File size: 25,194 Bytes
50f328c
4418d0f
3b05042
 
 
4418d0f
 
 
 
 
 
 
 
9552e26
 
 
 
3b05042
 
 
 
 
 
 
 
 
 
 
 
 
 
9552e26
 
3b05042
 
 
 
 
 
 
 
 
 
4418d0f
 
9552e26
4418d0f
9552e26
4418d0f
cc1ee0b
9552e26
 
4418d0f
9552e26
 
4418d0f
cc1ee0b
3b05042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4418d0f
cc1ee0b
9552e26
 
 
 
 
4418d0f
cc1ee0b
9552e26
 
 
4418d0f
9552e26
 
4418d0f
cc1ee0b
9552e26
 
 
 
 
4418d0f
cc1ee0b
9552e26
 
 
 
 
4418d0f
cc1ee0b
9552e26
 
 
 
 
 
 
 
 
4418d0f
9552e26
4418d0f
9552e26
 
4418d0f
9552e26
3b05042
 
 
9552e26
4418d0f
cc1ee0b
9552e26
3b05042
9552e26
 
3b05042
 
 
 
 
9552e26
3b05042
 
9552e26
4418d0f
 
3b05042
9552e26
 
 
3b05042
4418d0f
9552e26
4418d0f
 
9552e26
3b05042
 
 
 
 
4418d0f
 
 
 
 
9552e26
4418d0f
 
3b05042
 
 
 
 
 
 
 
4418d0f
9552e26
4418d0f
3b05042
 
 
cc1ee0b
 
3b05042
 
 
4418d0f
9552e26
3b05042
 
 
 
 
 
 
 
4418d0f
 
50f328c
3b05042
 
cc1ee0b
 
3b05042
cc1ee0b
50f328c
 
 
 
 
cc1ee0b
50f328c
 
cc1ee0b
9552e26
4418d0f
 
 
5cdef45
4418d0f
cc1ee0b
50f328c
9552e26
3b05042
4418d0f
50f328c
cc1ee0b
9552e26
 
cc1ee0b
4418d0f
cc1ee0b
4418d0f
9552e26
 
 
cc1ee0b
 
4418d0f
 
 
cc1ee0b
4418d0f
cc1ee0b
4418d0f
 
 
 
9552e26
cc1ee0b
4418d0f
9552e26
4418d0f
 
 
 
cc1ee0b
4418d0f
9552e26
4418d0f
cc1ee0b
4418d0f
 
cc1ee0b
4418d0f
 
 
 
 
 
3b05042
cc1ee0b
50f328c
 
 
3b05042
 
 
 
4418d0f
 
cc1ee0b
 
4418d0f
50f328c
1da4d19
50f328c
 
 
 
9552e26
4418d0f
9552e26
4418d0f
3b05042
 
 
 
4418d0f
 
 
50f328c
 
 
 
4418d0f
 
 
cc1ee0b
4418d0f
 
 
9552e26
4418d0f
 
 
 
cc1ee0b
 
50f328c
 
3b05042
cc1ee0b
3b05042
 
 
 
 
 
 
 
cc1ee0b
 
4418d0f
3b05042
 
 
cc1ee0b
3b05042
 
 
 
1da4d19
9552e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f328c
9552e26
cc1ee0b
50f328c
9552e26
cc1ee0b
4418d0f
5cdef45
cc1ee0b
50f328c
4418d0f
 
 
 
9552e26
 
3b05042
 
 
 
 
 
50f328c
9552e26
4418d0f
1da4d19
cc1ee0b
8a4545f
 
217c6bd
cc1ee0b
9552e26
 
3b05042
4418d0f
 
9552e26
cc1ee0b
0f1d758
4418d0f
 
1da4d19
3b05042
cc1ee0b
 
 
 
3b05042
9552e26
 
 
3b05042
cc1ee0b
 
 
 
3b05042
5cdef45
9552e26
 
cc1ee0b
9552e26
 
3b05042
9552e26
 
 
3b05042
9552e26
3b05042
 
9552e26
3b05042
 
cc1ee0b
 
9552e26
 
3b05042
9552e26
4418d0f
 
9552e26
3b05042
 
 
 
 
4418d0f
 
 
 
 
9552e26
4418d0f
 
3b05042
 
 
 
 
 
 
 
4418d0f
3b05042
4418d0f
3b05042
 
 
cc1ee0b
 
3b05042
 
 
4418d0f
3b05042
 
 
 
 
 
 
 
 
4418d0f
50f328c
9552e26
 
 
cc1ee0b
4418d0f
9552e26
3b05042
4418d0f
9552e26
4418d0f
cc1ee0b
3b05042
 
 
 
 
 
 
 
 
cc1ee0b
3b05042
cc1ee0b
3b05042
 
 
 
cc1ee0b
3b05042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9552e26
50f328c
 
cc1ee0b
 
3b05042
 
 
 
cc1ee0b
 
9552e26
3b05042
9552e26
 
3b05042
 
cc1ee0b
3b05042
 
 
9552e26
cc1ee0b
9552e26
3b05042
 
cc1ee0b
3b05042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1ee0b
3b05042
 
 
 
 
9552e26
 
3b05042
 
 
 
cc1ee0b
3b05042
 
9552e26
3b05042
 
cc1ee0b
 
3b05042
 
 
 
cc1ee0b
 
 
3b05042
 
 
cc1ee0b
 
3b05042
 
 
 
cc1ee0b
 
 
3b05042
 
 
cc1ee0b
 
3b05042
 
 
 
cc1ee0b
 
 
3b05042
 
 
cc1ee0b
 
 
3b05042
9552e26
 
cc1ee0b
 
 
 
 
 
 
 
 
 
 
 
9552e26
 
 
 
3b05042
 
cc1ee0b
 
3b05042
 
 
 
 
 
 
9552e26
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import os

os.environ['HF_HOME'] = os.path.abspath(
    os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)

import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
    LlamaModel, CLIPTextModel,
    LlamaTokenizerFast, CLIPTokenizer
)
from diffusers_helper.hunyuan import (
    encode_prompt_conds, vae_decode,
    vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
    save_bcthw_as_mp4, crop_or_pad_yield_mask,
    soft_append_bcthw, resize_and_center_crop,
    state_dict_weighted_merge, state_dict_offset_merge,
    generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
    cpu, gpu,
    get_cuda_free_memory_gb,
    move_model_to_device_with_memory_preservation,
    offload_model_from_device_for_memory_preservation,
    fake_diffusers_current_device,
    DynamicSwapInstaller,
    unload_complete_models,
    load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket

# Check GPU memory
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60

print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')

# Load models
text_encoder = LlamaModel.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo",
    subfolder='text_encoder',
    torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo",
    subfolder='text_encoder_2',
    torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo",
    subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo",
    subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
    "hunyuanvideo-community/HunyuanVideo",
    subfolder='vae',
    torch_dtype=torch.float16
).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained(
    "lllyasviel/flux_redux_bfl",
    subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
    "lllyasviel/flux_redux_bfl",
    subfolder='image_encoder',
    torch_dtype=torch.float16
).cpu()

transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
    'lllyasviel/FramePack_F1_I2V_HY_20250503',
    torch_dtype=torch.bfloat16
).cpu()

# Evaluation mode
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()

# Slicing/Tiling for low VRAM
if not high_vram:
    vae.enable_slicing()
    vae.enable_tiling()

transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')

# Move to correct dtype
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

# No gradient
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)

# DynamicSwap if low VRAM
if not high_vram:
    DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
    text_encoder_2.to(gpu)
    image_encoder.to(gpu)
    vae.to(gpu)
    transformer.to(gpu)

stream = AsyncStream()

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

examples = [
    ["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
    ["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
    ["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
]

# Example generation (optional)
def generate_examples(input_image, prompt):
    t2v=False
    n_prompt=""
    seed=31337
    total_second_length=5
    latent_window_size=9
    steps=25
    cfg=1.0
    gs=10.0
    rs=0.0
    gpu_memory_preservation=6
    use_teacache=True
    mp4_crf=16

    global stream

    if t2v:
        default_height, default_width = 640, 640
        input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
        print("No input image provided. Using a blank white image.")

    yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

    stream = AsyncStream()

    async_run(
        worker, input_image, prompt, n_prompt, seed,
        total_second_length, latent_window_size, steps,
        cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
    )

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == 'file':
            output_filename = data
            yield (
                output_filename,
                gr.update(),
                gr.update(),
                gr.update(),
                gr.update(interactive=False),
                gr.update(interactive=True)
            )

        if flag == 'progress':
            preview, desc, html = data
            yield (
                gr.update(),
                gr.update(visible=True, value=preview),
                desc,
                html,
                gr.update(interactive=False),
                gr.update(interactive=True)
            )

        if flag == 'end':
            yield (
                output_filename,
                gr.update(visible=False),
                gr.update(),
                '',
                gr.update(interactive=True),
                gr.update(interactive=False)
            )
            break

@torch.no_grad()
def worker(
    input_image, prompt, n_prompt, seed,
    total_second_length, latent_window_size, steps,
    cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
):
    # Calculate total sections
    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    job_id = generate_timestamp()

    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        # Unload if VRAM is low
        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, transformer
            )

        # Text encoding
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))

        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)
            load_model_as_complete(text_encoder_2, target_device=gpu)

        llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        if cfg == 1:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # Process image
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))

        H, W, C = input_image.shape
        height, width = find_nearest_bucket(H, W, resolution=640)
        input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)

        Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))

        input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
        input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]

        # VAE encoding
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))

        if not high_vram:
            load_model_as_complete(vae, target_device=gpu)
        start_latent = vae_encode(input_image_pt, vae)

        # CLIP Vision
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)
        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Convert dtype
        llama_vec = llama_vec.to(transformer.dtype)
        llama_vec_n = llama_vec_n.to(transformer.dtype)
        clip_l_pooler = clip_l_pooler.to(transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)

        # Start sampling
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))

        rnd = torch.Generator("cpu").manual_seed(seed)

        history_latents = torch.zeros(
            size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
            dtype=torch.float32
        ).cpu()
        history_pixels = None

        # Add start_latent
        history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
        total_generated_latent_frames = 1

        for section_index in range(total_latent_sections):
            if stream.input_queue.top() == 'end':
                stream.output_queue.push(('end', None))
                return

            print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')

            if not high_vram:
                unload_complete_models()
                move_model_to_device_with_memory_preservation(
                    transformer, target_device=gpu,
                    preserved_memory_gb=gpu_memory_preservation
                )

            if use_teacache:
                transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
            else:
                transformer.initialize_teacache(enable_teacache=False)

            def callback(d):
                preview = d['denoised']
                preview = vae_decode_fake(preview)
                preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')

                if stream.input_queue.top() == 'end':
                    stream.output_queue.push(('end', None))
                    raise KeyboardInterrupt('User ends the task.')

                current_step = d['i'] + 1
                percentage = int(100.0 * current_step / steps)
                hint = f'Sampling {current_step}/{steps}'
                desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
                stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
                return

            indices = torch.arange(
                0, sum([1, 16, 2, 1, latent_window_size])
            ).unsqueeze(0)
            (
                clean_latent_indices_start,
                clean_latent_4x_indices,
                clean_latent_2x_indices,
                clean_latent_1x_indices,
                latent_indices
            ) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)

            clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)

            clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
                :, :, -sum([16, 2, 1]):, :, :
            ].split([16, 2, 1], dim=2)

            clean_latents = torch.cat(
                [start_latent.to(history_latents), clean_latents_1x],
                dim=2
            )

            generated_latents = sample_hunyuan(
                transformer=transformer,
                sampler='unipc',
                width=width,
                height=height,
                frames=latent_window_size * 4 - 3,
                real_guidance_scale=cfg,
                distilled_guidance_scale=gs,
                guidance_rescale=rs,
                num_inference_steps=steps,
                generator=rnd,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=gpu,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                callback=callback,
            )

            total_generated_latent_frames += int(generated_latents.shape[2])
            history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)

            if not high_vram:
                offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
                load_model_as_complete(vae, target_device=gpu)

            real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]

            if history_pixels is None:
                history_pixels = vae_decode(real_history_latents, vae).cpu()
            else:
                section_latent_frames = latent_window_size * 2
                overlapped_frames = latent_window_size * 4 - 3

                current_pixels = vae_decode(
                    real_history_latents[:, :, -section_latent_frames:], vae
                ).cpu()
                history_pixels = soft_append_bcthw(
                    history_pixels, current_pixels, overlapped_frames
                )

            if not high_vram:
                unload_complete_models()

            output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')

            save_bcthw_as_mp4(history_pixels, output_filename, fps=30)

            print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')

            stream.output_queue.push(('file', output_filename))

    except:
        traceback.print_exc()
        if not high_vram:
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)

    stream.output_queue.push(('end', None))
    return

def get_duration(
    input_image, prompt, t2v, n_prompt,
    seed, total_second_length, latent_window_size,
    steps, cfg, gs, rs, gpu_memory_preservation,
    use_teacache, mp4_crf
):
    return total_second_length * 60

@spaces.GPU(duration=get_duration)
def process(
    input_image, prompt, t2v=False, n_prompt="", seed=31337,
    total_second_length=5, latent_window_size=9, steps=25,
    cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
    use_teacache=True, mp4_crf=16
):
    global stream
    if t2v:
        default_height, default_width = 640, 640
        input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
        print("No input image provided. Using a blank white image.")
    else:
        composite_rgba_uint8 = input_image["composite"]

        rgb_uint8 = composite_rgba_uint8[:, :, :3]
        mask_uint8 = composite_rgba_uint8[:, :, 3]

        h, w = rgb_uint8.shape[:2]
        background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)

        alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
        alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)

        blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
                                background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)

        input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)

    yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

    stream = AsyncStream()

    async_run(
        worker, input_image, prompt, n_prompt, seed,
        total_second_length, latent_window_size, steps,
        cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
    )

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == 'file':
            output_filename = data
            yield (
                output_filename,
                gr.update(),
                gr.update(),
                gr.update(),
                gr.update(interactive=False),
                gr.update(interactive=True)
            )

        elif flag == 'progress':
            preview, desc, html = data
            yield (
                gr.update(),
                gr.update(visible=True, value=preview),
                desc,
                html,
                gr.update(interactive=False),
                gr.update(interactive=True)
            )

        elif flag == 'end':
            yield (
                output_filename,
                gr.update(visible=False),
                gr.update(),
                '',
                gr.update(interactive=True),
                gr.update(interactive=False)
            )
            break

def end_process():
    stream.input_queue.push('end')


quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.'
]
quick_prompts = [[x] for x in quick_prompts]


def make_custom_css():
    base_progress_css = make_progress_bar_css()
    extra_css = """
    body {
        background: #fafbfe !important;
        font-family: "Noto Sans", sans-serif;
    }
    #title-container {
        text-align: center;
        padding: 20px 0;
        background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
        border-radius: 0 0 10px 10px;
        margin-bottom: 20px;
    }
    #title-container h1 {
        color: white;
        font-size: 2rem;
        margin: 0;
        font-weight: 800;
        text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
    }
    .gr-panel {
        background: #ffffffcc;
        backdrop-filter: blur(4px);
        border: 1px solid #dcdcf7;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 8px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .gr-box > label {
        font-size: 0.9rem;
        font-weight: 600;
        color: #333;
    }
    .button-container button {
        min-height: 48px;
        font-size: 1rem;
        font-weight: 600;
        border-radius: 8px;
        border: none !important;
    }
    .button-container button#start-button {
        background-color: #4b9ffa !important;
        color: #fff;
    }
    .button-container button#stop-button {
        background-color: #ef5d84 !important;
        color: #fff;
    }
    .button-container button:hover {
        filter: brightness(0.97);
    }
    .no-generating-animation {
        margin-top: 10px;
        margin-bottom: 10px;
    }
    """
    return base_progress_css + extra_css

css = make_custom_css()

block = gr.Blocks(css=css).queue()
with block:
    # Title (use gr.Group instead of gr.Box for older Gradio versions)
    with gr.Group(elem_id="title-container"):
        gr.Markdown("<h1>FramePack I2V</h1>")

    gr.Markdown("""
    ### Video diffusion, but feels like image diffusion
    FramePack I2V - a model that predicts future frames from past frames,
    letting you generate short animations from a single image plus text prompt.
    """)

    with gr.Row():
        with gr.Column():
            input_image = gr.ImageEditor(
                type="numpy",
                label="Image Editor (use Brush for mask)",
                height=320,
                brush=gr.Brush(colors=["#ffffff"])
            )
            prompt = gr.Textbox(label="Prompt", value='')
            t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)

            example_quick_prompts = gr.Dataset(
                samples=quick_prompts,
                label="Quick Prompts",
                samples_per_page=1000,
                components=[prompt]
            )
            example_quick_prompts.click(
                fn=lambda x: x[0],
                inputs=[example_quick_prompts],
                outputs=prompt,
                show_progress=False,
                queue=False
            )

            with gr.Row(elem_classes="button-container"):
                start_button = gr.Button(value="Start Generation", elem_id="start-button")
                end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)

            total_second_length = gr.Slider(
                label="Total Video Length (Seconds)",
                minimum=1,
                maximum=5,
                value=2,
                step=0.1
            )

            with gr.Group():
                with gr.Accordion("Advanced Settings", open=False):
                    use_teacache = gr.Checkbox(
                        label='Use TeaCache',
                        value=True,
                        info='Faster speed, but may worsen hands/fingers.'
                    )
                    n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
                    seed = gr.Number(label="Seed", value=31337, precision=0)
                    latent_window_size = gr.Slider(
                        label="Latent Window Size",
                        minimum=1, maximum=33,
                        value=9, step=1,
                        visible=False
                    )
                    steps = gr.Slider(
                        label="Steps",
                        minimum=1, maximum=100,
                        value=25, step=1,
                        info='Not recommended to change drastically.'
                    )
                    cfg = gr.Slider(
                        label="CFG Scale",
                        minimum=1.0, maximum=32.0,
                        value=1.0, step=0.01,
                        visible=False
                    )
                    gs = gr.Slider(
                        label="Distilled CFG Scale",
                        minimum=1.0, maximum=32.0,
                        value=10.0, step=0.01,
                        info='Not recommended to change drastically.'
                    )
                    rs = gr.Slider(
                        label="CFG Re-Scale",
                        minimum=0.0, maximum=1.0,
                        value=0.0, step=0.01,
                        visible=False
                    )
                    gpu_memory_preservation = gr.Slider(
                        label="GPU Memory Preservation (GB)",
                        minimum=6, maximum=128,
                        value=6, step=0.1,
                        info="Increase if OOM occurs, but slower."
                    )
                    mp4_crf = gr.Slider(
                        label="MP4 Compression (CRF)",
                        minimum=0, maximum=100,
                        value=16, step=1,
                        info="Lower = better quality. 16 recommended."
                    )

        with gr.Column():
            preview_image = gr.Image(
                label="Preview Latents",
                height=200,
                visible=False
            )
            result_video = gr.Video(
                label="Finished Frames",
                autoplay=True,
                show_share_button=False,
                height=512,
                loop=True
            )
            progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
            progress_bar = gr.HTML('', elem_classes='no-generating-animation')


    ips = [
        input_image, prompt, t2v, n_prompt, seed,
        total_second_length, latent_window_size,
        steps, cfg, gs, rs, gpu_memory_preservation,
        use_teacache, mp4_crf
    ]
    start_button.click(
        fn=process,
        inputs=ips,
        outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
    )
    end_button.click(fn=end_process)


block.launch(share=True)