nlpblogs commited on
Commit
b979134
·
verified ·
1 Parent(s): 9571592

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -28
app.py CHANGED
@@ -40,40 +40,19 @@ for uploaded_file in uploaded_files:
40
  data = pd.Series(text_data, name = 'Text')
41
  st.dataframe(data)
42
  frames = [job, data]
43
- result1 = pd.concat(frames)
44
- st.dataframe(result1)
45
-
46
-
47
-
48
 
49
- model = GLiNER.from_pretrained("urchade/gliner_base")
50
- labels = ["person", "country", "organization", "time", "role"]
51
  entities = model.predict_entities(text_data, labels)
 
 
52
 
53
- entity_dict = {}
54
- for label in labels:
55
- entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
56
-
57
-
58
- data1 = {"Text": text_data, **entity_dict}
59
- st.dataframe(data1)
60
-
61
- data = data1.T
62
- st.write(data)
63
 
64
 
65
 
66
- if data is not None:
67
- value_counts1 = data['person'].value_counts()
68
-
69
- df1 = pd.DataFrame(value_counts1)
70
-
71
- final_df = df1.reset_index().rename(columns={"index": "label"})
72
-
73
-
74
-
75
- fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
76
- st.plotly_chart(fig2)
77
 
78
 
79
  vectorizer = TfidfVectorizer()
 
40
  data = pd.Series(text_data, name = 'Text')
41
  st.dataframe(data)
42
  frames = [job, data]
43
+ result = pd.concat(frames)
44
+ st.dataframe(result)
 
 
 
45
 
46
+ model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
47
+ labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
48
  entities = model.predict_entities(text_data, labels)
49
+ df = pd.DataFrame(entities)
50
+ st.dataframe(entities)
51
 
 
 
 
 
 
 
 
 
 
 
52
 
53
 
54
 
55
+
 
 
 
 
 
 
 
 
 
 
56
 
57
 
58
  vectorizer = TfidfVectorizer()