Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import logging
|
|
|
3 |
import streamlit as st
|
4 |
-
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
from langchain_community.document_loaders import PDFMinerLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -13,90 +118,189 @@ from langchain.chains import RetrievalQA
|
|
13 |
# Set up logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def
|
|
|
27 |
try:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
return
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
db.persist()
|
48 |
-
|
|
|
49 |
except Exception as e:
|
50 |
-
logging.error(f"
|
51 |
-
|
52 |
-
|
53 |
-
def get_qa_chain():
|
54 |
-
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
55 |
-
vectordb = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings)
|
56 |
-
retriever = vectordb.as_retriever()
|
57 |
|
|
|
|
|
|
|
58 |
pipe = pipeline(
|
59 |
-
|
60 |
model=base_model,
|
61 |
tokenizer=tokenizer,
|
62 |
max_length=256,
|
63 |
do_sample=True,
|
64 |
temperature=0.3,
|
65 |
top_p=0.95,
|
66 |
-
device=device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
f.write(uploaded_file.getbuffer())
|
85 |
-
st.success(f"{uploaded_file.name} uploaded.")
|
86 |
-
ingest_data()
|
87 |
-
|
88 |
-
query = st.text_input("❓ Ask an audit-related question:")
|
89 |
-
if st.button("🔍 Get Answer") and query:
|
90 |
-
st.info("Generating answer...")
|
91 |
-
qa_chain = get_qa_chain()
|
92 |
-
prompt = f"""
|
93 |
-
You are an AI assistant helping Chartered Accountants (CAs) in auditing.
|
94 |
-
Provide accurate, concise answers based on the uploaded documents.
|
95 |
-
Question: {query}
|
96 |
"""
|
97 |
-
result = qa_chain({"query": prompt})
|
98 |
-
st.success("✅ Answer:")
|
99 |
-
st.write(result["result"])
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import logging
|
3 |
+
# import streamlit as st
|
4 |
+
# import torch
|
5 |
+
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
+
# from langchain_community.document_loaders import PDFMinerLoader
|
7 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
# from langchain_community.embeddings import SentenceTransformerEmbeddings
|
9 |
+
# from langchain_community.vectorstores import Chroma
|
10 |
+
# from langchain_community.llms import HuggingFacePipeline
|
11 |
+
# from langchain.chains import RetrievalQA
|
12 |
+
|
13 |
+
# # Set up logging
|
14 |
+
# logging.basicConfig(level=logging.INFO)
|
15 |
+
|
16 |
+
# # Paths and model
|
17 |
+
# PERSIST_DIRECTORY = "db"
|
18 |
+
# UPLOAD_FOLDER = "uploaded_files"
|
19 |
+
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
20 |
+
|
21 |
+
# CHECKPOINT = "MBZUAI/LaMini-T5-738M"
|
22 |
+
# tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
|
23 |
+
# base_model = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT)
|
24 |
+
# device = 0 if torch.cuda.is_available() else -1
|
25 |
+
|
26 |
+
# def ingest_data():
|
27 |
+
# try:
|
28 |
+
# st.info("📚 Ingesting documents...")
|
29 |
+
|
30 |
+
# docs = []
|
31 |
+
# for file_name in os.listdir(UPLOAD_FOLDER):
|
32 |
+
# if file_name.endswith(".pdf"):
|
33 |
+
# path = os.path.join(UPLOAD_FOLDER, file_name)
|
34 |
+
# loader = PDFMinerLoader(path)
|
35 |
+
# loaded_docs = loader.load()
|
36 |
+
# docs.extend(loaded_docs)
|
37 |
+
|
38 |
+
# if not docs:
|
39 |
+
# st.error("No valid PDFs found.")
|
40 |
+
# return
|
41 |
+
|
42 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
43 |
+
# texts = splitter.split_documents(docs)
|
44 |
+
|
45 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
46 |
+
# db = Chroma.from_documents(texts, embeddings, persist_directory=PERSIST_DIRECTORY)
|
47 |
+
# db.persist()
|
48 |
+
# st.success("✅ Ingestion successful!")
|
49 |
+
# except Exception as e:
|
50 |
+
# logging.error(f"Ingestion error: {str(e)}")
|
51 |
+
# st.error(f"Ingestion error: {str(e)}")
|
52 |
+
|
53 |
+
# def get_qa_chain():
|
54 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
55 |
+
# vectordb = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings)
|
56 |
+
# retriever = vectordb.as_retriever()
|
57 |
+
|
58 |
+
# pipe = pipeline(
|
59 |
+
# "text2text-generation",
|
60 |
+
# model=base_model,
|
61 |
+
# tokenizer=tokenizer,
|
62 |
+
# max_length=256,
|
63 |
+
# do_sample=True,
|
64 |
+
# temperature=0.3,
|
65 |
+
# top_p=0.95,
|
66 |
+
# device=device,
|
67 |
+
# )
|
68 |
+
# llm = HuggingFacePipeline(pipeline=pipe)
|
69 |
+
|
70 |
+
# qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
71 |
+
# return qa_chain
|
72 |
+
|
73 |
+
# def main():
|
74 |
+
# st.set_page_config(page_title="CA Audit QA Chatbot", layout="wide")
|
75 |
+
# st.title("📄 CA Audit QA Assistant")
|
76 |
+
|
77 |
+
# with st.sidebar:
|
78 |
+
# st.header("📤 Upload Audit PDFs")
|
79 |
+
# uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
80 |
+
|
81 |
+
# if uploaded_file is not None:
|
82 |
+
# file_path = os.path.join(UPLOAD_FOLDER, uploaded_file.name)
|
83 |
+
# with open(file_path, "wb") as f:
|
84 |
+
# f.write(uploaded_file.getbuffer())
|
85 |
+
# st.success(f"{uploaded_file.name} uploaded.")
|
86 |
+
# ingest_data()
|
87 |
+
|
88 |
+
# query = st.text_input("❓ Ask an audit-related question:")
|
89 |
+
# if st.button("🔍 Get Answer") and query:
|
90 |
+
# st.info("Generating answer...")
|
91 |
+
# qa_chain = get_qa_chain()
|
92 |
+
# prompt = f"""
|
93 |
+
# You are an AI assistant helping Chartered Accountants (CAs) in auditing.
|
94 |
+
# Provide accurate, concise answers based on the uploaded documents.
|
95 |
+
# Question: {query}
|
96 |
+
# """
|
97 |
+
# result = qa_chain({"query": prompt})
|
98 |
+
# st.success("✅ Answer:")
|
99 |
+
# st.write(result["result"])
|
100 |
+
|
101 |
+
# if __name__ == "__main__":
|
102 |
+
# main()
|
103 |
+
|
104 |
+
|
105 |
import os
|
106 |
+
import PyPDF2
|
107 |
import logging
|
108 |
+
import math
|
109 |
import streamlit as st
|
|
|
110 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
111 |
from langchain_community.document_loaders import PDFMinerLoader
|
112 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
118 |
# Set up logging
|
119 |
logging.basicConfig(level=logging.INFO)
|
120 |
|
121 |
+
# Define global variables
|
122 |
+
device = 'cpu'
|
123 |
+
persist_directory = "db"
|
124 |
+
uploaded_files_dir = "uploaded_files"
|
125 |
+
|
126 |
+
# Streamlit app configuration
|
127 |
+
st.set_page_config(page_title="Audit Assistant", layout="wide")
|
128 |
+
st.title("Audit Assistant")
|
129 |
+
|
130 |
+
# Load the model
|
131 |
+
checkpoint = "MBZUAI/LaMini-T5-738M"
|
132 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
133 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
134 |
+
|
135 |
+
# Helper Functions
|
136 |
|
137 |
+
def extract_text_from_pdf(file_path):
|
138 |
+
"""Extract text from a PDF using PyPDF2."""
|
139 |
+
try:
|
140 |
+
with open(file_path, 'rb') as file:
|
141 |
+
reader = PyPDF2.PdfReader(file)
|
142 |
+
text = ""
|
143 |
+
for page in range(len(reader.pages)):
|
144 |
+
text += reader.pages[page].extract_text()
|
145 |
+
return text
|
146 |
+
except Exception as e:
|
147 |
+
logging.error(f"Error reading PDF {file_path}: {e}")
|
148 |
+
return None
|
149 |
|
150 |
+
def data_ingestion():
|
151 |
+
"""Load PDFs and create embeddings."""
|
152 |
try:
|
153 |
+
logging.info("Starting data ingestion")
|
154 |
+
|
155 |
+
if not os.path.exists(uploaded_files_dir):
|
156 |
+
os.makedirs(uploaded_files_dir)
|
157 |
+
|
158 |
+
documents = []
|
159 |
+
for filename in os.listdir(uploaded_files_dir):
|
160 |
+
if filename.endswith(".pdf"):
|
161 |
+
file_path = os.path.join(uploaded_files_dir, filename)
|
162 |
+
logging.info(f"Processing file: {file_path}")
|
163 |
+
|
164 |
+
# Extract text using PyPDF2
|
165 |
+
text = extract_text_from_pdf(file_path)
|
166 |
+
|
167 |
+
if text:
|
168 |
+
documents.append({"page_content": text, "source": file_path})
|
169 |
+
else:
|
170 |
+
logging.warning(f"Skipping file due to extraction error: {file_path}")
|
171 |
+
|
172 |
+
if not documents:
|
173 |
+
logging.error("No valid documents found to process.")
|
174 |
return
|
175 |
|
176 |
+
logging.info(f"Total valid documents: {len(documents)}")
|
177 |
+
|
178 |
+
# Split the documents into chunks
|
179 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
180 |
+
texts = text_splitter.split_documents(documents)
|
181 |
+
|
182 |
+
logging.info(f"Total text chunks created: {len(texts)}")
|
183 |
+
|
184 |
+
if not texts:
|
185 |
+
logging.error("No valid text chunks to create embeddings.")
|
186 |
+
return
|
187 |
|
188 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
189 |
+
|
190 |
+
# Process text chunks (embedding and persistence)
|
191 |
+
MAX_BATCH_SIZE = 5461
|
192 |
+
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
|
193 |
+
|
194 |
+
logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
|
195 |
+
|
196 |
+
db = None
|
197 |
+
for i in range(total_batches):
|
198 |
+
batch_start = i * MAX_BATCH_SIZE
|
199 |
+
batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
|
200 |
+
text_batch = texts[batch_start:batch_end]
|
201 |
+
|
202 |
+
logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
|
203 |
+
|
204 |
+
if db is None:
|
205 |
+
db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
|
206 |
+
else:
|
207 |
+
db.add_documents(text_batch)
|
208 |
+
|
209 |
db.persist()
|
210 |
+
logging.info("Data ingestion completed successfully")
|
211 |
+
|
212 |
except Exception as e:
|
213 |
+
logging.error(f"Error during data ingestion: {str(e)}")
|
214 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
def llm_pipeline():
|
217 |
+
"""Set up the language model pipeline."""
|
218 |
+
logging.info("Setting up LLM pipeline")
|
219 |
pipe = pipeline(
|
220 |
+
'text2text-generation',
|
221 |
model=base_model,
|
222 |
tokenizer=tokenizer,
|
223 |
max_length=256,
|
224 |
do_sample=True,
|
225 |
temperature=0.3,
|
226 |
top_p=0.95,
|
227 |
+
device=device
|
228 |
+
)
|
229 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
230 |
+
logging.info("LLM pipeline setup complete")
|
231 |
+
return local_llm
|
232 |
+
|
233 |
+
def qa_llm():
|
234 |
+
"""Set up the question-answering chain."""
|
235 |
+
logging.info("Setting up QA model")
|
236 |
+
llm = llm_pipeline()
|
237 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
238 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
239 |
+
retriever = db.as_retriever() # Set up the retriever for the vector store
|
240 |
+
qa = RetrievalQA.from_chain_type(
|
241 |
+
llm=llm,
|
242 |
+
chain_type="stuff",
|
243 |
+
retriever=retriever,
|
244 |
+
return_source_documents=True
|
245 |
)
|
246 |
+
logging.info("QA model setup complete")
|
247 |
+
return qa
|
248 |
+
|
249 |
+
def process_answer(user_question):
|
250 |
+
"""Generate an answer to the user’s question."""
|
251 |
+
try:
|
252 |
+
logging.info("Processing user question")
|
253 |
+
qa = qa_llm()
|
254 |
+
|
255 |
+
tailored_prompt = f"""
|
256 |
+
You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
|
257 |
+
Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
|
258 |
+
and accounting standards based on the provided PDF documents.
|
259 |
+
Please respond effectively and refer to the relevant standards and policies whenever applicable.
|
260 |
+
|
261 |
+
User question: {user_question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
"""
|
|
|
|
|
|
|
263 |
|
264 |
+
generated_text = qa({"query": tailored_prompt})
|
265 |
+
answer = generated_text['result']
|
266 |
+
|
267 |
+
if "not provide" in answer or "no information" in answer:
|
268 |
+
return "The document does not provide sufficient information to answer your question."
|
269 |
+
|
270 |
+
logging.info("Answer generated successfully")
|
271 |
+
return answer
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
logging.error(f"Error during answer generation: {str(e)}")
|
275 |
+
return "Error processing the question."
|
276 |
+
|
277 |
+
# Streamlit UI Setup
|
278 |
+
st.sidebar.header("File Upload")
|
279 |
+
uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
|
280 |
+
|
281 |
+
if uploaded_files:
|
282 |
+
# Save uploaded files
|
283 |
+
if not os.path.exists(uploaded_files_dir):
|
284 |
+
os.makedirs(uploaded_files_dir)
|
285 |
+
|
286 |
+
for uploaded_file in uploaded_files:
|
287 |
+
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
288 |
+
with open(file_path, "wb") as f:
|
289 |
+
f.write(uploaded_file.getbuffer())
|
290 |
+
|
291 |
+
st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
|
292 |
+
|
293 |
+
# Run data ingestion when files are uploaded
|
294 |
+
data_ingestion()
|
295 |
+
|
296 |
+
# Display UI for Q&A
|
297 |
+
st.header("Ask a Question")
|
298 |
+
user_question = st.text_input("Enter your question here:")
|
299 |
+
|
300 |
+
if user_question:
|
301 |
+
answer = process_answer(user_question)
|
302 |
+
st.write(answer)
|
303 |
+
|
304 |
+
else:
|
305 |
+
st.sidebar.info("Upload PDF files to get started!")
|
306 |
+
|