Update app.py
Browse files
app.py
CHANGED
@@ -18,93 +18,97 @@ import pandas as pd
|
|
18 |
from PyPDF2 import PdfReader
|
19 |
from gliner import GLiNER
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
"Choose
|
28 |
)
|
29 |
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
if uploaded_files:
|
34 |
-
for uploaded_file in uploaded_files:
|
35 |
try:
|
36 |
pdf_reader = PdfReader(uploaded_file)
|
37 |
text_data = ""
|
38 |
for page in pdf_reader.pages:
|
39 |
text_data += page.extract_text()
|
40 |
-
|
41 |
except Exception as e:
|
42 |
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
43 |
|
44 |
-
if
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
st.subheader("TF-IDF Values:")
|
52 |
-
st.dataframe(
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
st.subheader("Cosine Similarity Matrix:")
|
57 |
-
st.dataframe(
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
62 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
st.divider()
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
"Choose
|
74 |
)
|
75 |
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
if uploaded_files:
|
80 |
-
for uploaded_file in uploaded_files:
|
81 |
try:
|
82 |
pdf_reader = PdfReader(uploaded_file)
|
83 |
text_data = ""
|
84 |
for page in pdf_reader.pages:
|
85 |
text_data += page.extract_text()
|
86 |
-
|
87 |
except Exception as e:
|
88 |
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
89 |
|
90 |
-
if
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
st.subheader("TF-IDF Values:")
|
98 |
-
st.dataframe(
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
st.subheader("Cosine Similarity Matrix:")
|
103 |
-
st.dataframe(
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
108 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
109 |
|
|
|
|
|
110 |
|
|
|
18 |
from PyPDF2 import PdfReader
|
19 |
from gliner import GLiNER
|
20 |
|
21 |
+
import streamlit as st
|
22 |
+
import pandas as pd
|
23 |
+
from PyPDF2 import PdfReader
|
24 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
25 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
26 |
+
import tempfile
|
27 |
|
28 |
+
# First set of inputs and calculations
|
29 |
+
txt1 = st.text_area("Job description 1", key="text 1")
|
30 |
+
job_description_series1 = pd.Series([txt1], name="Text")
|
31 |
+
st.dataframe(job_description_series1)
|
32 |
|
33 |
+
uploaded_files1 = st.file_uploader(
|
34 |
+
"Choose PDF file(s) for candidate profiles 1", type="pdf", key="candidate 1", accept_multiple_files=True
|
35 |
)
|
36 |
|
37 |
+
all_resumes_text1 = [] # Store the text content of each PDF
|
38 |
|
39 |
+
if uploaded_files1:
|
40 |
+
for uploaded_file in uploaded_files1:
|
|
|
|
|
41 |
try:
|
42 |
pdf_reader = PdfReader(uploaded_file)
|
43 |
text_data = ""
|
44 |
for page in pdf_reader.pages:
|
45 |
text_data += page.extract_text()
|
46 |
+
all_resumes_text1.append(text_data)
|
47 |
except Exception as e:
|
48 |
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
49 |
|
50 |
+
if all_resumes_text1:
|
51 |
+
all_documents1 = [job_description_series1.iloc[0]] + all_resumes_text1
|
52 |
|
53 |
+
vectorizer1 = TfidfVectorizer()
|
54 |
+
tfidf_matrix1 = vectorizer1.fit_transform(all_documents1)
|
55 |
|
56 |
+
tfidf_df1 = pd.DataFrame(tfidf_matrix1.toarray(), columns=vectorizer1.get_feature_names_out())
|
57 |
+
st.subheader("TF-IDF Values (Set 1):")
|
58 |
+
st.dataframe(tfidf_df1)
|
59 |
|
60 |
+
cosine_sim_matrix1 = cosine_similarity(tfidf_matrix1)
|
61 |
+
cosine_sim_df1 = pd.DataFrame(cosine_sim_matrix1)
|
62 |
+
st.subheader("Cosine Similarity Matrix (Set 1):")
|
63 |
+
st.dataframe(cosine_sim_df1)
|
64 |
|
65 |
+
st.subheader("Cosine Similarity Scores (Job Description 1 vs. Resumes 1):")
|
66 |
+
for i, similarity_score in enumerate(cosine_sim_matrix1[0][1:]):
|
|
|
67 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
68 |
|
|
|
|
|
69 |
st.divider()
|
70 |
|
71 |
+
# Second set of inputs and calculations
|
72 |
+
txt2 = st.text_area("Job description 2", key="text 2")
|
73 |
+
job_description_series2 = pd.Series([txt2], name="Text")
|
74 |
+
st.dataframe(job_description_series2)
|
75 |
|
76 |
+
uploaded_files2 = st.file_uploader(
|
77 |
+
"Choose PDF file(s) for candidate profiles 2", type="pdf", key="candidate 2", accept_multiple_files=True
|
78 |
)
|
79 |
|
80 |
+
all_resumes_text2 = [] # Store the text content of each PDF
|
81 |
|
82 |
+
if uploaded_files2:
|
83 |
+
for uploaded_file in uploaded_files2:
|
|
|
|
|
84 |
try:
|
85 |
pdf_reader = PdfReader(uploaded_file)
|
86 |
text_data = ""
|
87 |
for page in pdf_reader.pages:
|
88 |
text_data += page.extract_text()
|
89 |
+
all_resumes_text2.append(text_data)
|
90 |
except Exception as e:
|
91 |
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
92 |
|
93 |
+
if all_resumes_text2:
|
94 |
+
all_documents2 = [job_description_series2.iloc[0]] + all_resumes_text2
|
95 |
|
96 |
+
vectorizer2 = TfidfVectorizer()
|
97 |
+
tfidf_matrix2 = vectorizer2.fit_transform(all_documents2)
|
98 |
|
99 |
+
tfidf_df2 = pd.DataFrame(tfidf_matrix2.toarray(), columns=vectorizer2.get_feature_names_out())
|
100 |
+
st.subheader("TF-IDF Values (Set 2):")
|
101 |
+
st.dataframe(tfidf_df2)
|
102 |
|
103 |
+
cosine_sim_matrix2 = cosine_similarity(tfidf_matrix2)
|
104 |
+
cosine_sim_df2 = pd.DataFrame(cosine_sim_matrix2)
|
105 |
+
st.subheader("Cosine Similarity Matrix (Set 2):")
|
106 |
+
st.dataframe(cosine_sim_df2)
|
107 |
|
108 |
+
st.subheader("Cosine Similarity Scores (Job Description 2 vs. Resumes 2):")
|
109 |
+
for i, similarity_score in enumerate(cosine_sim_matrix2[0][1:]):
|
|
|
110 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
111 |
|
112 |
+
|
113 |
+
|
114 |
|