Spaces:
Restarting
Restarting
Update app.py
Browse files
app.py
CHANGED
@@ -11,9 +11,6 @@ import requests
|
|
11 |
from bs4 import BeautifulSoup
|
12 |
import re
|
13 |
from urllib.parse import quote
|
14 |
-
import requests
|
15 |
-
from urllib.parse import quote
|
16 |
-
from googlesearch import search
|
17 |
|
18 |
load_dotenv()
|
19 |
|
@@ -25,6 +22,11 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
25 |
class BasicAgent:
|
26 |
def __init__(self):
|
27 |
print("BasicAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
28 |
def __call__(self, question: str) -> str:
|
29 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
30 |
fixed_answer = agent.answer_question({question})
|
@@ -32,36 +34,27 @@ class BasicAgent:
|
|
32 |
return fixed_answer
|
33 |
|
34 |
|
35 |
-
|
36 |
-
class BasicAgent:
|
37 |
-
def __init__(self):
|
38 |
-
self.session = requests.Session()
|
39 |
-
self.session.headers.update({
|
40 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
41 |
-
})
|
42 |
-
self.cache = {}
|
43 |
-
|
44 |
def analyze_query(self, query):
|
45 |
-
"""
|
46 |
-
|
47 |
'entities': self._extract_entities(query),
|
48 |
'intent': self._determine_intent(query.lower()),
|
49 |
'time_constraints': self._extract_time_constraints(query),
|
50 |
'quantities': self._extract_quantities(query)
|
51 |
}
|
52 |
-
return analysis
|
53 |
|
54 |
def _extract_entities(self, text):
|
55 |
-
"""Simple entity extraction using patterns"""
|
56 |
-
#
|
57 |
-
entities = re.findall(r'([A-Z][a-
|
58 |
-
|
|
|
59 |
|
60 |
def _determine_intent(self, query):
|
61 |
-
"""Determine intent using keyword
|
62 |
if 'how many' in query:
|
63 |
return 'count'
|
64 |
-
elif 'when' in query:
|
65 |
return 'date'
|
66 |
elif 'who' in query:
|
67 |
return 'person'
|
@@ -72,12 +65,14 @@ class BasicAgent:
|
|
72 |
return 'general'
|
73 |
|
74 |
def _extract_time_constraints(self, text):
|
75 |
-
"""Extract
|
76 |
constraints = []
|
|
|
77 |
range_match = re.search(r'between (\d{4}) and (\d{4})', text)
|
78 |
if range_match:
|
79 |
constraints.append(('range', int(range_match.group(1)), int(range_match.group(2))))
|
80 |
|
|
|
81 |
year_match = re.search(r'in (\d{4})', text)
|
82 |
if year_match:
|
83 |
constraints.append(('point', int(year_match.group(1))))
|
@@ -85,46 +80,33 @@ class BasicAgent:
|
|
85 |
return constraints
|
86 |
|
87 |
def _extract_quantities(self, text):
|
88 |
-
"""Extract
|
89 |
return [int(match) for match in re.findall(r'\b(\d+)\b', text)]
|
90 |
|
91 |
-
def
|
92 |
-
"""Search
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Google search error: {e}")
|
103 |
-
|
104 |
-
# Wikipedia search
|
105 |
try:
|
106 |
-
|
107 |
-
|
108 |
-
'action': 'query',
|
109 |
-
'list': 'search',
|
110 |
-
'srsearch': query,
|
111 |
-
'format': 'json',
|
112 |
-
'srlimit': num_results
|
113 |
-
}
|
114 |
-
response = self.session.get(wiki_url, params=params).json()
|
115 |
-
results.extend({
|
116 |
'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}",
|
117 |
'title': item['title'],
|
118 |
'snippet': item['snippet'],
|
119 |
'source': 'wikipedia'
|
120 |
-
} for item in response['query']['search']
|
121 |
except Exception as e:
|
122 |
print(f"Wikipedia search error: {e}")
|
123 |
-
|
124 |
-
return results[:num_results*2]
|
125 |
|
126 |
def fetch_page(self, url):
|
127 |
-
"""Fetch and parse a
|
128 |
if url in self.cache:
|
129 |
return self.cache[url]
|
130 |
|
@@ -133,7 +115,7 @@ class BasicAgent:
|
|
133 |
soup = BeautifulSoup(response.text, 'html.parser')
|
134 |
|
135 |
# Clean the page content
|
136 |
-
for element in soup(['script', 'style', 'nav', 'footer']):
|
137 |
element.decompose()
|
138 |
|
139 |
page_data = {
|
@@ -149,17 +131,18 @@ class BasicAgent:
|
|
149 |
print(f"Error fetching {url}: {e}")
|
150 |
return None
|
151 |
|
152 |
-
def answer_question(self, question
|
153 |
-
"""
|
154 |
print(f"\nQuestion: {question}")
|
155 |
|
156 |
# Step 1: Analyze the question
|
157 |
analysis = self.analyze_query(question)
|
158 |
print(f"Analysis: {analysis}")
|
159 |
|
160 |
-
# Step 2: Search
|
161 |
-
search_results = self.
|
162 |
-
|
|
|
163 |
|
164 |
# Step 3: Fetch and analyze pages
|
165 |
answers = []
|
@@ -176,7 +159,7 @@ class BasicAgent:
|
|
176 |
|
177 |
# Step 4: Return the best answer
|
178 |
if not answers:
|
179 |
-
return {"answer": "No answers found", "source": None}
|
180 |
|
181 |
answers.sort(key=lambda x: x['confidence'], reverse=True)
|
182 |
best_answer = answers[0]
|
@@ -210,7 +193,7 @@ class BasicAgent:
|
|
210 |
entities = [e[0] for e in analysis['entities']]
|
211 |
pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b'
|
212 |
matches = re.finditer(pattern, text, re.IGNORECASE)
|
213 |
-
counts = [int(match.group(1)) for match in matches]
|
214 |
return max(counts) if counts else None
|
215 |
|
216 |
def _extract_date(self, text, analysis):
|
@@ -259,7 +242,7 @@ class BasicAgent:
|
|
259 |
|
260 |
# Example usage
|
261 |
if __name__ == "__main__":
|
262 |
-
agent =
|
263 |
|
264 |
questions = [
|
265 |
"How many studio albums did Taylor Swift release between 2010 and 2015?",
|
|
|
11 |
from bs4 import BeautifulSoup
|
12 |
import re
|
13 |
from urllib.parse import quote
|
|
|
|
|
|
|
14 |
|
15 |
load_dotenv()
|
16 |
|
|
|
22 |
class BasicAgent:
|
23 |
def __init__(self):
|
24 |
print("BasicAgent initialized.")
|
25 |
+
self.session = requests.Session()
|
26 |
+
self.session.headers.update({
|
27 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
28 |
+
})
|
29 |
+
self.cache = {}
|
30 |
def __call__(self, question: str) -> str:
|
31 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
32 |
fixed_answer = agent.answer_question({question})
|
|
|
34 |
return fixed_answer
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def analyze_query(self, query):
|
38 |
+
"""Analyze the query using regex patterns"""
|
39 |
+
return {
|
40 |
'entities': self._extract_entities(query),
|
41 |
'intent': self._determine_intent(query.lower()),
|
42 |
'time_constraints': self._extract_time_constraints(query),
|
43 |
'quantities': self._extract_quantities(query)
|
44 |
}
|
|
|
45 |
|
46 |
def _extract_entities(self, text):
|
47 |
+
"""Simple entity extraction using capitalization patterns"""
|
48 |
+
# Find proper nouns (capitalized phrases)
|
49 |
+
entities = re.findall(r'([A-Z][a-zA-Z]+(?:\s+[A-Z][a-zA-Z]+)*)', text)
|
50 |
+
# Filter out small words and standalone letters
|
51 |
+
return [(ent, 'UNKNOWN') for ent in entities if len(ent) > 2 and ' ' in ent]
|
52 |
|
53 |
def _determine_intent(self, query):
|
54 |
+
"""Determine intent using keyword patterns"""
|
55 |
if 'how many' in query:
|
56 |
return 'count'
|
57 |
+
elif 'when' in query or 'date' in query:
|
58 |
return 'date'
|
59 |
elif 'who' in query:
|
60 |
return 'person'
|
|
|
65 |
return 'general'
|
66 |
|
67 |
def _extract_time_constraints(self, text):
|
68 |
+
"""Extract year ranges from text"""
|
69 |
constraints = []
|
70 |
+
# Match patterns like "between 2000 and 2009"
|
71 |
range_match = re.search(r'between (\d{4}) and (\d{4})', text)
|
72 |
if range_match:
|
73 |
constraints.append(('range', int(range_match.group(1)), int(range_match.group(2))))
|
74 |
|
75 |
+
# Match patterns like "in 2005"
|
76 |
year_match = re.search(r'in (\d{4})', text)
|
77 |
if year_match:
|
78 |
constraints.append(('point', int(year_match.group(1))))
|
|
|
80 |
return constraints
|
81 |
|
82 |
def _extract_quantities(self, text):
|
83 |
+
"""Extract numbers from text"""
|
84 |
return [int(match) for match in re.findall(r'\b(\d+)\b', text)]
|
85 |
|
86 |
+
def search_wikipedia(self, query, num_results=3):
|
87 |
+
"""Search Wikipedia's API"""
|
88 |
+
url = "https://en.wikipedia.org/w/api.php"
|
89 |
+
params = {
|
90 |
+
'action': 'query',
|
91 |
+
'list': 'search',
|
92 |
+
'srsearch': query,
|
93 |
+
'format': 'json',
|
94 |
+
'srlimit': num_results
|
95 |
+
}
|
|
|
|
|
|
|
|
|
96 |
try:
|
97 |
+
response = self.session.get(url, params=params).json()
|
98 |
+
return [{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}",
|
100 |
'title': item['title'],
|
101 |
'snippet': item['snippet'],
|
102 |
'source': 'wikipedia'
|
103 |
+
} for item in response['query']['search']]
|
104 |
except Exception as e:
|
105 |
print(f"Wikipedia search error: {e}")
|
106 |
+
return []
|
|
|
107 |
|
108 |
def fetch_page(self, url):
|
109 |
+
"""Fetch and parse a Wikipedia page"""
|
110 |
if url in self.cache:
|
111 |
return self.cache[url]
|
112 |
|
|
|
115 |
soup = BeautifulSoup(response.text, 'html.parser')
|
116 |
|
117 |
# Clean the page content
|
118 |
+
for element in soup(['script', 'style', 'nav', 'footer', 'table']):
|
119 |
element.decompose()
|
120 |
|
121 |
page_data = {
|
|
|
131 |
print(f"Error fetching {url}: {e}")
|
132 |
return None
|
133 |
|
134 |
+
def answer_question(self, question):
|
135 |
+
"""Answer a question using Wikipedia"""
|
136 |
print(f"\nQuestion: {question}")
|
137 |
|
138 |
# Step 1: Analyze the question
|
139 |
analysis = self.analyze_query(question)
|
140 |
print(f"Analysis: {analysis}")
|
141 |
|
142 |
+
# Step 2: Search Wikipedia
|
143 |
+
search_results = self.search_wikipedia(question)
|
144 |
+
if not search_results:
|
145 |
+
return {"answer": "No Wikipedia results found", "source": None}
|
146 |
|
147 |
# Step 3: Fetch and analyze pages
|
148 |
answers = []
|
|
|
159 |
|
160 |
# Step 4: Return the best answer
|
161 |
if not answers:
|
162 |
+
return {"answer": "No answers found in Wikipedia", "source": None}
|
163 |
|
164 |
answers.sort(key=lambda x: x['confidence'], reverse=True)
|
165 |
best_answer = answers[0]
|
|
|
193 |
entities = [e[0] for e in analysis['entities']]
|
194 |
pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b'
|
195 |
matches = re.finditer(pattern, text, re.IGNORECASE)
|
196 |
+
counts = [int(match.group(1))) for match in matches]
|
197 |
return max(counts) if counts else None
|
198 |
|
199 |
def _extract_date(self, text, analysis):
|
|
|
242 |
|
243 |
# Example usage
|
244 |
if __name__ == "__main__":
|
245 |
+
agent = BasicAgent()
|
246 |
|
247 |
questions = [
|
248 |
"How many studio albums did Taylor Swift release between 2010 and 2015?",
|