Update app.py
Browse files
app.py
CHANGED
@@ -25,39 +25,27 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
25 |
from sklearn.metrics.pairwise import cosine_similarity
|
26 |
import tempfile
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
st.dataframe(
|
31 |
-
|
32 |
-
from transformers import pipeline
|
33 |
-
|
34 |
|
35 |
uploaded_files = st.file_uploader(
|
36 |
-
"Choose a PDF file(s) for candidate profiles",
|
37 |
)
|
38 |
|
39 |
-
all_resumes_text = [] # Store the text content and entities of each PDF
|
40 |
|
41 |
-
|
42 |
-
|
43 |
|
|
|
44 |
for uploaded_file in uploaded_files:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
entity_dict = {}
|
54 |
-
for label in labels:
|
55 |
-
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
|
56 |
-
|
57 |
-
data = {"Text": text_data, **entity_dict}
|
58 |
-
all_resumes_text.append(data)
|
59 |
-
|
60 |
-
|
61 |
|
62 |
if all_resumes_text:
|
63 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
@@ -83,36 +71,27 @@ if uploaded_files:
|
|
83 |
|
84 |
st.divider()
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
st.dataframe(
|
89 |
-
|
90 |
|
91 |
uploaded_files = st.file_uploader(
|
92 |
-
"Choose a PDF file(s) for candidate profiles",
|
93 |
)
|
94 |
|
95 |
-
all_resumes_text = [] # Store the text content and entities of each PDF
|
96 |
|
97 |
-
|
98 |
-
|
99 |
|
|
|
100 |
for uploaded_file in uploaded_files:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
entity_dict = {}
|
110 |
-
for label in labels:
|
111 |
-
entity_dict[label] = [entity["text"] for entity in entities if entity["label"] == label]
|
112 |
-
|
113 |
-
data = {"Text": text_data, **entity_dict}
|
114 |
-
all_resumes_text.append(data)
|
115 |
-
|
116 |
|
117 |
if all_resumes_text:
|
118 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
@@ -134,4 +113,8 @@ if uploaded_files:
|
|
134 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
135 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
136 |
|
|
|
|
|
|
|
|
|
137 |
|
|
|
25 |
from sklearn.metrics.pairwise import cosine_similarity
|
26 |
import tempfile
|
27 |
|
28 |
+
txt = st.text_area("Job description", key = "text 1")
|
29 |
+
job_description_series = pd.Series(txt, name="Text")
|
30 |
+
st.dataframe(job_description_series)
|
|
|
|
|
|
|
31 |
|
32 |
uploaded_files = st.file_uploader(
|
33 |
+
"Choose a PDF file(s) for candidate profiles", type="pdf", key = "candidate 1"
|
34 |
)
|
35 |
|
|
|
36 |
|
37 |
+
all_resumes_text = [] # Store the text content of each PDF
|
|
|
38 |
|
39 |
+
if uploaded_files:
|
40 |
for uploaded_file in uploaded_files:
|
41 |
+
try:
|
42 |
+
pdf_reader = PdfReader(uploaded_file)
|
43 |
+
text_data = ""
|
44 |
+
for page in pdf_reader.pages:
|
45 |
+
text_data += page.extract_text()
|
46 |
+
all_resumes_text.append(text_data)
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if all_resumes_text:
|
51 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
|
|
71 |
|
72 |
st.divider()
|
73 |
|
74 |
+
txt = st.text_area("Job description", key = "text 2")
|
75 |
+
job_description_series = pd.Series(txt, name="Text")
|
76 |
+
st.dataframe(job_description_series)
|
|
|
77 |
|
78 |
uploaded_files = st.file_uploader(
|
79 |
+
"Choose a PDF file(s) for candidate profiles", type="pdf", key = "candidate 2"
|
80 |
)
|
81 |
|
|
|
82 |
|
83 |
+
all_resumes_text = [] # Store the text content of each PDF
|
|
|
84 |
|
85 |
+
if uploaded_files:
|
86 |
for uploaded_file in uploaded_files:
|
87 |
+
try:
|
88 |
+
pdf_reader = PdfReader(uploaded_file)
|
89 |
+
text_data = ""
|
90 |
+
for page in pdf_reader.pages:
|
91 |
+
text_data += page.extract_text()
|
92 |
+
all_resumes_text.append(text_data)
|
93 |
+
except Exception as e:
|
94 |
+
st.error(f"Error processing file {uploaded_file.name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
if all_resumes_text:
|
97 |
all_documents = [job_description_series.iloc[0]] + all_resumes_text
|
|
|
113 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
114 |
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
115 |
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
|