Update app.py
Browse files
app.py
CHANGED
@@ -40,40 +40,19 @@ for uploaded_file in uploaded_files:
|
|
40 |
data = pd.Series(text_data, name = 'Text')
|
41 |
st.dataframe(data)
|
42 |
frames = [job, data]
|
43 |
-
|
44 |
-
st.dataframe(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
model = GLiNER.from_pretrained("
|
50 |
-
labels = ["person", "country", "organization", "
|
51 |
entities = model.predict_entities(text_data, labels)
|
|
|
|
|
52 |
|
53 |
-
entity_dict = {}
|
54 |
-
for label in labels:
|
55 |
-
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
|
56 |
-
|
57 |
-
|
58 |
-
data1 = {"Text": text_data, **entity_dict}
|
59 |
-
st.dataframe(data1)
|
60 |
-
|
61 |
-
data = data1.T
|
62 |
-
st.write(data)
|
63 |
|
64 |
|
65 |
|
66 |
-
|
67 |
-
value_counts1 = data['person'].value_counts()
|
68 |
-
|
69 |
-
df1 = pd.DataFrame(value_counts1)
|
70 |
-
|
71 |
-
final_df = df1.reset_index().rename(columns={"index": "label"})
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
|
76 |
-
st.plotly_chart(fig2)
|
77 |
|
78 |
|
79 |
vectorizer = TfidfVectorizer()
|
|
|
40 |
data = pd.Series(text_data, name = 'Text')
|
41 |
st.dataframe(data)
|
42 |
frames = [job, data]
|
43 |
+
result = pd.concat(frames)
|
44 |
+
st.dataframe(result)
|
|
|
|
|
|
|
45 |
|
46 |
+
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
|
47 |
+
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
|
48 |
entities = model.predict_entities(text_data, labels)
|
49 |
+
df = pd.DataFrame(entities)
|
50 |
+
st.dataframe(entities)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
|
55 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
vectorizer = TfidfVectorizer()
|