Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import speech_recognition as sr
|
5 |
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
|
6 |
from pathlib import Path
|
@@ -16,189 +17,28 @@ from langchain.agents import initialize_agent
|
|
16 |
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
|
17 |
from langchain_community.llms import HuggingFaceHub
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# (Keep Constants as is)
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
|
23 |
|
24 |
-
class SpeechToTextTool(PipelineTool):
|
25 |
-
"""
|
26 |
-
Transcribes an audio file to text using the OpenAI Whisper API.
|
27 |
-
Only local file paths are supported.
|
28 |
-
"""
|
29 |
-
default_checkpoint = "openai/whisper-1" # purely informational here
|
30 |
-
description = (
|
31 |
-
"This tool sends an audio file to OpenAI Whisper and returns the "
|
32 |
-
"transcribed text."
|
33 |
-
)
|
34 |
-
name = "transcriber"
|
35 |
-
inputs = {
|
36 |
-
"audio": {
|
37 |
-
"type": "string",
|
38 |
-
"description": "Absolute or relative path to a local audio file.",
|
39 |
-
}
|
40 |
-
}
|
41 |
-
output_type = "string"
|
42 |
-
|
43 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
44 |
-
# Public interface
|
45 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
46 |
-
def __call__(self, audio: str) -> str:
|
47 |
-
"""
|
48 |
-
Convenience wrapper so the tool can be used like a regular function:
|
49 |
-
text = SpeechToTextTool()(path_to_audio)
|
50 |
-
"""
|
51 |
-
return self._transcribe(audio)
|
52 |
-
|
53 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
54 |
-
# Internal helpers
|
55 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
56 |
-
@staticmethod
|
57 |
-
def _transcribe(audio_path: str) -> str:
|
58 |
-
# ----- validation ----------------------------------------------------
|
59 |
-
if not isinstance(audio_path, str):
|
60 |
-
raise TypeError(
|
61 |
-
"Parameter 'audio' must be a string containing the file path."
|
62 |
-
)
|
63 |
-
path = Path(audio_path).expanduser().resolve()
|
64 |
-
if not path.is_file():
|
65 |
-
raise FileNotFoundError(f"No such audio file: {path}")
|
66 |
-
|
67 |
-
# ----- API call ------------------------------------------------------
|
68 |
-
with path.open("rb") as fp:
|
69 |
-
response = openai.audio.transcriptions.create(
|
70 |
-
file=fp,
|
71 |
-
model="whisper-1", # currently the only Whisper model
|
72 |
-
response_format="text" # returns plain text instead of JSON
|
73 |
-
)
|
74 |
-
|
75 |
-
# For response_format="text", `response` is already the raw transcript
|
76 |
-
return response
|
77 |
-
|
78 |
-
def transcribe_audio(audio_file_path):
|
79 |
-
recognizer = sr.Recognizer()
|
80 |
-
with sr.AudioFile(audio_file_path) as source:
|
81 |
-
audio_data = recognizer.record(source)
|
82 |
-
try:
|
83 |
-
text = recognizer.recognize_google(audio_data)
|
84 |
-
return text
|
85 |
-
except sr.UnknownValueError:
|
86 |
-
return "Could not understand audio"
|
87 |
-
except sr.RequestError:
|
88 |
-
return "Could not request results (check internet connection)"
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
class ExcelToTextTool(Tool):
|
94 |
-
"""Render an Excel worksheet as Markdown text."""
|
95 |
-
|
96 |
-
# ------------------------------------------------------------------
|
97 |
-
# Required smolβagents metadata
|
98 |
-
# ------------------------------------------------------------------
|
99 |
-
name = "excel_to_text"
|
100 |
-
description = (
|
101 |
-
"Read an Excel file and return a Markdown table of the requested sheet. "
|
102 |
-
"Accepts either the sheet name or the zero-based index."
|
103 |
-
)
|
104 |
-
|
105 |
-
inputs = {
|
106 |
-
"excel_path": {
|
107 |
-
"type": "string",
|
108 |
-
"description": "Path to the Excel file (.xlsx / .xls).",
|
109 |
-
},
|
110 |
-
"sheet_name": {
|
111 |
-
"type": "string",
|
112 |
-
"description": (
|
113 |
-
"Worksheet name or zeroβbased index *as a string* (optional; default first sheet)."
|
114 |
-
),
|
115 |
-
"nullable": True,
|
116 |
-
},
|
117 |
-
}
|
118 |
-
|
119 |
-
output_type = "string"
|
120 |
-
|
121 |
-
# ------------------------------------------------------------------
|
122 |
-
# Core logic
|
123 |
-
# ------------------------------------------------------------------
|
124 |
-
def forward(
|
125 |
-
self,
|
126 |
-
excel_path: str,
|
127 |
-
sheet_name: Optional[str] = None,
|
128 |
-
) -> str:
|
129 |
-
"""Load *excel_path* and return the sheet as a Markdown table."""
|
130 |
-
|
131 |
-
path = pathlib.Path(excel_path).expanduser().resolve()
|
132 |
-
if not path.exists():
|
133 |
-
return f"Error: Excel file not found at {path}"
|
134 |
-
|
135 |
-
try:
|
136 |
-
# Interpret sheet identifier -----------------------------------
|
137 |
-
sheet: Union[str, int]
|
138 |
-
if sheet_name is None or sheet_name == "":
|
139 |
-
sheet = 0 # first sheet
|
140 |
-
else:
|
141 |
-
# If the user passed a numeric string (e.g. "1"), cast to int
|
142 |
-
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name
|
143 |
-
|
144 |
-
# Load worksheet ----------------------------------------------
|
145 |
-
df = pd.read_excel(path, sheet_name=sheet)
|
146 |
-
|
147 |
-
# Render to Markdown; fall back to tabulate if needed ---------
|
148 |
-
if hasattr(pd.DataFrame, "to_markdown"):
|
149 |
-
return df.to_markdown(index=False)
|
150 |
-
from tabulate import tabulate # pragma: no cover β fallback path
|
151 |
-
|
152 |
-
return tabulate(df, headers="keys", tablefmt="github", showindex=False)
|
153 |
-
|
154 |
-
except Exception as exc: # broad catch keeps the agent chatβfriendly
|
155 |
-
return f"Error reading Excel file: {exc}"
|
156 |
-
|
157 |
-
|
158 |
-
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
|
159 |
-
"""
|
160 |
-
Try GET /files/{task_id}.
|
161 |
-
β’ On HTTP 200 β save to a temp dir and return local path.
|
162 |
-
β’ On 404 β return None.
|
163 |
-
β’ On other errors β raise so caller can log / handle.
|
164 |
-
"""
|
165 |
-
url = f"{base_api_url}/files/{task_id}"
|
166 |
-
try:
|
167 |
-
resp = requests.get(url, timeout=30)
|
168 |
-
if resp.status_code == 404:
|
169 |
-
return None # no file
|
170 |
-
resp.raise_for_status() # raise on 4xx/5xx β 404
|
171 |
-
except requests.exceptions.HTTPError as e:
|
172 |
-
# propagate non-404 errors (403, 500, β¦)
|
173 |
-
raise e
|
174 |
-
|
175 |
-
# βΈ Save bytes to a named file inside the system temp dir
|
176 |
-
# Try to keep original extension from Content-Disposition if present.
|
177 |
-
cdisp = resp.headers.get("content-disposition", "")
|
178 |
-
filename = task_id # default base name
|
179 |
-
if "filename=" in cdisp:
|
180 |
-
m = re.search(r'filename="([^"]+)"', cdisp)
|
181 |
-
if m:
|
182 |
-
filename = m.group(1) # keep provided name
|
183 |
-
|
184 |
-
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
|
185 |
-
tmp_dir.mkdir(exist_ok=True)
|
186 |
-
file_path = tmp_dir / filename
|
187 |
-
with open(file_path, "wb") as f:
|
188 |
-
f.write(resp.content)
|
189 |
-
return str(file_path)
|
190 |
-
|
191 |
# --- Basic Agent Definition ---
|
192 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
193 |
-
|
194 |
class BasicAgent:
|
195 |
def __init__(self):
|
196 |
-
# Initialize LLM (requires HuggingFace API token)
|
197 |
-
llm = HuggingFaceHub(
|
198 |
-
repo_id="meta-llama/Meta-Llama-3-8B-Instruct" #,
|
199 |
-
# huggingfacehub_api_token="your_token"
|
200 |
-
)
|
201 |
-
|
202 |
print("BasicAgent initialized.")
|
203 |
|
204 |
def __call__(self, question: str) -> str:
|
@@ -207,23 +47,162 @@ class BasicAgent:
|
|
207 |
print(f"Agent returning answer: {fixed_answer}")
|
208 |
return fixed_answer
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
# Initialize tools
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
# Would need custom implementations for other tools
|
216 |
-
]
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
|
225 |
-
def
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
229 |
"""
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
+
|
5 |
import speech_recognition as sr
|
6 |
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
|
7 |
from pathlib import Path
|
|
|
17 |
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
|
18 |
from langchain_community.llms import HuggingFaceHub
|
19 |
|
20 |
+
from typing import Union
|
21 |
+
import os
|
22 |
+
from langchain.agents import AgentExecutor, Tool, initialize_agent
|
23 |
+
from langchain_community.llms import Ollama
|
24 |
+
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun
|
25 |
+
from langchain_community.document_loaders import (
|
26 |
+
CSVLoader,
|
27 |
+
PyPDFLoader,
|
28 |
+
UnstructuredWordDocumentLoader
|
29 |
+
)
|
30 |
+
from langchain_community.utilities import TextRequestsWrapper
|
31 |
+
import speech_recognition as sr
|
32 |
+
from pydub import AudioSegment # For audio format conversion
|
33 |
+
|
34 |
# (Keep Constants as is)
|
35 |
# --- Constants ---
|
36 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# --- Basic Agent Definition ---
|
|
|
|
|
40 |
class BasicAgent:
|
41 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
print("BasicAgent initialized.")
|
43 |
|
44 |
def __call__(self, question: str) -> str:
|
|
|
47 |
print(f"Agent returning answer: {fixed_answer}")
|
48 |
return fixed_answer
|
49 |
|
50 |
+
|
51 |
+
def __init__(self, model_name: str = "llama3"):
|
52 |
+
"""
|
53 |
+
Open-source multi-modal agent with:
|
54 |
+
- Web search
|
55 |
+
- Document processing
|
56 |
+
- Speech-to-text
|
57 |
+
- URL content fetching
|
58 |
+
"""
|
59 |
+
# Initialize LLM (local via Ollama)
|
60 |
+
self.llm = Ollama(model=model_name, temperature=0.7)
|
61 |
|
62 |
# Initialize tools
|
63 |
+
self.search_tool = DuckDuckGoSearchRun()
|
64 |
+
self.wikipedia_tool = WikipediaQueryRun()
|
65 |
+
self.requests_tool = TextRequestsWrapper()
|
|
|
|
|
66 |
|
67 |
+
# Speech recognition
|
68 |
+
self.recognizer = sr.Recognizer()
|
69 |
+
|
70 |
+
# Initialize agent
|
71 |
+
self.tools = self._initialize_tools()
|
72 |
+
self.agent = self._create_agent()
|
73 |
+
|
74 |
+
def _initialize_tools(self) -> list[Tool]:
|
75 |
+
"""Initialize all available tools"""
|
76 |
+
return [
|
77 |
+
Tool(
|
78 |
+
name="Web Search",
|
79 |
+
func=self.search_tool.run,
|
80 |
+
description="For current events/unknown topics"
|
81 |
+
),
|
82 |
+
Tool(
|
83 |
+
name="Wikipedia",
|
84 |
+
func=self.wikipedia_tool.run,
|
85 |
+
description="For factual information"
|
86 |
+
),
|
87 |
+
Tool(
|
88 |
+
name="Document Loader",
|
89 |
+
func=self.process_document,
|
90 |
+
description="Processes PDF, Word, CSV files"
|
91 |
+
),
|
92 |
+
Tool(
|
93 |
+
name="Speech Transcription",
|
94 |
+
func=self.transcribe_audio,
|
95 |
+
description="Converts speech from audio files to text"
|
96 |
+
),
|
97 |
+
Tool(
|
98 |
+
name="Website Content",
|
99 |
+
func=self.requests_tool.get,
|
100 |
+
description="Fetches content from URLs"
|
101 |
+
)
|
102 |
+
]
|
103 |
+
|
104 |
+
def _create_agent(self) -> AgentExecutor:
|
105 |
+
"""Create the agent executor"""
|
106 |
+
return initialize_agent(
|
107 |
+
tools=self.tools,
|
108 |
+
llm=self.llm,
|
109 |
+
agent="structured-chat-react",
|
110 |
+
verbose=True,
|
111 |
+
handle_parsing_errors=True
|
112 |
)
|
113 |
|
114 |
+
def process_document(self, file_path: str) -> str:
|
115 |
+
"""Handle different document types"""
|
116 |
+
if not os.path.exists(file_path):
|
117 |
+
return "File not found"
|
118 |
+
|
119 |
+
ext = os.path.splitext(file_path)[1].lower()
|
120 |
+
|
121 |
+
try:
|
122 |
+
if ext == '.pdf':
|
123 |
+
loader = PyPDFLoader(file_path)
|
124 |
+
elif ext in ('.doc', '.docx'):
|
125 |
+
loader = UnstructuredWordDocumentLoader(file_path)
|
126 |
+
elif ext == '.csv':
|
127 |
+
loader = CSVLoader(file_path)
|
128 |
+
else:
|
129 |
+
return "Unsupported file format"
|
130 |
+
|
131 |
+
docs = loader.load()
|
132 |
+
return "\n".join([doc.page_content for doc in docs])
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
return f"Error processing document: {str(e)}"
|
136 |
+
|
137 |
+
def _convert_audio_format(self, audio_path: str) -> str:
|
138 |
+
"""Convert audio to WAV format if needed"""
|
139 |
+
if audio_path.endswith('.wav'):
|
140 |
+
return audio_path
|
141 |
+
|
142 |
+
try:
|
143 |
+
sound = AudioSegment.from_file(audio_path)
|
144 |
+
wav_path = os.path.splitext(audio_path)[0] + ".wav"
|
145 |
+
sound.export(wav_path, format="wav")
|
146 |
+
return wav_path
|
147 |
+
except:
|
148 |
+
return audio_path # Fallback to original if conversion fails
|
149 |
+
|
150 |
+
def transcribe_audio(self, audio_path: str) -> str:
|
151 |
+
"""Convert speech to text using purely open-source tools"""
|
152 |
+
audio_path = self._convert_audio_format(audio_path)
|
153 |
+
|
154 |
+
try:
|
155 |
+
with sr.AudioFile(audio_path) as source:
|
156 |
+
audio = self.recognizer.record(source)
|
157 |
+
return self.recognizer.recognize_vosk(audio) # Offline recognition
|
158 |
+
except sr.UnknownValueError:
|
159 |
+
try:
|
160 |
+
# Fallback to Sphinx if Vosk fails
|
161 |
+
return self.recognizer.recognize_sphinx(audio)
|
162 |
+
except Exception as e:
|
163 |
+
return f"Transcription failed: {str(e)}"
|
164 |
+
|
165 |
+
def run(self, input_data: Union[str, dict]) -> str:
|
166 |
+
"""
|
167 |
+
Handle different input types:
|
168 |
+
- Text queries
|
169 |
+
- File paths
|
170 |
+
- Structured requests
|
171 |
+
"""
|
172 |
+
if isinstance(input_data, dict):
|
173 |
+
if 'query' in input_data:
|
174 |
+
return self.agent.run(input_data['query'])
|
175 |
+
elif 'file' in input_data:
|
176 |
+
content = self.process_document(input_data['file'])
|
177 |
+
return self.agent.run(f"Process this: {content}")
|
178 |
+
elif isinstance(input_data, str):
|
179 |
+
if input_data.endswith(('.pdf', '.docx', '.csv')):
|
180 |
+
content = self.process_document(input_data)
|
181 |
+
return self.agent.run(f"Process this document: {content}")
|
182 |
+
elif input_data.endswith(('.wav', '.mp3', '.ogg')):
|
183 |
+
content = self.transcribe_audio(input_data)
|
184 |
+
return self.agent.run(f"Process this transcript: {content}")
|
185 |
+
else:
|
186 |
+
return self.agent.run(input_data)
|
187 |
+
return "Unsupported input type"
|
188 |
+
|
189 |
+
# Usage Example
|
190 |
+
if __name__ == "__main__":
|
191 |
+
agent = FullyOpenSourceAgent(model_name="mistral") # Try "llama3", "gemma", etc.
|
192 |
+
|
193 |
+
# Example 1: Web search
|
194 |
+
print(agent.run("Latest breakthroughs in renewable energy"))
|
195 |
+
|
196 |
+
# Example 2: Process document
|
197 |
+
print(agent.run({"file": "research.pdf"}))
|
198 |
+
|
199 |
+
# Example 3: Complex workflow
|
200 |
+
print(agent.run({
|
201 |
+
"query": "Summarize the key points from this meeting recording",
|
202 |
+
"file": "meeting.wav"
|
203 |
+
}))
|
204 |
+
|
205 |
+
|
206 |
|
207 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
208 |
"""
|