nlpblogs commited on
Commit
dd3054c
·
verified ·
1 Parent(s): fb9b052

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -45
app.py CHANGED
@@ -34,36 +34,16 @@ uploaded_files = st.file_uploader(
34
  )
35
 
36
 
37
- all_resumes_text = [] # Store the text content of each PDF
38
  for uploaded_file in uploaded_files:
39
  pdf_reader = PdfReader(uploaded_file)
40
  text_data = ""
41
  for page in pdf_reader.pages:
42
  text_data += page.extract_text()
43
- all_resumes_text.append(text_data)
 
44
 
45
 
46
- if all_resumes_text:
47
- all_documents = [job_description_series.iloc[0]] + all_resumes_text
48
-
49
- vectorizer = TfidfVectorizer()
50
- tfidf_matrix = vectorizer.fit_transform(all_documents)
51
-
52
- tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
53
- st.subheader("TF-IDF Values:")
54
- st.dataframe(tfidf_df)
55
-
56
- cosine_sim_matrix = cosine_similarity(tfidf_matrix)
57
- cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
58
- st.subheader("Cosine Similarity Matrix:")
59
- st.dataframe(cosine_sim_df)
60
-
61
- # Display similarity scores between the job description and each resume
62
- st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
63
- for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
64
- st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
65
-
66
-
67
 
68
  st.divider()
69
 
@@ -76,7 +56,7 @@ uploaded_files = st.file_uploader(
76
  )
77
 
78
 
79
- all_resumes_text = [] # Store the text content of each PDF
80
 
81
 
82
  for uploaded_file in uploaded_files:
@@ -84,29 +64,10 @@ for uploaded_file in uploaded_files:
84
  text_data = ""
85
  for page in pdf_reader.pages:
86
  text_data += page.extract_text()
87
- all_resumes_text.append(text_data)
88
 
89
 
90
- if all_resumes_text:
91
- all_documents = [job_description_series.iloc[0]] + all_resumes_text
92
-
93
- vectorizer = TfidfVectorizer()
94
- tfidf_matrix = vectorizer.fit_transform(all_documents)
95
-
96
- tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
97
- st.subheader("TF-IDF Values:")
98
- st.dataframe(tfidf_df)
99
-
100
- cosine_sim_matrix = cosine_similarity(tfidf_matrix)
101
- cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
102
- st.subheader("Cosine Similarity Matrix:")
103
- st.dataframe(cosine_sim_df)
104
-
105
- # Display similarity scores between the job description and each resume
106
- st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
107
- for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
108
- st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
109
-
110
 
111
 
112
 
 
34
  )
35
 
36
 
 
37
  for uploaded_file in uploaded_files:
38
  pdf_reader = PdfReader(uploaded_file)
39
  text_data = ""
40
  for page in pdf_reader.pages:
41
  text_data += page.extract_text()
42
+ st.write(text_data)
43
+
44
 
45
 
46
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  st.divider()
49
 
 
56
  )
57
 
58
 
59
+
60
 
61
 
62
  for uploaded_file in uploaded_files:
 
64
  text_data = ""
65
  for page in pdf_reader.pages:
66
  text_data += page.extract_text()
67
+ st.write(text_data)
68
 
69
 
70
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
 
73