Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -208,53 +208,263 @@
|
|
208 |
# else:
|
209 |
# st.sidebar.info("Upload PDF files to get started!")
|
210 |
|
211 |
-
# -------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
import os
|
213 |
import logging
|
214 |
import math
|
215 |
import streamlit as st
|
216 |
import fitz # PyMuPDF
|
217 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
218 |
-
|
219 |
-
from langchain_community.document_loaders import PyMuPDFLoader
|
220 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
221 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
222 |
from langchain_community.vectorstores import Chroma
|
223 |
from langchain_community.llms import HuggingFacePipeline
|
224 |
from langchain.chains import RetrievalQA
|
225 |
|
226 |
-
#
|
|
|
|
|
|
|
227 |
device = 'cpu'
|
228 |
persist_directory = "db"
|
229 |
uploaded_files_dir = "uploaded_files"
|
230 |
|
231 |
-
#
|
232 |
-
|
233 |
-
|
234 |
-
# Streamlit Page Setup
|
235 |
-
st.set_page_config(page_title="RAG Chatbot", layout="wide")
|
236 |
-
st.title("📚 RAG-based PDF Assistant")
|
237 |
|
238 |
-
# Load
|
239 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
240 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
241 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
242 |
|
243 |
-
#
|
244 |
|
245 |
-
def
|
|
|
246 |
try:
|
247 |
-
doc = fitz.open(
|
248 |
-
|
249 |
-
for page_num in range(
|
250 |
-
page = doc
|
251 |
-
|
252 |
-
return
|
253 |
except Exception as e:
|
254 |
-
|
|
|
255 |
|
256 |
def data_ingestion():
|
257 |
-
"""
|
258 |
try:
|
259 |
logging.info("Starting data ingestion")
|
260 |
|
@@ -268,21 +478,18 @@ def data_ingestion():
|
|
268 |
logging.info(f"Processing file: {file_path}")
|
269 |
|
270 |
try:
|
271 |
-
loader =
|
272 |
loaded_docs = loader.load()
|
273 |
-
|
274 |
-
|
275 |
-
if not loaded_docs or len(loaded_docs[0].page_content.strip()) == 0:
|
276 |
-
logging.warning(f"No readable text found in {file_path}. Might be a scanned image or unsupported format.")
|
277 |
continue
|
278 |
-
|
279 |
for doc in loaded_docs:
|
280 |
if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
|
281 |
documents.append(doc)
|
282 |
else:
|
283 |
logging.warning(f"Skipping invalid document structure in {file_path}")
|
284 |
-
|
285 |
-
except Exception as e:
|
286 |
logging.error(f"Skipping {file_path}: {str(e)}")
|
287 |
continue
|
288 |
|
@@ -304,6 +511,7 @@ def data_ingestion():
|
|
304 |
|
305 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
306 |
|
|
|
307 |
MAX_BATCH_SIZE = 5461
|
308 |
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
309 |
|
@@ -324,13 +532,14 @@ def data_ingestion():
|
|
324 |
|
325 |
db.persist()
|
326 |
logging.info("Data ingestion completed successfully")
|
327 |
-
|
328 |
except Exception as e:
|
329 |
logging.error(f"Error during data ingestion: {str(e)}")
|
330 |
raise
|
331 |
|
332 |
-
|
333 |
def llm_pipeline():
|
|
|
|
|
334 |
pipe = pipeline(
|
335 |
'text2text-generation',
|
336 |
model=base_model,
|
@@ -341,80 +550,98 @@ def llm_pipeline():
|
|
341 |
top_p=0.95,
|
342 |
device=device
|
343 |
)
|
344 |
-
|
|
|
|
|
345 |
|
346 |
def qa_llm():
|
|
|
|
|
347 |
llm = llm_pipeline()
|
348 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
349 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
350 |
-
retriever = db.as_retriever()
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
def process_answer(user_question):
|
354 |
-
"""Generate an answer to the user’s question
|
355 |
try:
|
356 |
logging.info("Processing user question")
|
357 |
-
qa = qa_llm()
|
358 |
|
359 |
-
# Generalized, flexible prompt for any kind of PDF (resume, legal doc, etc.)
|
360 |
tailored_prompt = f"""
|
361 |
-
You are an
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
"""
|
367 |
|
368 |
generated_text = qa({"query": tailored_prompt})
|
369 |
answer = generated_text['result']
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
return "The document does not contain this information."
|
374 |
|
375 |
logging.info("Answer generated successfully")
|
376 |
return answer
|
377 |
|
378 |
except Exception as e:
|
379 |
logging.error(f"Error during answer generation: {str(e)}")
|
380 |
-
return "
|
381 |
-
|
382 |
|
383 |
-
#
|
384 |
-
|
385 |
-
|
386 |
-
st.sidebar.header("📤 Upload PDF Files")
|
387 |
-
uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
|
388 |
|
389 |
if uploaded_files:
|
|
|
390 |
if not os.path.exists(uploaded_files_dir):
|
391 |
os.makedirs(uploaded_files_dir)
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
-
#
|
401 |
-
|
402 |
-
for file in uploaded_files:
|
403 |
-
with st.expander(file.name):
|
404 |
-
st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
|
405 |
|
406 |
-
#
|
407 |
-
|
408 |
-
|
409 |
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
if user_input:
|
414 |
-
with st.spinner("💬 Generating response..."):
|
415 |
-
response = process_answer(user_input)
|
416 |
-
st.success(response)
|
417 |
|
418 |
else:
|
419 |
-
st.sidebar.info("Upload
|
|
|
420 |
|
|
|
208 |
# else:
|
209 |
# st.sidebar.info("Upload PDF files to get started!")
|
210 |
|
211 |
+
# # -------this is the second code!!!
|
212 |
+
# import os
|
213 |
+
# import logging
|
214 |
+
# import math
|
215 |
+
# import streamlit as st
|
216 |
+
# import fitz # PyMuPDF
|
217 |
+
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
218 |
+
# # from langchain_community.document_loaders import PDFMinerLoader
|
219 |
+
# from langchain_community.document_loaders import PyMuPDFLoader
|
220 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
221 |
+
# from langchain_community.embeddings import SentenceTransformerEmbeddings
|
222 |
+
# from langchain_community.vectorstores import Chroma
|
223 |
+
# from langchain_community.llms import HuggingFacePipeline
|
224 |
+
# from langchain.chains import RetrievalQA
|
225 |
+
|
226 |
+
# device = 'cpu'
|
227 |
+
# persist_directory = "db"
|
228 |
+
# uploaded_files_dir = "uploaded_files"
|
229 |
+
|
230 |
+
|
231 |
+
# logging.basicConfig(level=logging.INFO)
|
232 |
+
|
233 |
+
# # for main Page Setup
|
234 |
+
# st.set_page_config(page_title="RAG Chatbot", layout="wide")
|
235 |
+
# st.title("📚 RAG-based PDF Assistant")
|
236 |
+
|
237 |
+
# # Load my model
|
238 |
+
# checkpoint = "MBZUAI/LaMini-T5-738M"
|
239 |
+
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
240 |
+
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
241 |
+
|
242 |
+
# # ------------------------------- #
|
243 |
+
|
244 |
+
# def extract_outline_from_pdf(path):
|
245 |
+
# try:
|
246 |
+
# doc = fitz.open(path)
|
247 |
+
# outline_text = ""
|
248 |
+
# for page_num in range(len(doc)):
|
249 |
+
# page = doc[page_num]
|
250 |
+
# outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
|
251 |
+
# return outline_text if outline_text else "No preview available."
|
252 |
+
# except Exception as e:
|
253 |
+
# return f"Could not preview PDF: {e}"
|
254 |
+
|
255 |
+
# def data_ingestion():
|
256 |
+
# """Load PDFs, validate content, and generate embeddings."""
|
257 |
+
# try:
|
258 |
+
# logging.info("Starting data ingestion")
|
259 |
+
|
260 |
+
# if not os.path.exists(uploaded_files_dir):
|
261 |
+
# os.makedirs(uploaded_files_dir)
|
262 |
+
|
263 |
+
# documents = []
|
264 |
+
# for filename in os.listdir(uploaded_files_dir):
|
265 |
+
# if filename.endswith(".pdf"):
|
266 |
+
# file_path = os.path.join(uploaded_files_dir, filename)
|
267 |
+
# logging.info(f"Processing file: {file_path}")
|
268 |
+
|
269 |
+
# try:
|
270 |
+
# loader = PyMuPDFLoader(file_path)
|
271 |
+
# loaded_docs = loader.load()
|
272 |
+
|
273 |
+
# # Check if any content exists in loaded_docs
|
274 |
+
# if not loaded_docs or len(loaded_docs[0].page_content.strip()) == 0:
|
275 |
+
# logging.warning(f"No readable text found in {file_path}. Might be a scanned image or unsupported format.")
|
276 |
+
# continue
|
277 |
+
|
278 |
+
# for doc in loaded_docs:
|
279 |
+
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
|
280 |
+
# documents.append(doc)
|
281 |
+
# else:
|
282 |
+
# logging.warning(f"Skipping invalid document structure in {file_path}")
|
283 |
+
|
284 |
+
# except Exception as e:
|
285 |
+
# logging.error(f"Skipping {file_path}: {str(e)}")
|
286 |
+
# continue
|
287 |
+
|
288 |
+
# if not documents:
|
289 |
+
# logging.error("No valid documents found to process.")
|
290 |
+
# return
|
291 |
+
|
292 |
+
# logging.info(f"Total valid documents: {len(documents)}")
|
293 |
+
|
294 |
+
# # Proceed with splitting and embedding documents
|
295 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
296 |
+
# texts = text_splitter.split_documents(documents)
|
297 |
+
|
298 |
+
# logging.info(f"Total text chunks created: {len(texts)}")
|
299 |
+
|
300 |
+
# if not texts:
|
301 |
+
# logging.error("No valid text chunks to create embeddings.")
|
302 |
+
# return
|
303 |
+
|
304 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
305 |
+
|
306 |
+
# MAX_BATCH_SIZE = 5461
|
307 |
+
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
308 |
+
|
309 |
+
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
|
310 |
+
|
311 |
+
# db = None
|
312 |
+
# for i in range(total_batches):
|
313 |
+
# batch_start = i * MAX_BATCH_SIZE
|
314 |
+
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
|
315 |
+
# text_batch = texts[batch_start:batch_end]
|
316 |
+
|
317 |
+
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
|
318 |
+
|
319 |
+
# if db is None:
|
320 |
+
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
|
321 |
+
# else:
|
322 |
+
# db.add_documents(text_batch)
|
323 |
+
|
324 |
+
# db.persist()
|
325 |
+
# logging.info("Data ingestion completed successfully")
|
326 |
+
|
327 |
+
# except Exception as e:
|
328 |
+
# logging.error(f"Error during data ingestion: {str(e)}")
|
329 |
+
# raise
|
330 |
+
|
331 |
+
|
332 |
+
# def llm_pipeline():
|
333 |
+
# pipe = pipeline(
|
334 |
+
# 'text2text-generation',
|
335 |
+
# model=base_model,
|
336 |
+
# tokenizer=tokenizer,
|
337 |
+
# max_length=256,
|
338 |
+
# do_sample=True,
|
339 |
+
# temperature=0.3,
|
340 |
+
# top_p=0.95,
|
341 |
+
# device=device
|
342 |
+
# )
|
343 |
+
# return HuggingFacePipeline(pipeline=pipe)
|
344 |
+
|
345 |
+
# def qa_llm():
|
346 |
+
# llm = llm_pipeline()
|
347 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
348 |
+
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
349 |
+
# retriever = db.as_retriever()
|
350 |
+
# return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
351 |
+
|
352 |
+
# def process_answer(user_question):
|
353 |
+
# """Generate an answer to the user’s question using a general RAG-based prompt."""
|
354 |
+
# try:
|
355 |
+
# logging.info("Processing user question")
|
356 |
+
# qa = qa_llm() # Set up the retrieval-based QA chain
|
357 |
+
|
358 |
+
# # Generalized, flexible prompt for any kind of PDF (resume, legal doc, etc.)
|
359 |
+
# tailored_prompt = f"""
|
360 |
+
# You are an intelligent and helpful AI assistant that provides answers strictly based on the provided document contents.
|
361 |
+
# If the question cannot be answered using the documents, say: 'The document does not contain this information.'
|
362 |
+
# Otherwise, respond clearly and concisely with relevant and factual details from the PDF.
|
363 |
+
|
364 |
+
# Question: {user_question}
|
365 |
+
# """
|
366 |
+
|
367 |
+
# generated_text = qa({"query": tailored_prompt})
|
368 |
+
# answer = generated_text['result']
|
369 |
+
|
370 |
+
# # Add a safeguard for hallucinated answers
|
371 |
+
# if "not provide" in answer.lower() or "no information" in answer.lower() or len(answer.strip()) < 10:
|
372 |
+
# return "The document does not contain this information."
|
373 |
+
|
374 |
+
# logging.info("Answer generated successfully")
|
375 |
+
# return answer
|
376 |
+
|
377 |
+
# except Exception as e:
|
378 |
+
# logging.error(f"Error during answer generation: {str(e)}")
|
379 |
+
# return "Sorry, something went wrong while processing your question."
|
380 |
+
|
381 |
+
|
382 |
+
# # ---------------- STREAMLIT UI ---------------- #
|
383 |
+
|
384 |
+
# # Sidebar Upload
|
385 |
+
# st.sidebar.header("📤 Upload PDF Files")
|
386 |
+
# uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
|
387 |
+
|
388 |
+
# if uploaded_files:
|
389 |
+
# if not os.path.exists(uploaded_files_dir):
|
390 |
+
# os.makedirs(uploaded_files_dir)
|
391 |
+
|
392 |
+
# for file in uploaded_files:
|
393 |
+
# path = os.path.join(uploaded_files_dir, file.name)
|
394 |
+
# with open(path, "wb") as f:
|
395 |
+
# f.write(file.getbuffer())
|
396 |
+
|
397 |
+
# st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
|
398 |
+
|
399 |
+
# # Display previews
|
400 |
+
# st.subheader("📄 Uploaded PDF Previews")
|
401 |
+
# for file in uploaded_files:
|
402 |
+
# with st.expander(file.name):
|
403 |
+
# st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
|
404 |
+
|
405 |
+
# # Trigger ingestion
|
406 |
+
# with st.spinner("🔄 Ingesting uploaded documents..."):
|
407 |
+
# data_ingestion()
|
408 |
+
|
409 |
+
# # Ask a question
|
410 |
+
# st.header("❓ Ask a Question from Your Documents")
|
411 |
+
# user_input = st.text_input("Enter your question:")
|
412 |
+
# if user_input:
|
413 |
+
# with st.spinner("💬 Generating response..."):
|
414 |
+
# response = process_answer(user_input)
|
415 |
+
# st.success(response)
|
416 |
+
|
417 |
+
# else:
|
418 |
+
# st.sidebar.info("Upload PDFs to begin your QA journey.")
|
419 |
+
|
420 |
+
|
421 |
import os
|
422 |
import logging
|
423 |
import math
|
424 |
import streamlit as st
|
425 |
import fitz # PyMuPDF
|
426 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
427 |
+
from langchain_community.document_loaders import PDFMinerLoader
|
|
|
428 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
429 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
430 |
from langchain_community.vectorstores import Chroma
|
431 |
from langchain_community.llms import HuggingFacePipeline
|
432 |
from langchain.chains import RetrievalQA
|
433 |
|
434 |
+
# Set up logging
|
435 |
+
logging.basicConfig(level=logging.INFO)
|
436 |
+
|
437 |
+
# Define global variables
|
438 |
device = 'cpu'
|
439 |
persist_directory = "db"
|
440 |
uploaded_files_dir = "uploaded_files"
|
441 |
|
442 |
+
# Streamlit app configuration
|
443 |
+
st.set_page_config(page_title="Audit Assistant", layout="wide")
|
444 |
+
st.title("Audit Assistant")
|
|
|
|
|
|
|
445 |
|
446 |
+
# Load the model
|
447 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
448 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
449 |
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
450 |
|
451 |
+
# Helper Functions
|
452 |
|
453 |
+
def extract_text_from_pdf(file_path):
|
454 |
+
"""Extract text from a PDF using PyMuPDF (fitz)."""
|
455 |
try:
|
456 |
+
doc = fitz.open(file_path)
|
457 |
+
text = ""
|
458 |
+
for page_num in range(doc.page_count):
|
459 |
+
page = doc.load_page(page_num)
|
460 |
+
text += page.get_text("text")
|
461 |
+
return text
|
462 |
except Exception as e:
|
463 |
+
logging.error(f"Error reading PDF {file_path}: {e}")
|
464 |
+
return None
|
465 |
|
466 |
def data_ingestion():
|
467 |
+
"""Function to load PDFs and create embeddings with improved error handling and efficiency."""
|
468 |
try:
|
469 |
logging.info("Starting data ingestion")
|
470 |
|
|
|
478 |
logging.info(f"Processing file: {file_path}")
|
479 |
|
480 |
try:
|
481 |
+
loader = PDFMinerLoader(file_path)
|
482 |
loaded_docs = loader.load()
|
483 |
+
if not loaded_docs:
|
484 |
+
logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
|
|
|
|
|
485 |
continue
|
486 |
+
|
487 |
for doc in loaded_docs:
|
488 |
if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
|
489 |
documents.append(doc)
|
490 |
else:
|
491 |
logging.warning(f"Skipping invalid document structure in {file_path}")
|
492 |
+
except ValueError as e:
|
|
|
493 |
logging.error(f"Skipping {file_path}: {str(e)}")
|
494 |
continue
|
495 |
|
|
|
511 |
|
512 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
513 |
|
514 |
+
# Proceed to split and embed the documents
|
515 |
MAX_BATCH_SIZE = 5461
|
516 |
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
517 |
|
|
|
532 |
|
533 |
db.persist()
|
534 |
logging.info("Data ingestion completed successfully")
|
535 |
+
|
536 |
except Exception as e:
|
537 |
logging.error(f"Error during data ingestion: {str(e)}")
|
538 |
raise
|
539 |
|
|
|
540 |
def llm_pipeline():
|
541 |
+
"""Set up the language model pipeline."""
|
542 |
+
logging.info("Setting up LLM pipeline")
|
543 |
pipe = pipeline(
|
544 |
'text2text-generation',
|
545 |
model=base_model,
|
|
|
550 |
top_p=0.95,
|
551 |
device=device
|
552 |
)
|
553 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
554 |
+
logging.info("LLM pipeline setup complete")
|
555 |
+
return local_llm
|
556 |
|
557 |
def qa_llm():
|
558 |
+
"""Set up the question-answering chain."""
|
559 |
+
logging.info("Setting up QA model")
|
560 |
llm = llm_pipeline()
|
561 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
562 |
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
563 |
+
retriever = db.as_retriever() # Set up the retriever for the vector store
|
564 |
+
qa = RetrievalQA.from_chain_type(
|
565 |
+
llm=llm,
|
566 |
+
chain_type="stuff",
|
567 |
+
retriever=retriever,
|
568 |
+
return_source_documents=True
|
569 |
+
)
|
570 |
+
logging.info("QA model setup complete")
|
571 |
+
return qa
|
572 |
|
573 |
def process_answer(user_question):
|
574 |
+
"""Generate an answer to the user’s question."""
|
575 |
try:
|
576 |
logging.info("Processing user question")
|
577 |
+
qa = qa_llm()
|
578 |
|
|
|
579 |
tailored_prompt = f"""
|
580 |
+
You are an expert chatbot designed to assist the user in the field of audits or any topic the user wants.
|
581 |
+
Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
|
582 |
+
and accounting standards based on the provided PDF documents.
|
583 |
+
Please respond effectively and refer to the relevant standards and policies whenever applicable.
|
584 |
+
User question: {user_question}
|
585 |
+
"""
|
586 |
|
587 |
generated_text = qa({"query": tailored_prompt})
|
588 |
answer = generated_text['result']
|
589 |
|
590 |
+
if "not provide" in answer or "no information" in answer:
|
591 |
+
return "The document does not provide sufficient information to answer your question."
|
|
|
592 |
|
593 |
logging.info("Answer generated successfully")
|
594 |
return answer
|
595 |
|
596 |
except Exception as e:
|
597 |
logging.error(f"Error during answer generation: {str(e)}")
|
598 |
+
return "Error processing the question."
|
|
|
599 |
|
600 |
+
# Streamlit UI Setup
|
601 |
+
st.sidebar.header("File Upload")
|
602 |
+
uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
|
|
|
|
|
603 |
|
604 |
if uploaded_files:
|
605 |
+
# Save uploaded files
|
606 |
if not os.path.exists(uploaded_files_dir):
|
607 |
os.makedirs(uploaded_files_dir)
|
608 |
|
609 |
+
uploaded_file_names = []
|
610 |
+
for uploaded_file in uploaded_files:
|
611 |
+
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
612 |
+
with open(file_path, "wb") as f:
|
613 |
+
f.write(uploaded_file.getbuffer())
|
614 |
+
|
615 |
+
uploaded_file_names.append(uploaded_file.name)
|
616 |
+
|
617 |
+
st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
|
618 |
+
|
619 |
+
# Show uploaded PDFs
|
620 |
+
st.header("Uploaded PDF Files")
|
621 |
+
for filename in uploaded_file_names:
|
622 |
+
st.write(f"- {filename}")
|
623 |
+
# Suggestion buttons to generate summary
|
624 |
+
if st.button(f"Generate summary of {filename}"):
|
625 |
+
# Generate summary (you can customize this to use LLM or simple summarization)
|
626 |
+
text = extract_text_from_pdf(os.path.join(uploaded_files_dir, filename))
|
627 |
+
if text:
|
628 |
+
summary = text[:1000] # Taking first 1000 chars as a simple summary (use LLM or other methods for better summaries)
|
629 |
+
st.write(f"Summary of {filename}:\n\n{summary}")
|
630 |
+
else:
|
631 |
+
st.write(f"Could not extract text from {filename}.")
|
632 |
|
633 |
+
# Run data ingestion when files are uploaded
|
634 |
+
data_ingestion()
|
|
|
|
|
|
|
635 |
|
636 |
+
# Display UI for Q&A
|
637 |
+
st.header("Ask a Question")
|
638 |
+
user_question = st.text_input("Enter your question here:")
|
639 |
|
640 |
+
if user_question:
|
641 |
+
answer = process_answer(user_question)
|
642 |
+
st.write(answer)
|
|
|
|
|
|
|
|
|
643 |
|
644 |
else:
|
645 |
+
st.sidebar.info("Upload PDF files to get started!")
|
646 |
+
|
647 |
|