Spaces:
Sleeping
Sleeping
File size: 24,846 Bytes
3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 3875c87 38fe9c5 52807fc 709f6b7 3875c87 709f6b7 6ccf2cb 709f6b7 52807fc 709f6b7 52807fc 3875c87 52807fc 83e3bd0 3875c87 52807fc 3875c87 52807fc 709f6b7 52807fc 83e3bd0 3875c87 52807fc 3875c87 52807fc 709f6b7 3875c87 52807fc 709f6b7 3875c87 6956d92 3875c87 6956d92 3875c87 6956d92 3794b5e 52807fc 3794b5e 52807fc 6956d92 52807fc 3794b5e 6956d92 3794b5e 6956d92 52807fc 6956d92 3875c87 6956d92 709f6b7 6956d92 3875c87 6956d92 709f6b7 6956d92 52807fc 6956d92 3875c87 6956d92 3875c87 6956d92 3875c87 6956d92 709f6b7 6956d92 52807fc 709f6b7 6956d92 3875c87 52807fc 709f6b7 3875c87 709f6b7 3875c87 52807fc 3875c87 52807fc 3875c87 52807fc 3875c87 b38d37f 3875c87 7c797e6 b38d37f 7c797e6 b38d37f 52807fc 7c797e6 3875c87 7c797e6 52807fc 38fe9c5 b38d37f 52807fc 3875c87 83e3bd0 3875c87 52807fc 83e3bd0 b38d37f 83e3bd0 52807fc 3875c87 52807fc 3875c87 52807fc 3875c87 52807fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# # Define global variables
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# # Streamlit app configuration
# st.set_page_config(page_title="Audit Assistant", layout="wide")
# st.title("Audit Assistant")
# # Load the model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # Helper Functions
# def extract_text_from_pdf(file_path):
# """Extract text from a PDF using PyMuPDF (fitz)."""
# try:
# doc = fitz.open(file_path)
# text = ""
# for page_num in range(doc.page_count):
# page = doc.load_page(page_num)
# text += page.get_text("text")
# return text
# except Exception as e:
# logging.error(f"Error reading PDF {file_path}: {e}")
# return None
# def data_ingestion():
# """Function to load PDFs and create embeddings with improved error handling and efficiency."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PDFMinerLoader(file_path)
# loaded_docs = loader.load()
# if not loaded_docs:
# logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except ValueError as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# # Proceed to split and embed the documents
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# """Set up the language model pipeline."""
# logging.info("Setting up LLM pipeline")
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# local_llm = HuggingFacePipeline(pipeline=pipe)
# logging.info("LLM pipeline setup complete")
# return local_llm
# def qa_llm():
# """Set up the question-answering chain."""
# logging.info("Setting up QA model")
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever() # Set up the retriever for the vector store
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# logging.info("QA model setup complete")
# return qa
# def process_answer(user_question):
# """Generate an answer to the user’s question."""
# try:
# logging.info("Processing user question")
# qa = qa_llm()
# tailored_prompt = f"""
# You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
# Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
# and accounting standards based on the provided PDF documents.
# Please respond effectively and refer to the relevant standards and policies whenever applicable.
# User question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# if "not provide" in answer or "no information" in answer:
# return "The document does not provide sufficient information to answer your question."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Error processing the question."
# # Streamlit UI Setup
# st.sidebar.header("File Upload")
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
# if uploaded_files:
# # Save uploaded files
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for uploaded_file in uploaded_files:
# file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
# with open(file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# # Run data ingestion when files are uploaded
# data_ingestion()
# # Display UI for Q&A
# st.header("Ask a Question")
# user_question = st.text_input("Enter your question here:")
# if user_question:
# answer = process_answer(user_question)
# st.write(answer)
# else:
# st.sidebar.info("Upload PDF files to get started!")
# # -------this is the second code!!!
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# # from langchain_community.document_loaders import PDFMinerLoader
# from langchain_community.document_loaders import PyMuPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# logging.basicConfig(level=logging.INFO)
# # for main Page Setup
# st.set_page_config(page_title="RAG Chatbot", layout="wide")
# st.title("📚 RAG-based PDF Assistant")
# # Load my model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # ------------------------------- #
# def extract_outline_from_pdf(path):
# try:
# doc = fitz.open(path)
# outline_text = ""
# for page_num in range(len(doc)):
# page = doc[page_num]
# outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
# return outline_text if outline_text else "No preview available."
# except Exception as e:
# return f"Could not preview PDF: {e}"
# def data_ingestion():
# """Load PDFs, validate content, and generate embeddings."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PyMuPDFLoader(file_path)
# loaded_docs = loader.load()
# # Check if any content exists in loaded_docs
# if not loaded_docs or len(loaded_docs[0].page_content.strip()) == 0:
# logging.warning(f"No readable text found in {file_path}. Might be a scanned image or unsupported format.")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except Exception as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# return HuggingFacePipeline(pipeline=pipe)
# def qa_llm():
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever()
# return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# def process_answer(user_question):
# """Generate an answer to the user’s question using a general RAG-based prompt."""
# try:
# logging.info("Processing user question")
# qa = qa_llm() # Set up the retrieval-based QA chain
# # Generalized, flexible prompt for any kind of PDF (resume, legal doc, etc.)
# tailored_prompt = f"""
# You are an intelligent and helpful AI assistant that provides answers strictly based on the provided document contents.
# If the question cannot be answered using the documents, say: 'The document does not contain this information.'
# Otherwise, respond clearly and concisely with relevant and factual details from the PDF.
# Question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# # Add a safeguard for hallucinated answers
# if "not provide" in answer.lower() or "no information" in answer.lower() or len(answer.strip()) < 10:
# return "The document does not contain this information."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Sorry, something went wrong while processing your question."
# # ---------------- STREAMLIT UI ---------------- #
# # Sidebar Upload
# st.sidebar.header("📤 Upload PDF Files")
# uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
# if uploaded_files:
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for file in uploaded_files:
# path = os.path.join(uploaded_files_dir, file.name)
# with open(path, "wb") as f:
# f.write(file.getbuffer())
# st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
# # Display previews
# st.subheader("📄 Uploaded PDF Previews")
# for file in uploaded_files:
# with st.expander(file.name):
# st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
# # Trigger ingestion
# with st.spinner("🔄 Ingesting uploaded documents..."):
# data_ingestion()
# # Ask a question
# st.header("❓ Ask a Question from Your Documents")
# user_input = st.text_input("Enter your question:")
# if user_input:
# with st.spinner("💬 Generating response..."):
# response = process_answer(user_input)
# st.success(response)
# else:
# st.sidebar.info("Upload PDFs to begin your QA journey.")
import os
import logging
import math
import streamlit as st
import fitz # PyMuPDF
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Set up logging
logging.basicConfig(level=logging.INFO)
# Define global variables
device = 'cpu'
persist_directory = "db"
uploaded_files_dir = "uploaded_files"
# Streamlit app configuration
st.set_page_config(page_title="RAG-based Chatbot", layout="wide")
st.title("RAG-based Chatbot")
# Load the model
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Helper Functions
def extract_text_from_pdf(file_path):
"""Extract full text from a PDF using PyMuPDF (fitz)."""
try:
doc = fitz.open(file_path)
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text("text")
return text
except Exception as e:
logging.error(f"Error reading PDF {file_path}: {e}")
return None
def data_ingestion():
"""Function to load PDFs and create embeddings with improved error handling and efficiency."""
try:
logging.info("Starting data ingestion")
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
documents = []
for filename in os.listdir(uploaded_files_dir):
if filename.endswith(".pdf"):
file_path = os.path.join(uploaded_files_dir, filename)
logging.info(f"Processing file: {file_path}")
try:
loader = PDFMinerLoader(file_path)
loaded_docs = loader.load()
if not loaded_docs:
logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
continue
for doc in loaded_docs:
if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
documents.append(doc)
else:
logging.warning(f"Skipping invalid document structure in {file_path}")
except ValueError as e:
logging.error(f"Skipping {file_path}: {str(e)}")
continue
if not documents:
logging.error("No valid documents found to process.")
return
logging.info(f"Total valid documents: {len(documents)}")
# Proceed with splitting and embedding documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
logging.info(f"Total text chunks created: {len(texts)}")
if not texts:
logging.error("No valid text chunks to create embeddings.")
return
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Proceed to split and embed the documents
MAX_BATCH_SIZE = 5461
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
db = None
for i in range(total_batches):
batch_start = i * MAX_BATCH_SIZE
batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
text_batch = texts[batch_start:batch_end]
logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
if db is None:
db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
else:
db.add_documents(text_batch)
db.persist()
logging.info("Data ingestion completed successfully")
except Exception as e:
logging.error(f"Error during data ingestion: {str(e)}")
raise
def llm_pipeline():
"""Set up the language model pipeline."""
logging.info("Setting up LLM pipeline")
pipe = pipeline(
'text2text-generation',
model=base_model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
device=device
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("LLM pipeline setup complete")
return local_llm
def qa_llm():
"""Set up the question-answering chain."""
logging.info("Setting up QA model")
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriever = db.as_retriever() # Set up the retriever for the vector store
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
logging.info("QA model setup complete")
return qa
def process_answer(user_question, full_text):
"""Generate an answer to the user’s question or summarize the PDF content."""
try:
logging.info("Processing user question")
# Check if the question is related to summarization
if "summarize" in user_question.lower() or "summary" in user_question.lower():
tailored_prompt = f"""
Please provide a summary of the following content extracted from the PDF:
{full_text}
"""
else:
# Regular Q&A with context from the uploaded PDF
tailored_prompt = f"""
You are an expert chatbot designed to assist with any topic, providing accurate and detailed answers based on the provided PDFs.
Your goal is to deliver the most relevant information and resources based on the question asked.
User question: {user_question}
Content from the uploaded document: {full_text}
"""
# Pass the tailored prompt to the question-answering chain (QA) system
qa = qa_llm() # Call your QA LLM setup
generated_text = qa({"query": tailored_prompt})
answer = generated_text['result']
# If the answer contains certain fallback phrases, return a default message
if "not provide" in answer or "no information" in answer:
return "The document does not provide sufficient information to answer your question."
logging.info("Answer generated successfully")
return answer
except Exception as e:
logging.error(f"Error during answer generation: {str(e)}")
return "Error processing the question."
# Streamlit UI Setup
st.sidebar.header("File Upload")
uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
if uploaded_files:
# Save uploaded files and extract their text
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
for uploaded_file in uploaded_files:
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# Show the uploaded files' names
st.subheader("Uploaded PDF(s):")
for uploaded_file in uploaded_files:
st.write(uploaded_file.name)
# Display PDF preview link if possible
with open(file_path, "rb") as f:
file_bytes = f.read()
st.download_button(
label="Download PDF",
data=file_bytes,
file_name=uploaded_file.name,
mime="application/pdf",
)
# Extract and display the full text from the PDF
st.subheader("Full Text from the PDF:")
full_text = extract_text_from_pdf(file_path)
if full_text:
st.text_area("PDF Text", full_text, height=300)
else:
st.warning("Failed to extract text from this PDF.")
# # Generate summary option
# if st.button("Generate Summary of Document"):
# st.write("Summary: [Provide the generated summary here]")
# Run data ingestion when files are uploaded
data_ingestion()
# Display UI for Q&A
st.header("Ask a Question")
user_question = st.text_input("Enter your question here:")
if user_question:
answer = process_answer(user_question)
st.write(answer)
else:
st.sidebar.info("Upload PDF files to get started!")
|