Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
# import os
|
2 |
# import logging
|
|
|
3 |
# import streamlit as st
|
4 |
-
# import
|
5 |
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
# from langchain_community.document_loaders import PDFMinerLoader
|
7 |
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -13,94 +14,201 @@
|
|
13 |
# # Set up logging
|
14 |
# logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
-
# #
|
17 |
-
#
|
18 |
-
#
|
19 |
-
#
|
20 |
|
21 |
-
#
|
22 |
-
#
|
23 |
-
#
|
24 |
-
# device = 0 if torch.cuda.is_available() else -1
|
25 |
|
26 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# try:
|
28 |
-
#
|
29 |
-
|
30 |
-
#
|
31 |
-
#
|
32 |
-
|
33 |
-
#
|
34 |
-
#
|
35 |
-
#
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# return
|
41 |
|
42 |
-
#
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# db.persist()
|
48 |
-
#
|
|
|
49 |
# except Exception as e:
|
50 |
-
# logging.error(f"
|
51 |
-
#
|
52 |
-
|
53 |
-
# def get_qa_chain():
|
54 |
-
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
55 |
-
# vectordb = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings)
|
56 |
-
# retriever = vectordb.as_retriever()
|
57 |
|
|
|
|
|
|
|
58 |
# pipe = pipeline(
|
59 |
-
#
|
60 |
# model=base_model,
|
61 |
# tokenizer=tokenizer,
|
62 |
# max_length=256,
|
63 |
# do_sample=True,
|
64 |
# temperature=0.3,
|
65 |
# top_p=0.95,
|
66 |
-
# device=device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# )
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
#
|
72 |
-
|
73 |
-
#
|
74 |
-
#
|
75 |
-
#
|
76 |
-
|
77 |
-
#
|
78 |
-
#
|
79 |
-
#
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
#
|
84 |
-
# f.write(uploaded_file.getbuffer())
|
85 |
-
# st.success(f"{uploaded_file.name} uploaded.")
|
86 |
-
# ingest_data()
|
87 |
-
|
88 |
-
# query = st.text_input("β Ask an audit-related question:")
|
89 |
-
# if st.button("π Get Answer") and query:
|
90 |
-
# st.info("Generating answer...")
|
91 |
-
# qa_chain = get_qa_chain()
|
92 |
-
# prompt = f"""
|
93 |
-
# You are an AI assistant helping Chartered Accountants (CAs) in auditing.
|
94 |
-
# Provide accurate, concise answers based on the uploaded documents.
|
95 |
-
# Question: {query}
|
96 |
# """
|
97 |
-
# result = qa_chain({"query": prompt})
|
98 |
-
# st.success("β
Answer:")
|
99 |
-
# st.write(result["result"])
|
100 |
|
101 |
-
#
|
102 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
104 |
import os
|
105 |
import logging
|
106 |
import math
|
@@ -114,115 +222,79 @@ from langchain_community.vectorstores import Chroma
|
|
114 |
from langchain_community.llms import HuggingFacePipeline
|
115 |
from langchain.chains import RetrievalQA
|
116 |
|
117 |
-
#
|
118 |
-
logging.basicConfig(level=logging.INFO)
|
119 |
-
|
120 |
-
# Define global variables
|
121 |
device = 'cpu'
|
122 |
persist_directory = "db"
|
123 |
uploaded_files_dir = "uploaded_files"
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
-
# Load
|
130 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
131 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
132 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
133 |
|
134 |
-
#
|
135 |
|
136 |
-
def
|
137 |
-
"""Extract text from a PDF using PyMuPDF (fitz)."""
|
138 |
try:
|
139 |
-
doc = fitz.open(
|
140 |
-
|
141 |
-
for page_num in range(doc
|
142 |
-
page = doc
|
143 |
-
|
144 |
-
return
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
return None
|
148 |
|
149 |
def data_ingestion():
|
150 |
-
"""Function to load PDFs and create embeddings with improved error handling and efficiency."""
|
151 |
try:
|
152 |
logging.info("Starting data ingestion")
|
153 |
-
|
154 |
if not os.path.exists(uploaded_files_dir):
|
155 |
os.makedirs(uploaded_files_dir)
|
156 |
|
157 |
-
documents = []
|
158 |
for filename in os.listdir(uploaded_files_dir):
|
159 |
if filename.endswith(".pdf"):
|
160 |
-
|
161 |
-
logging.info(f"
|
162 |
-
|
163 |
try:
|
164 |
-
loader = PDFMinerLoader(
|
165 |
loaded_docs = loader.load()
|
166 |
-
if not loaded_docs:
|
167 |
-
logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
|
168 |
-
continue
|
169 |
-
|
170 |
for doc in loaded_docs:
|
171 |
-
if hasattr(doc, 'page_content')
|
172 |
documents.append(doc)
|
173 |
-
|
174 |
-
|
175 |
-
except ValueError as e:
|
176 |
-
logging.error(f"Skipping {file_path}: {str(e)}")
|
177 |
-
continue
|
178 |
|
179 |
if not documents:
|
180 |
-
|
181 |
return
|
182 |
|
183 |
-
logging.info(f"Total valid documents: {len(documents)}")
|
184 |
-
|
185 |
-
# Proceed with splitting and embedding documents
|
186 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
187 |
texts = text_splitter.split_documents(documents)
|
188 |
|
189 |
-
logging.info(f"Total text chunks created: {len(texts)}")
|
190 |
-
|
191 |
-
if not texts:
|
192 |
-
logging.error("No valid text chunks to create embeddings.")
|
193 |
-
return
|
194 |
-
|
195 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
196 |
-
|
197 |
-
# Proceed to split and embed the documents
|
198 |
-
MAX_BATCH_SIZE = 5461
|
199 |
-
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
200 |
-
|
201 |
-
logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
|
202 |
-
|
203 |
db = None
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
text_batch = texts[batch_start:batch_end]
|
208 |
-
|
209 |
-
logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
|
210 |
-
|
211 |
if db is None:
|
212 |
-
db = Chroma.from_documents(
|
213 |
else:
|
214 |
-
db.add_documents(
|
215 |
-
|
216 |
db.persist()
|
217 |
-
logging.info("Data ingestion completed
|
218 |
-
|
219 |
except Exception as e:
|
220 |
-
logging.error(f"
|
221 |
-
|
222 |
|
223 |
def llm_pipeline():
|
224 |
-
"""Set up the language model pipeline."""
|
225 |
-
logging.info("Setting up LLM pipeline")
|
226 |
pipe = pipeline(
|
227 |
'text2text-generation',
|
228 |
model=base_model,
|
@@ -233,81 +305,65 @@ def llm_pipeline():
|
|
233 |
top_p=0.95,
|
234 |
device=device
|
235 |
)
|
236 |
-
|
237 |
-
logging.info("LLM pipeline setup complete")
|
238 |
-
return local_llm
|
239 |
|
240 |
def qa_llm():
|
241 |
-
"""Set up the question-answering chain."""
|
242 |
-
logging.info("Setting up QA model")
|
243 |
llm = llm_pipeline()
|
244 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
245 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
246 |
-
retriever = db.as_retriever()
|
247 |
-
|
248 |
-
llm=llm,
|
249 |
-
chain_type="stuff",
|
250 |
-
retriever=retriever,
|
251 |
-
return_source_documents=True
|
252 |
-
)
|
253 |
-
logging.info("QA model setup complete")
|
254 |
-
return qa
|
255 |
|
256 |
def process_answer(user_question):
|
257 |
-
"""Generate an answer to the userβs question."""
|
258 |
try:
|
259 |
-
|
260 |
-
|
|
|
|
|
261 |
|
262 |
-
|
263 |
-
You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
|
264 |
-
Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
|
265 |
-
and accounting standards based on the provided PDF documents.
|
266 |
-
Please respond effectively and refer to the relevant standards and policies whenever applicable.
|
267 |
-
|
268 |
-
User question: {user_question}
|
269 |
"""
|
270 |
-
|
271 |
-
|
272 |
-
answer = generated_text['result']
|
273 |
-
|
274 |
-
if "not provide" in answer or "no information" in answer:
|
275 |
-
return "The document does not provide sufficient information to answer your question."
|
276 |
-
|
277 |
-
logging.info("Answer generated successfully")
|
278 |
-
return answer
|
279 |
-
|
280 |
except Exception as e:
|
281 |
-
logging.error(f"
|
282 |
-
return "
|
|
|
|
|
283 |
|
284 |
-
#
|
285 |
-
st.sidebar.header("
|
286 |
-
uploaded_files = st.sidebar.file_uploader("
|
287 |
|
288 |
if uploaded_files:
|
289 |
-
# Save uploaded files
|
290 |
if not os.path.exists(uploaded_files_dir):
|
291 |
os.makedirs(uploaded_files_dir)
|
292 |
|
293 |
-
for
|
294 |
-
|
295 |
-
with open(
|
296 |
-
f.write(
|
297 |
-
|
298 |
-
st.sidebar.success(f"
|
299 |
|
300 |
-
#
|
301 |
-
|
|
|
|
|
|
|
302 |
|
303 |
-
#
|
304 |
-
st.
|
305 |
-
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
310 |
|
311 |
else:
|
312 |
-
st.sidebar.info("Upload
|
313 |
|
|
|
1 |
# import os
|
2 |
# import logging
|
3 |
+
# import math
|
4 |
# import streamlit as st
|
5 |
+
# import fitz # PyMuPDF
|
6 |
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
7 |
# from langchain_community.document_loaders import PDFMinerLoader
|
8 |
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
14 |
# # Set up logging
|
15 |
# logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
+
# # Define global variables
|
18 |
+
# device = 'cpu'
|
19 |
+
# persist_directory = "db"
|
20 |
+
# uploaded_files_dir = "uploaded_files"
|
21 |
|
22 |
+
# # Streamlit app configuration
|
23 |
+
# st.set_page_config(page_title="Audit Assistant", layout="wide")
|
24 |
+
# st.title("Audit Assistant")
|
|
|
25 |
|
26 |
+
# # Load the model
|
27 |
+
# checkpoint = "MBZUAI/LaMini-T5-738M"
|
28 |
+
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
29 |
+
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
30 |
+
|
31 |
+
# # Helper Functions
|
32 |
+
|
33 |
+
# def extract_text_from_pdf(file_path):
|
34 |
+
# """Extract text from a PDF using PyMuPDF (fitz)."""
|
35 |
+
# try:
|
36 |
+
# doc = fitz.open(file_path)
|
37 |
+
# text = ""
|
38 |
+
# for page_num in range(doc.page_count):
|
39 |
+
# page = doc.load_page(page_num)
|
40 |
+
# text += page.get_text("text")
|
41 |
+
# return text
|
42 |
+
# except Exception as e:
|
43 |
+
# logging.error(f"Error reading PDF {file_path}: {e}")
|
44 |
+
# return None
|
45 |
+
|
46 |
+
# def data_ingestion():
|
47 |
+
# """Function to load PDFs and create embeddings with improved error handling and efficiency."""
|
48 |
# try:
|
49 |
+
# logging.info("Starting data ingestion")
|
50 |
+
|
51 |
+
# if not os.path.exists(uploaded_files_dir):
|
52 |
+
# os.makedirs(uploaded_files_dir)
|
53 |
+
|
54 |
+
# documents = []
|
55 |
+
# for filename in os.listdir(uploaded_files_dir):
|
56 |
+
# if filename.endswith(".pdf"):
|
57 |
+
# file_path = os.path.join(uploaded_files_dir, filename)
|
58 |
+
# logging.info(f"Processing file: {file_path}")
|
59 |
+
|
60 |
+
# try:
|
61 |
+
# loader = PDFMinerLoader(file_path)
|
62 |
+
# loaded_docs = loader.load()
|
63 |
+
# if not loaded_docs:
|
64 |
+
# logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
|
65 |
+
# continue
|
66 |
+
|
67 |
+
# for doc in loaded_docs:
|
68 |
+
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
|
69 |
+
# documents.append(doc)
|
70 |
+
# else:
|
71 |
+
# logging.warning(f"Skipping invalid document structure in {file_path}")
|
72 |
+
# except ValueError as e:
|
73 |
+
# logging.error(f"Skipping {file_path}: {str(e)}")
|
74 |
+
# continue
|
75 |
+
|
76 |
+
# if not documents:
|
77 |
+
# logging.error("No valid documents found to process.")
|
78 |
# return
|
79 |
|
80 |
+
# logging.info(f"Total valid documents: {len(documents)}")
|
81 |
+
|
82 |
+
# # Proceed with splitting and embedding documents
|
83 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
84 |
+
# texts = text_splitter.split_documents(documents)
|
85 |
+
|
86 |
+
# logging.info(f"Total text chunks created: {len(texts)}")
|
87 |
+
|
88 |
+
# if not texts:
|
89 |
+
# logging.error("No valid text chunks to create embeddings.")
|
90 |
+
# return
|
91 |
|
92 |
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
93 |
+
|
94 |
+
# # Proceed to split and embed the documents
|
95 |
+
# MAX_BATCH_SIZE = 5461
|
96 |
+
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
97 |
+
|
98 |
+
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
|
99 |
+
|
100 |
+
# db = None
|
101 |
+
# for i in range(total_batches):
|
102 |
+
# batch_start = i * MAX_BATCH_SIZE
|
103 |
+
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
|
104 |
+
# text_batch = texts[batch_start:batch_end]
|
105 |
+
|
106 |
+
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
|
107 |
+
|
108 |
+
# if db is None:
|
109 |
+
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
|
110 |
+
# else:
|
111 |
+
# db.add_documents(text_batch)
|
112 |
+
|
113 |
# db.persist()
|
114 |
+
# logging.info("Data ingestion completed successfully")
|
115 |
+
|
116 |
# except Exception as e:
|
117 |
+
# logging.error(f"Error during data ingestion: {str(e)}")
|
118 |
+
# raise
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
# def llm_pipeline():
|
121 |
+
# """Set up the language model pipeline."""
|
122 |
+
# logging.info("Setting up LLM pipeline")
|
123 |
# pipe = pipeline(
|
124 |
+
# 'text2text-generation',
|
125 |
# model=base_model,
|
126 |
# tokenizer=tokenizer,
|
127 |
# max_length=256,
|
128 |
# do_sample=True,
|
129 |
# temperature=0.3,
|
130 |
# top_p=0.95,
|
131 |
+
# device=device
|
132 |
+
# )
|
133 |
+
# local_llm = HuggingFacePipeline(pipeline=pipe)
|
134 |
+
# logging.info("LLM pipeline setup complete")
|
135 |
+
# return local_llm
|
136 |
+
|
137 |
+
# def qa_llm():
|
138 |
+
# """Set up the question-answering chain."""
|
139 |
+
# logging.info("Setting up QA model")
|
140 |
+
# llm = llm_pipeline()
|
141 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
142 |
+
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
143 |
+
# retriever = db.as_retriever() # Set up the retriever for the vector store
|
144 |
+
# qa = RetrievalQA.from_chain_type(
|
145 |
+
# llm=llm,
|
146 |
+
# chain_type="stuff",
|
147 |
+
# retriever=retriever,
|
148 |
+
# return_source_documents=True
|
149 |
# )
|
150 |
+
# logging.info("QA model setup complete")
|
151 |
+
# return qa
|
152 |
+
|
153 |
+
# def process_answer(user_question):
|
154 |
+
# """Generate an answer to the userβs question."""
|
155 |
+
# try:
|
156 |
+
# logging.info("Processing user question")
|
157 |
+
# qa = qa_llm()
|
158 |
+
|
159 |
+
# tailored_prompt = f"""
|
160 |
+
# You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
|
161 |
+
# Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
|
162 |
+
# and accounting standards based on the provided PDF documents.
|
163 |
+
# Please respond effectively and refer to the relevant standards and policies whenever applicable.
|
164 |
+
|
165 |
+
# User question: {user_question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
# """
|
|
|
|
|
|
|
167 |
|
168 |
+
# generated_text = qa({"query": tailored_prompt})
|
169 |
+
# answer = generated_text['result']
|
170 |
+
|
171 |
+
# if "not provide" in answer or "no information" in answer:
|
172 |
+
# return "The document does not provide sufficient information to answer your question."
|
173 |
+
|
174 |
+
# logging.info("Answer generated successfully")
|
175 |
+
# return answer
|
176 |
+
|
177 |
+
# except Exception as e:
|
178 |
+
# logging.error(f"Error during answer generation: {str(e)}")
|
179 |
+
# return "Error processing the question."
|
180 |
+
|
181 |
+
# # Streamlit UI Setup
|
182 |
+
# st.sidebar.header("File Upload")
|
183 |
+
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
|
184 |
+
|
185 |
+
# if uploaded_files:
|
186 |
+
# # Save uploaded files
|
187 |
+
# if not os.path.exists(uploaded_files_dir):
|
188 |
+
# os.makedirs(uploaded_files_dir)
|
189 |
+
|
190 |
+
# for uploaded_file in uploaded_files:
|
191 |
+
# file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
192 |
+
# with open(file_path, "wb") as f:
|
193 |
+
# f.write(uploaded_file.getbuffer())
|
194 |
+
|
195 |
+
# st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
|
196 |
+
|
197 |
+
# # Run data ingestion when files are uploaded
|
198 |
+
# data_ingestion()
|
199 |
+
|
200 |
+
# # Display UI for Q&A
|
201 |
+
# st.header("Ask a Question")
|
202 |
+
# user_question = st.text_input("Enter your question here:")
|
203 |
+
|
204 |
+
# if user_question:
|
205 |
+
# answer = process_answer(user_question)
|
206 |
+
# st.write(answer)
|
207 |
|
208 |
+
# else:
|
209 |
+
# st.sidebar.info("Upload PDF files to get started!")
|
210 |
+
|
211 |
+
# -------
|
212 |
import os
|
213 |
import logging
|
214 |
import math
|
|
|
222 |
from langchain_community.llms import HuggingFacePipeline
|
223 |
from langchain.chains import RetrievalQA
|
224 |
|
225 |
+
# Configuration
|
|
|
|
|
|
|
226 |
device = 'cpu'
|
227 |
persist_directory = "db"
|
228 |
uploaded_files_dir = "uploaded_files"
|
229 |
|
230 |
+
# Setup logging
|
231 |
+
logging.basicConfig(level=logging.INFO)
|
232 |
+
|
233 |
+
# Streamlit Page Setup
|
234 |
+
st.set_page_config(page_title="RAG Chatbot", layout="wide")
|
235 |
+
st.title("π RAG-based PDF Assistant")
|
236 |
|
237 |
+
# Load LLM model
|
238 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
239 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
240 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
241 |
|
242 |
+
# ---------------- HELPER FUNCTIONS ---------------- #
|
243 |
|
244 |
+
def extract_outline_from_pdf(path):
|
|
|
245 |
try:
|
246 |
+
doc = fitz.open(path)
|
247 |
+
outline_text = ""
|
248 |
+
for page_num in range(len(doc)):
|
249 |
+
page = doc[page_num]
|
250 |
+
outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
|
251 |
+
return outline_text if outline_text else "No preview available."
|
252 |
except Exception as e:
|
253 |
+
return f"Could not preview PDF: {e}"
|
|
|
254 |
|
255 |
def data_ingestion():
|
|
|
256 |
try:
|
257 |
logging.info("Starting data ingestion")
|
|
|
258 |
if not os.path.exists(uploaded_files_dir):
|
259 |
os.makedirs(uploaded_files_dir)
|
260 |
|
261 |
+
documents = []
|
262 |
for filename in os.listdir(uploaded_files_dir):
|
263 |
if filename.endswith(".pdf"):
|
264 |
+
path = os.path.join(uploaded_files_dir, filename)
|
265 |
+
logging.info(f"Loading: {filename}")
|
|
|
266 |
try:
|
267 |
+
loader = PDFMinerLoader(path)
|
268 |
loaded_docs = loader.load()
|
|
|
|
|
|
|
|
|
269 |
for doc in loaded_docs:
|
270 |
+
if hasattr(doc, 'page_content'):
|
271 |
documents.append(doc)
|
272 |
+
except Exception as e:
|
273 |
+
logging.warning(f"Skipping {filename}: {str(e)}")
|
|
|
|
|
|
|
274 |
|
275 |
if not documents:
|
276 |
+
st.error("β οΈ No valid documents found. Check the PDF content.")
|
277 |
return
|
278 |
|
|
|
|
|
|
|
279 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
280 |
texts = text_splitter.split_documents(documents)
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
db = None
|
284 |
+
MAX_BATCH_SIZE = 5461
|
285 |
+
for i in range(0, len(texts), MAX_BATCH_SIZE):
|
286 |
+
batch = texts[i:i + MAX_BATCH_SIZE]
|
|
|
|
|
|
|
|
|
287 |
if db is None:
|
288 |
+
db = Chroma.from_documents(batch, embeddings, persist_directory=persist_directory)
|
289 |
else:
|
290 |
+
db.add_documents(batch)
|
|
|
291 |
db.persist()
|
292 |
+
logging.info("Data ingestion completed.")
|
|
|
293 |
except Exception as e:
|
294 |
+
logging.error(f"Ingestion error: {e}")
|
295 |
+
st.error(f"Ingestion failed: {e}")
|
296 |
|
297 |
def llm_pipeline():
|
|
|
|
|
298 |
pipe = pipeline(
|
299 |
'text2text-generation',
|
300 |
model=base_model,
|
|
|
305 |
top_p=0.95,
|
306 |
device=device
|
307 |
)
|
308 |
+
return HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
309 |
|
310 |
def qa_llm():
|
|
|
|
|
311 |
llm = llm_pipeline()
|
312 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
313 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
314 |
+
retriever = db.as_retriever()
|
315 |
+
return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
def process_answer(user_question):
|
|
|
318 |
try:
|
319 |
+
qa = qa_llm()
|
320 |
+
prompt = f"""
|
321 |
+
You are a helpful and accurate RAG-based chatbot. Your role is to analyze the content from uploaded PDF documents and
|
322 |
+
provide informative and detailed answers to any questions asked by the user. Use the uploaded knowledge to answer precisely.
|
323 |
|
324 |
+
Question: {user_question}
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
"""
|
326 |
+
output = qa({"query": prompt})
|
327 |
+
return output['result']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
except Exception as e:
|
329 |
+
logging.error(f"QA failed: {e}")
|
330 |
+
return "β Could not generate a valid answer."
|
331 |
+
|
332 |
+
# ---------------- STREAMLIT UI ---------------- #
|
333 |
|
334 |
+
# Sidebar Upload
|
335 |
+
st.sidebar.header("π€ Upload PDF Files")
|
336 |
+
uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
|
337 |
|
338 |
if uploaded_files:
|
|
|
339 |
if not os.path.exists(uploaded_files_dir):
|
340 |
os.makedirs(uploaded_files_dir)
|
341 |
|
342 |
+
for file in uploaded_files:
|
343 |
+
path = os.path.join(uploaded_files_dir, file.name)
|
344 |
+
with open(path, "wb") as f:
|
345 |
+
f.write(file.getbuffer())
|
346 |
+
|
347 |
+
st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
|
348 |
|
349 |
+
# Display previews
|
350 |
+
st.subheader("π Uploaded PDF Previews")
|
351 |
+
for file in uploaded_files:
|
352 |
+
with st.expander(file.name):
|
353 |
+
st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
|
354 |
|
355 |
+
# Trigger ingestion
|
356 |
+
with st.spinner("π Ingesting uploaded documents..."):
|
357 |
+
data_ingestion()
|
358 |
|
359 |
+
# Ask a question
|
360 |
+
st.header("β Ask a Question from Your Documents")
|
361 |
+
user_input = st.text_input("Enter your question:")
|
362 |
+
if user_input:
|
363 |
+
with st.spinner("π¬ Generating response..."):
|
364 |
+
response = process_answer(user_input)
|
365 |
+
st.success(response)
|
366 |
|
367 |
else:
|
368 |
+
st.sidebar.info("Upload PDFs to begin your QA journey.")
|
369 |
|