File size: 5,234 Bytes
5bea701
 
5a5c182
c40c6c3
88d066d
040362f
5bea701
9ac410d
 
 
 
 
88d066d
 
9ac410d
23fd868
 
 
 
 
cef76db
 
 
 
 
 
c71c13d
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf47e43
5929cca
 
5196b87
1a68e65
5929cca
eddfa20
fb9b052
 
 
 
fb5218a
87c1f41
 
b1ed479
5043930
b979134
 
36fcfae
b979134
 
8da9b1a
b979134
 
4a0a62c
8da9b1a
dc3fbf7
4a0a62c
 
dc3fbf7
 
 
80b0d9b
56827f2
b979134
4a0a62c
 
 
 
8da9b1a
63fdfc2
b1a0cf1
 
 
 
 
1704d5a
b1a0cf1
 
 
 
 
1704d5a
b1ed479
1704d5a
 
56827f2
 
1704d5a
 
b1a0cf1
 
 
63fdfc2
dd3054c
5b1512b
ffb9a11
bf47e43
5929cca
 
5196b87
1a68e65
5929cca
eddfa20
fb9b052
 
 
 
fb5218a
87c1f41
 
5043930
 
87c1f41
1a68e65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER


import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from gliner import GLiNER

import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import tempfile

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the YouTube Comments Sentiment Analysis App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Upload your file first. Then, click the 'Results' button.
    
    **Usage Limits**
    You can request results up to 5 times. 
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own Named Entity Recognition (NER) Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Authorization**
    For security purposes, your authorization access expires hourly. To restore access, click the "Request Authorization" button. 
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')



st.subheader("AI Resume Analysis based on keywords", divider="red")

txt = st.text_area("Job description", key = "text 1")
job = pd.Series(txt, name="Text")
st.dataframe(job)

uploaded_files = st.file_uploader(
    "Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 1"
)
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        st.dataframe(data)
        st.text_area("Extracted Text", data, height=200) 
        frames = [job, data]
        result = pd.concat(frames)
        st.dataframe(result)

        model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
        labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
        entities = model.predict_entities(text_data, labels)
        df = pd.DataFrame(entities)
        st.dataframe(entities)
        st.dataframe(df)

        import plotly.express as px
        fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
        fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
        st.plotly_chart(fig)



        



        
            
        
        vectorizer = TfidfVectorizer()
        tfidf_matrix = vectorizer.fit_transform(result)
        tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
        st.subheader("TF-IDF Values:")
        st.dataframe(tfidf_df)
        
        cosine_sim_matrix = cosine_similarity(tfidf_matrix)
        cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
        st.subheader("Cosine Similarity Matrix:")
        st.dataframe(cosine_sim_df)

        import plotly.express as px
        st.subheader("A score closer to 1 means closer match")
        
        fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
                        x=['text1', 'Jon Description'],
                        y=['text1', 'Job Description'])
        st.plotly_chart(fig)

        st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
        for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
            st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")

    
st.divider()

txt = st.text_area("Job description", key = "text 2")
job = pd.Series(txt, name="Text")
st.dataframe(job)

uploaded_files = st.file_uploader(
    "Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 2"
)
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        st.dataframe(data)
        frames = [job, data]
        result = pd.concat(frames)
        st.dataframe(result)