Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
+
from langchain_community.document_loaders import PDFMinerLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
9 |
+
from langchain_community.vectorstores import Chroma
|
10 |
+
from langchain_community.llms import HuggingFacePipeline
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
|
13 |
+
# Setup
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
|
17 |
+
persist_directory = "db"
|
18 |
+
uploaded_files_dir = "uploaded_files"
|
19 |
+
os.makedirs(uploaded_files_dir, exist_ok=True)
|
20 |
+
|
21 |
+
checkpoint = "MBZUAI/LaMini-T5-738M"
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
23 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
24 |
+
|
25 |
+
def data_ingestion():
|
26 |
+
try:
|
27 |
+
documents = []
|
28 |
+
for filename in os.listdir(uploaded_files_dir):
|
29 |
+
if filename.endswith(".pdf"):
|
30 |
+
file_path = os.path.join(uploaded_files_dir, filename)
|
31 |
+
loader = PDFMinerLoader(file_path)
|
32 |
+
docs = loader.load()
|
33 |
+
for doc in docs:
|
34 |
+
if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
|
35 |
+
documents.append(doc)
|
36 |
+
|
37 |
+
if not documents:
|
38 |
+
st.error("No valid text extracted from uploaded PDFs.")
|
39 |
+
return
|
40 |
+
|
41 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
42 |
+
texts = splitter.split_documents(documents)
|
43 |
+
|
44 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
45 |
+
|
46 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
47 |
+
db.persist()
|
48 |
+
st.success("Document ingested and stored successfully.")
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Error during data ingestion: {str(e)}")
|
52 |
+
|
53 |
+
def qa_llm():
|
54 |
+
pipe = pipeline(
|
55 |
+
'text2text-generation',
|
56 |
+
model=base_model,
|
57 |
+
tokenizer=tokenizer,
|
58 |
+
max_length=256,
|
59 |
+
do_sample=True,
|
60 |
+
temperature=0.3,
|
61 |
+
top_p=0.95,
|
62 |
+
device=0 if torch.cuda.is_available() else -1
|
63 |
+
)
|
64 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
65 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
66 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
67 |
+
retriever = db.as_retriever()
|
68 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
69 |
+
return qa
|
70 |
+
|
71 |
+
def process_query(query):
|
72 |
+
try:
|
73 |
+
qa = qa_llm()
|
74 |
+
tailored_prompt = f"""
|
75 |
+
You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
|
76 |
+
Your goal is to provide accurate and comprehensive answers to any questions related to audit policies,
|
77 |
+
procedures, and accounting standards based on the uploaded PDF documents.
|
78 |
+
|
79 |
+
User question: {query}
|
80 |
+
"""
|
81 |
+
result = qa({"query": tailored_prompt})
|
82 |
+
return result["result"]
|
83 |
+
except Exception as e:
|
84 |
+
return f"Error: {str(e)}"
|
85 |
+
|
86 |
+
# Streamlit UI
|
87 |
+
st.set_page_config(page_title="CA Audit Chatbot", layout="centered")
|
88 |
+
st.title("π Chartered Accountant Audit Assistant")
|
89 |
+
st.markdown("Upload a PDF file and ask audit-related questions. This AI assistant will answer based on document content.")
|
90 |
+
|
91 |
+
# File uploader
|
92 |
+
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
93 |
+
if uploaded_file is not None:
|
94 |
+
save_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
95 |
+
with open(save_path, "wb") as f:
|
96 |
+
f.write(uploaded_file.getbuffer())
|
97 |
+
st.success("PDF uploaded successfully!")
|
98 |
+
if st.button("Ingest Document"):
|
99 |
+
data_ingestion()
|
100 |
+
|
101 |
+
# Query input
|
102 |
+
user_query = st.text_input("Ask a question about the audit document:")
|
103 |
+
if user_query:
|
104 |
+
response = process_query(user_query)
|
105 |
+
st.markdown("### π Answer:")
|
106 |
+
st.write(response)
|