self.model.generate_content(prompt)
|
46 |
+
return response.text
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error generating response: {str(e)}"
|
|
|
49 |
|
50 |
def web_search(self, query: str) -> List[Dict]:
|
51 |
"""Use SearxNG meta-search engine"""
|
|
|
75 |
|
76 |
try:
|
77 |
if ext == '.pdf':
|
78 |
+
return self._process_pdf(file_path)
|
|
|
|
|
79 |
elif ext in ('.doc', '.docx'):
|
80 |
+
return self._process_word(file_path)
|
|
|
81 |
elif ext == '.csv':
|
82 |
return pd.read_csv(file_path).to_string()
|
83 |
elif ext in ('.xls', '.xlsx'):
|
|
|
87 |
except Exception as e:
|
88 |
return f"Error processing document: {str(e)}"
|
89 |
|
90 |
+
def _process_pdf(self, file_path: str) -> str:
|
91 |
+
"""Process PDF using Gemini's vision capability"""
|
92 |
try:
|
93 |
+
# For Gemini 1.5 or later which supports file uploads
|
94 |
+
with open(file_path, "rb") as f:
|
95 |
+
file = genai.upload_file(f)
|
96 |
+
response = self.model.generate_content(
|
97 |
+
["Extract and summarize the key points from this document:", file]
|
98 |
+
)
|
99 |
+
return response.text
|
100 |
+
except:
|
101 |
+
# Fallback for older Gemini versions
|
102 |
+
try:
|
103 |
+
import PyPDF2
|
104 |
+
with open(file_path, 'rb') as f:
|
105 |
+
reader = PyPDF2.PdfReader(f)
|
106 |
+
return "\n".join([page.extract_text() for page in reader.pages])
|
107 |
+
except ImportError:
|
108 |
+
return "PDF processing requires PyPDF2 (pip install PyPDF2)"
|
109 |
+
|
110 |
+
def _process_word(self, file_path: str) -> str:
|
111 |
+
"""Process Word documents"""
|
112 |
+
try:
|
113 |
+
from docx import Document
|
114 |
+
doc = Document(file_path)
|
115 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
116 |
+
except ImportError:
|
117 |
+
return "Word processing requires python-docx (pip install python-docx)"
|
118 |
|
119 |
def process_request(self, request: Union[str, Dict]) -> str:
|
120 |
"""
|
|
|
124 |
- Complex multi-step requests
|
125 |
"""
|
126 |
if isinstance(request, dict):
|
|
|
127 |
if 'steps' in request:
|
128 |
results = []
|
129 |
for step in request['steps']:
|
|
|
131 |
results.append(self.web_search(step['query']))
|
132 |
elif step['type'] == 'process':
|
133 |
results.append(self.process_document(step['file']))
|
134 |
+
return self.generate_response(f"Process these results: {results}")
|
135 |
return "Unsupported request format"
|
136 |
|
137 |
+
return self.generate_response(request)
|
138 |
+
|
139 |
|
140 |
|
141 |
|