File size: 5,234 Bytes
5bea701 5a5c182 c40c6c3 88d066d 040362f 5bea701 9ac410d 88d066d 9ac410d 23fd868 cef76db c71c13d b1ed479 bf47e43 5929cca 5196b87 1a68e65 5929cca eddfa20 fb9b052 fb5218a 87c1f41 b1ed479 5043930 b979134 36fcfae b979134 8da9b1a b979134 4a0a62c 8da9b1a dc3fbf7 4a0a62c dc3fbf7 80b0d9b 56827f2 b979134 4a0a62c 8da9b1a 63fdfc2 b1a0cf1 1704d5a b1a0cf1 1704d5a b1ed479 1704d5a 56827f2 1704d5a b1a0cf1 63fdfc2 dd3054c 5b1512b ffb9a11 bf47e43 5929cca 5196b87 1a68e65 5929cca eddfa20 fb9b052 fb5218a 87c1f41 5043930 87c1f41 1a68e65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from gliner import GLiNER
import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import tempfile
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the YouTube Comments Sentiment Analysis App**")
expander.write('''
**Supported File Formats**
This app accepts files in .pdf formats.
**How to Use**
Upload your file first. Then, click the 'Results' button.
**Usage Limits**
You can request results up to 5 times.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own Named Entity Recognition (NER) Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Authorization**
For security purposes, your authorization access expires hourly. To restore access, click the "Request Authorization" button.
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**File Handling and Errors**
The app may display an error message if your file is corrupt, or has other errors.
For any errors or inquiries, please contact us at [email protected]
''')
st.subheader("AI Resume Analysis based on keywords", divider="red")
txt = st.text_area("Job description", key = "text 1")
job = pd.Series(txt, name="Text")
st.dataframe(job)
uploaded_files = st.file_uploader(
"Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 1"
)
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
data = pd.Series(text_data, name = 'Text')
st.dataframe(data)
st.text_area("Extracted Text", data, height=200)
frames = [job, data]
result = pd.concat(frames)
st.dataframe(result)
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
entities = model.predict_entities(text_data, labels)
df = pd.DataFrame(entities)
st.dataframe(entities)
st.dataframe(df)
import plotly.express as px
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig)
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(result)
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
st.subheader("TF-IDF Values:")
st.dataframe(tfidf_df)
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
st.subheader("Cosine Similarity Matrix:")
st.dataframe(cosine_sim_df)
import plotly.express as px
st.subheader("A score closer to 1 means closer match")
fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
x=['text1', 'Jon Description'],
y=['text1', 'Job Description'])
st.plotly_chart(fig)
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
st.divider()
txt = st.text_area("Job description", key = "text 2")
job = pd.Series(txt, name="Text")
st.dataframe(job)
uploaded_files = st.file_uploader(
"Choose a CSV file", accept_multiple_files=True, type = "pdf", key = "candidate 2"
)
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
data = pd.Series(text_data, name = 'Text')
st.dataframe(data)
frames = [job, data]
result = pd.concat(frames)
st.dataframe(result)
|