Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,7 @@
|
|
1 |
-
#############################################
|
2 |
-
# from diffusers_helper.hf_login import login
|
3 |
-
# ํ์์ HF ๋ก๊ทธ์ธ ์ฌ์ฉ (์ฃผ์ ํด์ ํ)
|
4 |
-
#############################################
|
5 |
|
6 |
import os
|
7 |
|
8 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
9 |
-
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
10 |
-
)
|
11 |
|
12 |
import gradio as gr
|
13 |
import torch
|
@@ -16,1028 +10,137 @@ import einops
|
|
16 |
import safetensors.torch as sf
|
17 |
import numpy as np
|
18 |
import math
|
19 |
-
import
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"prompt": "Prompt",
|
30 |
-
"quick_prompts": "Quick Prompts",
|
31 |
-
"start_generation": "Generate",
|
32 |
-
"stop_generation": "Stop",
|
33 |
-
"use_teacache": "Use TeaCache",
|
34 |
-
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
35 |
-
"negative_prompt": "Negative Prompt",
|
36 |
-
"seed": "Seed",
|
37 |
-
# ์ต๋ 4์ด๋ก UI ํ๊ธฐ ์์
|
38 |
-
"video_length": "Video Length (max 4 seconds)",
|
39 |
-
"latent_window": "Latent Window Size",
|
40 |
-
"steps": "Inference Steps",
|
41 |
-
"steps_info": "Changing this value is not recommended.",
|
42 |
-
"cfg_scale": "CFG Scale",
|
43 |
-
"distilled_cfg": "Distilled CFG Scale",
|
44 |
-
"distilled_cfg_info": "Changing this value is not recommended.",
|
45 |
-
"cfg_rescale": "CFG Rescale",
|
46 |
-
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
|
47 |
-
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
48 |
-
"next_latents": "Next Latents",
|
49 |
-
"generated_video": "Generated Video",
|
50 |
-
"sampling_note": "Note: The model predicts future frames from past frames. If the start action isn't immediately visible, please wait for more frames.",
|
51 |
-
"error_message": "Error",
|
52 |
-
"processing_error": "Processing error",
|
53 |
-
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
54 |
-
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
|
55 |
-
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
56 |
-
"partial_video": "Processing error, but partial video has been generated",
|
57 |
-
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
58 |
-
}
|
59 |
-
}
|
60 |
-
|
61 |
-
def get_translation(key):
|
62 |
-
return translations["en"].get(key, key)
|
63 |
-
|
64 |
-
#############################################
|
65 |
-
# diffusers_helper ๊ด๋ จ ์ํฌํธ
|
66 |
-
#############################################
|
67 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
68 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
69 |
-
from
|
70 |
-
cpu,
|
71 |
-
gpu,
|
72 |
-
get_cuda_free_memory_gb,
|
73 |
-
move_model_to_device_with_memory_preservation,
|
74 |
-
offload_model_from_device_for_memory_preservation,
|
75 |
-
fake_diffusers_current_device,
|
76 |
-
DynamicSwapInstaller,
|
77 |
-
unload_complete_models,
|
78 |
-
load_model_as_complete
|
79 |
-
)
|
80 |
-
from diffusers_helper.utils import (
|
81 |
-
generate_timestamp,
|
82 |
-
save_bcthw_as_mp4,
|
83 |
-
resize_and_center_crop,
|
84 |
-
crop_or_pad_yield_mask,
|
85 |
-
soft_append_bcthw
|
86 |
-
)
|
87 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
88 |
-
from diffusers_helper.hunyuan import (
|
89 |
-
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake
|
90 |
-
)
|
91 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
92 |
-
from diffusers_helper.
|
93 |
-
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
94 |
-
|
95 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
96 |
-
from transformers import (
|
97 |
-
LlamaModel, CLIPTextModel,
|
98 |
-
LlamaTokenizerFast, CLIPTokenizer,
|
99 |
-
SiglipVisionModel, SiglipImageProcessor
|
100 |
-
)
|
101 |
-
|
102 |
-
#############################################
|
103 |
-
# GPU ์ฒดํฌ
|
104 |
-
#############################################
|
105 |
-
GPU_AVAILABLE = torch.cuda.is_available()
|
106 |
-
free_mem_gb = 0.0
|
107 |
-
high_vram = False
|
108 |
-
if GPU_AVAILABLE:
|
109 |
-
try:
|
110 |
-
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
111 |
-
high_vram = (free_mem_gb > 60)
|
112 |
-
except:
|
113 |
-
pass
|
114 |
-
print(f"GPU Available: {GPU_AVAILABLE}, free_mem_gb={free_mem_gb}, high_vram={high_vram}")
|
115 |
-
|
116 |
-
cpu_fallback_mode = not GPU_AVAILABLE
|
117 |
-
last_update_time = time.time()
|
118 |
-
|
119 |
-
#############################################
|
120 |
-
# ๋ชจ๋ธ ๋ก๋ (์ ์ญ)
|
121 |
-
#############################################
|
122 |
-
text_encoder = None
|
123 |
-
text_encoder_2 = None
|
124 |
-
tokenizer = None
|
125 |
-
tokenizer_2 = None
|
126 |
-
vae = None
|
127 |
-
feature_extractor = None
|
128 |
-
image_encoder = None
|
129 |
-
transformer = None
|
130 |
-
|
131 |
-
# ์๋ ๋ก์ง์ ์ง๋ฌธ์ ์ ์๋ '๋ ๋ฒ์งธ ์ฝ๋'์ ๋ชจ๋ธ ๋ก๋ ๋ถ๋ถ์ ๊ฑฐ์ ๊ทธ๋๋ก ์ฌ์ฉ
|
132 |
-
def load_global_models():
|
133 |
-
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
134 |
-
global vae, feature_extractor, image_encoder, transformer
|
135 |
-
global cpu_fallback_mode
|
136 |
-
|
137 |
-
# ์ด๋ฏธ ๋ก๋๋์์ผ๋ฉด ํจ์ค
|
138 |
-
if transformer is not None:
|
139 |
-
return
|
140 |
-
|
141 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ณด
|
142 |
-
device = gpu if GPU_AVAILABLE else cpu
|
143 |
-
|
144 |
-
# diffusers_helper.memory.get_cuda_free_memory_gb(gpu)๋ก ๋ ์ ํํ ๊ตฌํด๋ ๋จ
|
145 |
-
print("Loading models...")
|
146 |
-
|
147 |
-
# ======== ์ค ์ฝ๋: ๋ ๋ฒ์งธ ์์ ๊ธฐ์ค =========
|
148 |
-
# (1) ํ์ด๋ธ๋ฆฌ๋ (if high_vram -> GPU๋ก ๋ก๋, ์๋๋ฉด CPU + DynamicSwap)
|
149 |
-
|
150 |
-
# ๋ฐ๋์ float16, bfloat16๋ก ๋ก๋
|
151 |
-
text_encoder_local = LlamaModel.from_pretrained(
|
152 |
-
"hunyuanvideo-community/HunyuanVideo",
|
153 |
-
subfolder='text_encoder',
|
154 |
-
torch_dtype=torch.float16
|
155 |
-
).cpu()
|
156 |
-
|
157 |
-
text_encoder_2_local = CLIPTextModel.from_pretrained(
|
158 |
-
"hunyuanvideo-community/HunyuanVideo",
|
159 |
-
subfolder='text_encoder_2',
|
160 |
-
torch_dtype=torch.float16
|
161 |
-
).cpu()
|
162 |
-
|
163 |
-
tokenizer_local = LlamaTokenizerFast.from_pretrained(
|
164 |
-
"hunyuanvideo-community/HunyuanVideo",
|
165 |
-
subfolder='tokenizer'
|
166 |
-
)
|
167 |
-
tokenizer_2_local = CLIPTokenizer.from_pretrained(
|
168 |
-
"hunyuanvideo-community/HunyuanVideo",
|
169 |
-
subfolder='tokenizer_2'
|
170 |
-
)
|
171 |
-
|
172 |
-
vae_local = AutoencoderKLHunyuanVideo.from_pretrained(
|
173 |
-
"hunyuanvideo-community/HunyuanVideo",
|
174 |
-
subfolder='vae',
|
175 |
-
torch_dtype=torch.float16
|
176 |
-
).cpu()
|
177 |
-
|
178 |
-
feature_extractor_local = SiglipImageProcessor.from_pretrained(
|
179 |
-
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
180 |
-
)
|
181 |
-
image_encoder_local = SiglipVisionModel.from_pretrained(
|
182 |
-
"lllyasviel/flux_redux_bfl",
|
183 |
-
subfolder='image_encoder',
|
184 |
-
torch_dtype=torch.float16
|
185 |
-
).cpu()
|
186 |
-
|
187 |
-
# FramePack_F1_I2V_HY_20250503 (bfloat16)
|
188 |
-
transformer_local = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
189 |
-
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
190 |
-
torch_dtype=torch.bfloat16
|
191 |
-
).cpu()
|
192 |
-
|
193 |
-
# eval & dtype
|
194 |
-
vae_local.eval()
|
195 |
-
text_encoder_local.eval()
|
196 |
-
text_encoder_2_local.eval()
|
197 |
-
image_encoder_local.eval()
|
198 |
-
transformer_local.eval()
|
199 |
-
|
200 |
-
# VAE slicing for low VRAM
|
201 |
-
if not high_vram:
|
202 |
-
vae_local.enable_slicing()
|
203 |
-
vae_local.enable_tiling()
|
204 |
-
|
205 |
-
# ์คํ๋ก๋์ฉ
|
206 |
-
transformer_local.high_quality_fp32_output_for_inference = True
|
207 |
-
transformer_local.to(dtype=torch.bfloat16)
|
208 |
-
vae_local.to(dtype=torch.float16)
|
209 |
-
image_encoder_local.to(dtype=torch.float16)
|
210 |
-
text_encoder_local.to(dtype=torch.float16)
|
211 |
-
text_encoder_2_local.to(dtype=torch.float16)
|
212 |
-
|
213 |
-
# requires_grad_(False)
|
214 |
-
for m in [vae_local, text_encoder_local, text_encoder_2_local, image_encoder_local, transformer_local]:
|
215 |
-
m.requires_grad_(False)
|
216 |
-
|
217 |
-
# GPU ๋ชจ๋ & VRAM ๋ง์ผ๋ฉด ์ ๋ถ GPU
|
218 |
-
# ๊ทธ๋ ์ง ์์ผ๋ฉด DynamicSwap
|
219 |
-
if GPU_AVAILABLE:
|
220 |
-
if not high_vram:
|
221 |
-
DynamicSwapInstaller.install_model(transformer_local, device=gpu)
|
222 |
-
DynamicSwapInstaller.install_model(text_encoder_local, device=gpu)
|
223 |
-
else:
|
224 |
-
text_encoder_local.to(gpu)
|
225 |
-
text_encoder_2_local.to(gpu)
|
226 |
-
image_encoder_local.to(gpu)
|
227 |
-
vae_local.to(gpu)
|
228 |
-
transformer_local.to(gpu)
|
229 |
-
else:
|
230 |
-
cpu_fallback_mode = True
|
231 |
-
|
232 |
-
# ๊ธ๋ก๋ฒ์ ํ ๋น
|
233 |
-
print("Model loaded.")
|
234 |
-
text_encoder = text_encoder_local
|
235 |
-
text_encoder_2 = text_encoder_2_local
|
236 |
-
tokenizer = tokenizer_local
|
237 |
-
tokenizer_2 = tokenizer_2_local
|
238 |
-
vae = vae_local
|
239 |
-
feature_extractor = feature_extractor_local
|
240 |
-
image_encoder = image_encoder_local
|
241 |
-
transformer = transformer_local
|
242 |
-
|
243 |
-
#############################################
|
244 |
-
# Worker ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋) ๊ทธ๋๋ก
|
245 |
-
#############################################
|
246 |
-
stream = AsyncStream()
|
247 |
-
|
248 |
-
outputs_folder = './outputs/'
|
249 |
-
os.makedirs(outputs_folder, exist_ok=True)
|
250 |
-
|
251 |
-
@torch.no_grad()
|
252 |
-
def worker(
|
253 |
-
input_image, prompt, n_prompt, seed,
|
254 |
-
total_second_length, latent_window_size, steps,
|
255 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
256 |
-
):
|
257 |
-
"""
|
258 |
-
์ค์ ์ํ๋ง ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋ ๊ธฐ๋ฐ)
|
259 |
-
"""
|
260 |
-
load_global_models() # ๋ชจ๋ธ ๋ก๋ฉ
|
261 |
-
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
262 |
-
global vae, feature_extractor, image_encoder, transformer
|
263 |
-
global last_update_time
|
264 |
-
|
265 |
-
# ์ต๋ 4์ด๋ก ๊ณ ์
|
266 |
-
total_second_length = min(total_second_length, 4.0)
|
267 |
-
|
268 |
-
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
269 |
-
total_latent_sections = int(max(round(total_latent_sections), 1))
|
270 |
-
|
271 |
-
job_id = generate_timestamp()
|
272 |
-
|
273 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
274 |
-
|
275 |
-
try:
|
276 |
-
# GPU ์ ์ ๊ฒฝ์ฐ Unload
|
277 |
-
if not high_vram and GPU_AVAILABLE:
|
278 |
-
unload_complete_models(
|
279 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
280 |
-
)
|
281 |
-
|
282 |
-
# Text encoding
|
283 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
284 |
-
|
285 |
-
if not high_vram and GPU_AVAILABLE:
|
286 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
287 |
-
load_model_as_complete(text_encoder_2, target_device=gpu)
|
288 |
-
|
289 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
290 |
-
if cfg == 1.0:
|
291 |
-
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
292 |
-
else:
|
293 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
294 |
-
|
295 |
-
llama_vec, llama_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
296 |
-
llama_vec_n, llama_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
297 |
-
|
298 |
-
# Image processing
|
299 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
300 |
-
|
301 |
-
H, W, C = input_image.shape
|
302 |
-
height, width = find_nearest_bucket(H, W, resolution=640)
|
303 |
-
|
304 |
-
if cpu_fallback_mode:
|
305 |
-
height = min(height, 320)
|
306 |
-
width = min(width, 320)
|
307 |
-
|
308 |
-
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
309 |
-
|
310 |
-
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
311 |
-
|
312 |
-
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
313 |
-
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
314 |
-
|
315 |
-
# VAE encode
|
316 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
317 |
-
|
318 |
-
if not high_vram and GPU_AVAILABLE:
|
319 |
-
load_model_as_complete(vae, target_device=gpu)
|
320 |
-
start_latent = vae_encode(input_image_pt, vae)
|
321 |
-
|
322 |
-
# CLIP Vision
|
323 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
324 |
-
|
325 |
-
if not high_vram and GPU_AVAILABLE:
|
326 |
-
load_model_as_complete(image_encoder, target_device=gpu)
|
327 |
-
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
328 |
-
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
329 |
-
|
330 |
-
# dtype
|
331 |
-
llama_vec = llama_vec.to(transformer.dtype)
|
332 |
-
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
333 |
-
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
334 |
-
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
335 |
-
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
336 |
-
|
337 |
-
# Start sampling
|
338 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
339 |
-
|
340 |
-
rnd = torch.Generator("cpu").manual_seed(seed)
|
341 |
-
|
342 |
-
# ์ด๊ธฐ history latents
|
343 |
-
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
344 |
-
history_pixels = None
|
345 |
-
|
346 |
-
# start_latent ๋ถ์ด๊ธฐ
|
347 |
-
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
348 |
-
total_generated_latent_frames = 1
|
349 |
-
|
350 |
-
for section_index in range(total_latent_sections):
|
351 |
-
if stream.input_queue.top() == 'end':
|
352 |
-
stream.output_queue.push(('end', None))
|
353 |
-
return
|
354 |
-
|
355 |
-
print(f'Section {section_index+1}/{total_latent_sections}')
|
356 |
-
|
357 |
-
if not high_vram and GPU_AVAILABLE:
|
358 |
-
unload_complete_models()
|
359 |
-
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
360 |
-
|
361 |
-
# teacache
|
362 |
-
if use_teacache:
|
363 |
-
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
364 |
-
else:
|
365 |
-
transformer.initialize_teacache(enable_teacache=False)
|
366 |
-
|
367 |
-
def callback(d):
|
368 |
-
preview = d['denoised']
|
369 |
-
preview = vae_decode_fake(preview)
|
370 |
-
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
371 |
-
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
372 |
|
373 |
-
if stream.input_queue.top() == 'end':
|
374 |
-
stream.output_queue.push(('end', None))
|
375 |
-
raise KeyboardInterrupt('User stops generation.')
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
hint = f'Sampling {current_step}/{steps}'
|
380 |
-
desc = f'Section {section_index+1}/{total_latent_sections}'
|
381 |
-
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
382 |
-
return
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
387 |
-
(
|
388 |
-
clean_latent_indices_start,
|
389 |
-
clean_latent_4x_indices,
|
390 |
-
clean_latent_2x_indices,
|
391 |
-
clean_latent_1x_indices,
|
392 |
-
latent_indices
|
393 |
-
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
394 |
|
395 |
-
|
|
|
|
|
|
|
|
|
396 |
|
397 |
-
|
398 |
-
|
399 |
|
400 |
-
|
401 |
-
generated_latents = sample_hunyuan(
|
402 |
-
transformer=transformer,
|
403 |
-
sampler='unipc',
|
404 |
-
width=width,
|
405 |
-
height=height,
|
406 |
-
frames=frames_per_section,
|
407 |
-
real_guidance_scale=cfg,
|
408 |
-
distilled_guidance_scale=gs,
|
409 |
-
guidance_rescale=rs,
|
410 |
-
num_inference_steps=steps,
|
411 |
-
generator=rnd,
|
412 |
-
prompt_embeds=llama_vec,
|
413 |
-
prompt_embeds_mask=llama_mask,
|
414 |
-
prompt_poolers=clip_l_pooler,
|
415 |
-
negative_prompt_embeds=llama_vec_n,
|
416 |
-
negative_prompt_embeds_mask=llama_mask_n,
|
417 |
-
negative_prompt_poolers=clip_l_pooler_n,
|
418 |
-
device=gpu if GPU_AVAILABLE else cpu,
|
419 |
-
dtype=torch.bfloat16,
|
420 |
-
image_embeddings=image_encoder_last_hidden_state,
|
421 |
-
latent_indices=latent_indices,
|
422 |
-
clean_latents=clean_latents,
|
423 |
-
clean_latent_indices=clean_latent_indices,
|
424 |
-
clean_latents_2x=clean_latents_2x,
|
425 |
-
clean_latent_2x_indices=clean_latent_2x_indices,
|
426 |
-
clean_latents_4x=clean_latents_4x,
|
427 |
-
clean_latent_4x_indices=clean_latent_4x_indices,
|
428 |
-
callback=callback
|
429 |
-
)
|
430 |
-
except KeyboardInterrupt:
|
431 |
-
print("User cancelled.")
|
432 |
-
stream.output_queue.push(('end', None))
|
433 |
-
return
|
434 |
-
except Exception as e:
|
435 |
-
traceback.print_exc()
|
436 |
-
stream.output_queue.push(('end', None))
|
437 |
-
return
|
438 |
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
|
446 |
-
|
|
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
454 |
-
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
455 |
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
458 |
|
459 |
-
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
-
|
463 |
|
464 |
-
|
465 |
-
|
466 |
-
if not high_vram and GPU_AVAILABLE:
|
467 |
-
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
468 |
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
471 |
|
472 |
-
def
|
473 |
-
|
474 |
-
|
475 |
-
""
|
476 |
-
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
-
# Gradio์์ ์ด worker ํจ์๋ฅผ ๋น๋๊ธฐ๋ก ํธ์ถ
|
480 |
-
def process(
|
481 |
-
input_image, prompt, n_prompt, seed,
|
482 |
-
total_second_length, latent_window_size, steps,
|
483 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
484 |
-
):
|
485 |
global stream
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
488 |
|
489 |
-
yield None, None,
|
490 |
|
491 |
stream = AsyncStream()
|
492 |
-
|
493 |
-
|
494 |
-
input_image, prompt, n_prompt, seed,
|
495 |
-
total_second_length, latent_window_size, steps,
|
496 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
497 |
-
)
|
498 |
|
499 |
output_filename = None
|
500 |
-
prev_filename = None
|
501 |
-
error_message = None
|
502 |
|
503 |
while True:
|
504 |
flag, data = stream.output_queue.next()
|
|
|
505 |
if flag == 'file':
|
506 |
output_filename = data
|
507 |
-
|
508 |
-
yield output_filename, gr.update(), gr.update(), "", gr.update(interactive=False), gr.update(interactive=True)
|
509 |
|
510 |
-
|
511 |
preview, desc, html = data
|
512 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
513 |
|
514 |
-
|
515 |
-
|
516 |
-
print(f"Error: {error_message}")
|
517 |
-
|
518 |
-
elif flag == 'end':
|
519 |
-
if output_filename is None and prev_filename:
|
520 |
-
output_filename = prev_filename
|
521 |
-
# ์๋ฌ๊ฐ ์์์ผ๋ฉด ์๋ฌ ํ์
|
522 |
-
if error_message:
|
523 |
-
yield (
|
524 |
-
output_filename, # ๋ง์ง๋ง ํ์ผ (๋๋ None)
|
525 |
-
gr.update(visible=False),
|
526 |
-
gr.update(),
|
527 |
-
f"<div style='color:red;'>{error_message}</div>",
|
528 |
-
gr.update(interactive=True),
|
529 |
-
gr.update(interactive=False)
|
530 |
-
)
|
531 |
-
else:
|
532 |
-
yield (
|
533 |
-
output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
|
534 |
-
)
|
535 |
break
|
536 |
|
537 |
-
# UI CSS
|
538 |
-
def make_custom_css():
|
539 |
-
base_progress_css = make_progress_bar_css()
|
540 |
-
pastel_css = """
|
541 |
-
body {
|
542 |
-
background: #faf9ff !important;
|
543 |
-
font-family: "Noto Sans", sans-serif;
|
544 |
-
}
|
545 |
-
#app-container {
|
546 |
-
max-width: 1200px;
|
547 |
-
margin: 0 auto;
|
548 |
-
padding: 1rem;
|
549 |
-
position: relative;
|
550 |
-
}
|
551 |
-
#app-container h1 {
|
552 |
-
color: #5F5AA2;
|
553 |
-
margin-bottom: 1.2rem;
|
554 |
-
font-weight: 700;
|
555 |
-
text-shadow: 1px 1px 2px #bbb;
|
556 |
-
}
|
557 |
-
.gr-panel {
|
558 |
-
background: #ffffffcc;
|
559 |
-
border: 1px solid #e1dff0;
|
560 |
-
border-radius: 8px;
|
561 |
-
padding: 1rem;
|
562 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
563 |
-
}
|
564 |
-
.button-container button {
|
565 |
-
min-height: 45px;
|
566 |
-
font-size: 1rem;
|
567 |
-
font-weight: 600;
|
568 |
-
border-radius: 6px;
|
569 |
-
}
|
570 |
-
.button-container button#start-button {
|
571 |
-
background-color: #A289E3 !important;
|
572 |
-
color: #fff !important;
|
573 |
-
border: 1px solid #a58de2;
|
574 |
-
}
|
575 |
-
.button-container button#stop-button {
|
576 |
-
background-color: #F48A9B !important;
|
577 |
-
color: #fff !important;
|
578 |
-
border: 1px solid #f18fa0;
|
579 |
-
}
|
580 |
-
.button-container button:hover {
|
581 |
-
filter: brightness(0.95);
|
582 |
-
}
|
583 |
-
.preview-container, .video-container {
|
584 |
-
border: 1px solid #ded9f2;
|
585 |
-
border-radius: 8px;
|
586 |
-
overflow: hidden;
|
587 |
-
}
|
588 |
-
.progress-container {
|
589 |
-
margin-top: 15px;
|
590 |
-
margin-bottom: 15px;
|
591 |
-
}
|
592 |
-
.error-message {
|
593 |
-
background-color: #FFF5F5;
|
594 |
-
border: 1px solid #FED7D7;
|
595 |
-
color: #E53E3E;
|
596 |
-
padding: 10px;
|
597 |
-
border-radius: 4px;
|
598 |
-
margin-top: 10px;
|
599 |
-
font-weight: 500;
|
600 |
-
}
|
601 |
-
@media (max-width: 768px) {
|
602 |
-
#app-container {
|
603 |
-
padding: 0.5rem;
|
604 |
-
}
|
605 |
-
.mobile-full-width {
|
606 |
-
flex-direction: column !important;
|
607 |
-
}
|
608 |
-
.mobile-full-width > .gr-block {
|
609 |
-
width: 100% !important;
|
610 |
-
}
|
611 |
-
}
|
612 |
-
"""
|
613 |
-
return base_progress_css + pastel_css
|
614 |
-
|
615 |
-
css = make_custom_css()
|
616 |
-
|
617 |
-
# ์ํ ํ๋กฌํํธ
|
618 |
-
quick_prompts = [
|
619 |
-
["The girl dances gracefully, with clear movements, full of charm."],
|
620 |
-
["A character doing some simple body movements."]
|
621 |
-
]
|
622 |
-
|
623 |
-
# Gradio UI
|
624 |
-
block = gr.Blocks(css=css).queue()
|
625 |
-
with block:
|
626 |
-
gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
|
627 |
-
|
628 |
-
with gr.Row(elem_classes="mobile-full-width"):
|
629 |
-
# ์ผ์ชฝ
|
630 |
-
with gr.Column(scale=1, elem_classes="gr-panel"):
|
631 |
-
input_image = gr.Image(
|
632 |
-
label=get_translation("upload_image"),
|
633 |
-
type="numpy",
|
634 |
-
height=320
|
635 |
-
)
|
636 |
-
prompt = gr.Textbox(
|
637 |
-
label=get_translation("prompt"),
|
638 |
-
value=''
|
639 |
-
)
|
640 |
-
|
641 |
-
example_quick_prompts = gr.Dataset(
|
642 |
-
samples=quick_prompts,
|
643 |
-
label=get_translation("quick_prompts"),
|
644 |
-
samples_per_page=1000,
|
645 |
-
components=[prompt]
|
646 |
-
)
|
647 |
-
example_quick_prompts.click(
|
648 |
-
fn=lambda x: x[0],
|
649 |
-
inputs=[example_quick_prompts],
|
650 |
-
outputs=prompt,
|
651 |
-
show_progress=False,
|
652 |
-
queue=False
|
653 |
-
)
|
654 |
-
|
655 |
-
# ์ค๋ฅธ์ชฝ
|
656 |
-
with gr.Column(scale=1, elem_classes="gr-panel"):
|
657 |
-
with gr.Row(elem_classes="button-container"):
|
658 |
-
start_button = gr.Button(
|
659 |
-
value=get_translation("start_generation"),
|
660 |
-
elem_id="start-button",
|
661 |
-
variant="primary"
|
662 |
-
)
|
663 |
-
stop_button = gr.Button(
|
664 |
-
value=get_translation("stop_generation"),
|
665 |
-
elem_id="stop-button",
|
666 |
-
interactive=False
|
667 |
-
)
|
668 |
-
|
669 |
-
result_video = gr.Video(
|
670 |
-
label=get_translation("generated_video"),
|
671 |
-
autoplay=True,
|
672 |
-
loop=True,
|
673 |
-
height=320,
|
674 |
-
elem_classes="video-container"
|
675 |
-
)
|
676 |
-
preview_image = gr.Image(
|
677 |
-
label=get_translation("next_latents"),
|
678 |
-
visible=False,
|
679 |
-
height=150,
|
680 |
-
elem_classes="preview-container"
|
681 |
-
)
|
682 |
-
gr.Markdown(get_translation("sampling_note"))
|
683 |
-
|
684 |
-
with gr.Group(elem_classes="progress-container"):
|
685 |
-
progress_desc = gr.Markdown('')
|
686 |
-
progress_bar = gr.HTML('')
|
687 |
-
|
688 |
-
error_message = gr.HTML('', visible=True)
|
689 |
-
|
690 |
-
# Advanced
|
691 |
-
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
692 |
-
use_teacache = gr.Checkbox(
|
693 |
-
label=get_translation("use_teacache"),
|
694 |
-
value=True,
|
695 |
-
info=get_translation("teacache_info")
|
696 |
-
)
|
697 |
-
n_prompt = gr.Textbox(label=get_translation("negative_prompt"), value="", visible=False)
|
698 |
-
seed = gr.Number(
|
699 |
-
label=get_translation("seed"),
|
700 |
-
value=31337,
|
701 |
-
precision=0
|
702 |
-
)
|
703 |
-
# ๊ธฐ๋ณธ 2์ด, ์ต๋ 4์ด
|
704 |
-
total_second_length = gr.Slider(
|
705 |
-
label=get_translation("video_length"),
|
706 |
-
minimum=1,
|
707 |
-
maximum=4,
|
708 |
-
value=2,
|
709 |
-
step=0.1
|
710 |
-
)
|
711 |
-
latent_window_size = gr.Slider(
|
712 |
-
label=get_translation("latent_window"),
|
713 |
-
minimum=1,
|
714 |
-
maximum=33,
|
715 |
-
value=9,
|
716 |
-
step=1,
|
717 |
-
visible=False
|
718 |
-
)
|
719 |
-
steps = gr.Slider(
|
720 |
-
label=get_translation("steps"),
|
721 |
-
minimum=1,
|
722 |
-
maximum=100,
|
723 |
-
value=25,
|
724 |
-
step=1,
|
725 |
-
info=get_translation("steps_info")
|
726 |
-
)
|
727 |
-
cfg = gr.Slider(
|
728 |
-
label=get_translation("cfg_scale"),
|
729 |
-
minimum=1.0,
|
730 |
-
maximum=32.0,
|
731 |
-
value=1.0,
|
732 |
-
step=0.01,
|
733 |
-
visible=False
|
734 |
-
)
|
735 |
-
gs = gr.Slider(
|
736 |
-
label=get_translation("distilled_cfg"),
|
737 |
-
minimum=1.0,
|
738 |
-
maximum=32.0,
|
739 |
-
value=10.0,
|
740 |
-
step=0.01,
|
741 |
-
info=get_translation("distilled_cfg_info")
|
742 |
-
)
|
743 |
-
rs = gr.Slider(
|
744 |
-
label=get_translation("cfg_rescale"),
|
745 |
-
minimum=0.0,
|
746 |
-
maximum=1.0,
|
747 |
-
value=0.0,
|
748 |
-
step=0.01,
|
749 |
-
visible=False
|
750 |
-
)
|
751 |
-
gpu_memory_preservation = gr.Slider(
|
752 |
-
label=get_translation("gpu_memory"),
|
753 |
-
minimum=6,
|
754 |
-
maximum=128,
|
755 |
-
value=6,
|
756 |
-
step=0.1,
|
757 |
-
info=get_translation("gpu_memory_info")
|
758 |
-
)
|
759 |
-
|
760 |
-
# ๋ฒํผ ์ฒ๋ฆฌ
|
761 |
-
inputs_list = [
|
762 |
-
input_image, prompt, n_prompt, seed,
|
763 |
-
total_second_length, latent_window_size, steps,
|
764 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
765 |
-
]
|
766 |
-
start_button.click(
|
767 |
-
fn=process,
|
768 |
-
inputs=inputs_list,
|
769 |
-
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, stop_button]
|
770 |
-
)
|
771 |
-
stop_button.click(fn=end_process)
|
772 |
-
|
773 |
-
block.launch()
|
774 |
-
#############################################
|
775 |
-
# from diffusers_helper.hf_login import login
|
776 |
-
# ํ์์ HF ๋ก๊ทธ์ธ ์ฌ์ฉ (์ฃผ์ ํด์ ํ)
|
777 |
-
#############################################
|
778 |
-
|
779 |
-
import os
|
780 |
-
|
781 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
782 |
-
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
783 |
-
)
|
784 |
-
|
785 |
-
import gradio as gr
|
786 |
-
import torch
|
787 |
-
import traceback
|
788 |
-
import einops
|
789 |
-
import safetensors.torch as sf
|
790 |
-
import numpy as np
|
791 |
-
import math
|
792 |
-
import time
|
793 |
-
|
794 |
-
# Hugging Face Spaces ํ๊ฒฝ ์ธ์ง ํ์ธ
|
795 |
-
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
796 |
-
|
797 |
-
# --------- ๋ฒ์ญ ๋์
๋๋ฆฌ(์์ด ๊ณ ์ ) ---------
|
798 |
-
translations = {
|
799 |
-
"en": {
|
800 |
-
"title": "FramePack - Image to Video Generation",
|
801 |
-
"upload_image": "Upload Image",
|
802 |
-
"prompt": "Prompt",
|
803 |
-
"quick_prompts": "Quick Prompts",
|
804 |
-
"start_generation": "Generate",
|
805 |
-
"stop_generation": "Stop",
|
806 |
-
"use_teacache": "Use TeaCache",
|
807 |
-
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
808 |
-
"negative_prompt": "Negative Prompt",
|
809 |
-
"seed": "Seed",
|
810 |
-
# ์ต๋ 4์ด๋ก UI ํ๊ธฐ ์์
|
811 |
-
"video_length": "Video Length (max 4 seconds)",
|
812 |
-
"latent_window": "Latent Window Size",
|
813 |
-
"steps": "Inference Steps",
|
814 |
-
"steps_info": "Changing this value is not recommended.",
|
815 |
-
"cfg_scale": "CFG Scale",
|
816 |
-
"distilled_cfg": "Distilled CFG Scale",
|
817 |
-
"distilled_cfg_info": "Changing this value is not recommended.",
|
818 |
-
"cfg_rescale": "CFG Rescale",
|
819 |
-
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
|
820 |
-
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
821 |
-
"next_latents": "Next Latents",
|
822 |
-
"generated_video": "Generated Video",
|
823 |
-
"sampling_note": "Note: The model predicts future frames from past frames. If the start action isn't immediately visible, please wait for more frames.",
|
824 |
-
"error_message": "Error",
|
825 |
-
"processing_error": "Processing error",
|
826 |
-
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
827 |
-
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
|
828 |
-
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
829 |
-
"partial_video": "Processing error, but partial video has been generated",
|
830 |
-
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
831 |
-
}
|
832 |
-
}
|
833 |
-
|
834 |
-
def get_translation(key):
|
835 |
-
return translations["en"].get(key, key)
|
836 |
-
|
837 |
-
#############################################
|
838 |
-
# diffusers_helper ๊ด๋ จ ์ํฌํธ
|
839 |
-
#############################################
|
840 |
-
from diffusers_helper.thread_utils import AsyncStream, async_run
|
841 |
-
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
842 |
-
from diffusers_helper.memory import (
|
843 |
-
cpu,
|
844 |
-
gpu,
|
845 |
-
get_cuda_free_memory_gb,
|
846 |
-
move_model_to_device_with_memory_preservation,
|
847 |
-
offload_model_from_device_for_memory_preservation,
|
848 |
-
fake_diffusers_current_device,
|
849 |
-
DynamicSwapInstaller,
|
850 |
-
unload_complete_models,
|
851 |
-
load_model_as_complete
|
852 |
-
)
|
853 |
-
from diffusers_helper.utils import (
|
854 |
-
generate_timestamp,
|
855 |
-
save_bcthw_as_mp4,
|
856 |
-
resize_and_center_crop,
|
857 |
-
crop_or_pad_yield_mask,
|
858 |
-
soft_append_bcthw
|
859 |
-
)
|
860 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
861 |
-
from diffusers_helper.hunyuan import (
|
862 |
-
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake
|
863 |
-
)
|
864 |
-
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
865 |
-
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
866 |
-
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
867 |
-
|
868 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
869 |
-
from transformers import (
|
870 |
-
LlamaModel, CLIPTextModel,
|
871 |
-
LlamaTokenizerFast, CLIPTokenizer,
|
872 |
-
SiglipVisionModel, SiglipImageProcessor
|
873 |
-
)
|
874 |
-
|
875 |
-
#############################################
|
876 |
-
# GPU ์ฒดํฌ
|
877 |
-
#############################################
|
878 |
-
GPU_AVAILABLE = torch.cuda.is_available()
|
879 |
-
free_mem_gb = 0.0
|
880 |
-
high_vram = False
|
881 |
-
if GPU_AVAILABLE:
|
882 |
-
try:
|
883 |
-
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
884 |
-
high_vram = (free_mem_gb > 60)
|
885 |
-
except:
|
886 |
-
pass
|
887 |
-
print(f"GPU Available: {GPU_AVAILABLE}, free_mem_gb={free_mem_gb}, high_vram={high_vram}")
|
888 |
-
|
889 |
-
cpu_fallback_mode = not GPU_AVAILABLE
|
890 |
-
last_update_time = time.time()
|
891 |
-
|
892 |
-
#############################################
|
893 |
-
# ๋ชจ๋ธ ๋ก๋ (์ ์ญ)
|
894 |
-
#############################################
|
895 |
-
text_encoder = None
|
896 |
-
text_encoder_2 = None
|
897 |
-
tokenizer = None
|
898 |
-
tokenizer_2 = None
|
899 |
-
vae = None
|
900 |
-
feature_extractor = None
|
901 |
-
image_encoder = None
|
902 |
-
transformer = None
|
903 |
-
|
904 |
-
# ์๋ ๋ก์ง์ ์ง๋ฌธ์ ์ ์๋ '๋ ๋ฒ์งธ ์ฝ๋'์ ๋ชจ๋ธ ๋ก๋ ๋ถ๋ถ์ ๊ฑฐ์ ๊ทธ๋๋ก ์ฌ์ฉ
|
905 |
-
def load_global_models():
|
906 |
-
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
907 |
-
global vae, feature_extractor, image_encoder, transformer
|
908 |
-
global cpu_fallback_mode
|
909 |
-
|
910 |
-
# ์ด๋ฏธ ๋ก๋๋์์ผ๋ฉด ํจ์ค
|
911 |
-
if transformer is not None:
|
912 |
-
return
|
913 |
-
|
914 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ณด
|
915 |
-
device = gpu if GPU_AVAILABLE else cpu
|
916 |
-
|
917 |
-
# diffusers_helper.memory.get_cuda_free_memory_gb(gpu)๋ก ๋ ์ ํํ ๊ตฌํด๋ ๋จ
|
918 |
-
print("Loading models...")
|
919 |
-
|
920 |
-
# ======== ์ค ์ฝ๋: ๋ ๋ฒ์งธ ์์ ๊ธฐ์ค =========
|
921 |
-
# (1) ํ์ด๋ธ๋ฆฌ๋ (if high_vram -> GPU๋ก ๋ก๋, ์๋๋ฉด CPU + DynamicSwap)
|
922 |
-
|
923 |
-
# ๋ฐ๋์ float16, bfloat16๋ก ๋ก๋
|
924 |
-
text_encoder_local = LlamaModel.from_pretrained(
|
925 |
-
"hunyuanvideo-community/HunyuanVideo",
|
926 |
-
subfolder='text_encoder',
|
927 |
-
torch_dtype=torch.float16
|
928 |
-
).cpu()
|
929 |
-
|
930 |
-
text_encoder_2_local = CLIPTextModel.from_pretrained(
|
931 |
-
"hunyuanvideo-community/HunyuanVideo",
|
932 |
-
subfolder='text_encoder_2',
|
933 |
-
torch_dtype=torch.float16
|
934 |
-
).cpu()
|
935 |
-
|
936 |
-
tokenizer_local = LlamaTokenizerFast.from_pretrained(
|
937 |
-
"hunyuanvideo-community/HunyuanVideo",
|
938 |
-
subfolder='tokenizer'
|
939 |
-
)
|
940 |
-
tokenizer_2_local = CLIPTokenizer.from_pretrained(
|
941 |
-
"hunyuanvideo-community/HunyuanVideo",
|
942 |
-
subfolder='tokenizer_2'
|
943 |
-
)
|
944 |
-
|
945 |
-
vae_local = AutoencoderKLHunyuanVideo.from_pretrained(
|
946 |
-
"hunyuanvideo-community/HunyuanVideo",
|
947 |
-
subfolder='vae',
|
948 |
-
torch_dtype=torch.float16
|
949 |
-
).cpu()
|
950 |
-
|
951 |
-
feature_extractor_local = SiglipImageProcessor.from_pretrained(
|
952 |
-
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
953 |
-
)
|
954 |
-
image_encoder_local = SiglipVisionModel.from_pretrained(
|
955 |
-
"lllyasviel/flux_redux_bfl",
|
956 |
-
subfolder='image_encoder',
|
957 |
-
torch_dtype=torch.float16
|
958 |
-
).cpu()
|
959 |
-
|
960 |
-
# FramePack_F1_I2V_HY_20250503 (bfloat16)
|
961 |
-
transformer_local = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
962 |
-
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
963 |
-
torch_dtype=torch.bfloat16
|
964 |
-
).cpu()
|
965 |
-
|
966 |
-
# eval & dtype
|
967 |
-
vae_local.eval()
|
968 |
-
text_encoder_local.eval()
|
969 |
-
text_encoder_2_local.eval()
|
970 |
-
image_encoder_local.eval()
|
971 |
-
transformer_local.eval()
|
972 |
-
|
973 |
-
# VAE slicing for low VRAM
|
974 |
-
if not high_vram:
|
975 |
-
vae_local.enable_slicing()
|
976 |
-
vae_local.enable_tiling()
|
977 |
-
|
978 |
-
# ์คํ๋ก๋์ฉ
|
979 |
-
transformer_local.high_quality_fp32_output_for_inference = True
|
980 |
-
transformer_local.to(dtype=torch.bfloat16)
|
981 |
-
vae_local.to(dtype=torch.float16)
|
982 |
-
image_encoder_local.to(dtype=torch.float16)
|
983 |
-
text_encoder_local.to(dtype=torch.float16)
|
984 |
-
text_encoder_2_local.to(dtype=torch.float16)
|
985 |
-
|
986 |
-
# requires_grad_(False)
|
987 |
-
for m in [vae_local, text_encoder_local, text_encoder_2_local, image_encoder_local, transformer_local]:
|
988 |
-
m.requires_grad_(False)
|
989 |
-
|
990 |
-
# GPU ๋ชจ๋ & VRAM ๋ง์ผ๋ฉด ์ ๋ถ GPU
|
991 |
-
# ๊ทธ๋ ์ง ์์ผ๋ฉด DynamicSwap
|
992 |
-
if GPU_AVAILABLE:
|
993 |
-
if not high_vram:
|
994 |
-
DynamicSwapInstaller.install_model(transformer_local, device=gpu)
|
995 |
-
DynamicSwapInstaller.install_model(text_encoder_local, device=gpu)
|
996 |
-
else:
|
997 |
-
text_encoder_local.to(gpu)
|
998 |
-
text_encoder_2_local.to(gpu)
|
999 |
-
image_encoder_local.to(gpu)
|
1000 |
-
vae_local.to(gpu)
|
1001 |
-
transformer_local.to(gpu)
|
1002 |
-
else:
|
1003 |
-
cpu_fallback_mode = True
|
1004 |
-
|
1005 |
-
# ๊ธ๋ก๋ฒ์ ํ ๋น
|
1006 |
-
print("Model loaded.")
|
1007 |
-
text_encoder = text_encoder_local
|
1008 |
-
text_encoder_2 = text_encoder_2_local
|
1009 |
-
tokenizer = tokenizer_local
|
1010 |
-
tokenizer_2 = tokenizer_2_local
|
1011 |
-
vae = vae_local
|
1012 |
-
feature_extractor = feature_extractor_local
|
1013 |
-
image_encoder = image_encoder_local
|
1014 |
-
transformer = transformer_local
|
1015 |
-
|
1016 |
-
#############################################
|
1017 |
-
# Worker ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋) ๊ทธ๋๋ก
|
1018 |
-
#############################################
|
1019 |
-
stream = AsyncStream()
|
1020 |
-
|
1021 |
-
outputs_folder = './outputs/'
|
1022 |
-
os.makedirs(outputs_folder, exist_ok=True)
|
1023 |
|
|
|
1024 |
@torch.no_grad()
|
1025 |
-
def worker(
|
1026 |
-
input_image, prompt, n_prompt, seed,
|
1027 |
-
total_second_length, latent_window_size, steps,
|
1028 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1029 |
-
):
|
1030 |
-
"""
|
1031 |
-
์ค์ ์ํ๋ง ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋ ๊ธฐ๋ฐ)
|
1032 |
-
"""
|
1033 |
-
load_global_models() # ๋ชจ๋ธ ๋ก๋ฉ
|
1034 |
-
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
1035 |
-
global vae, feature_extractor, image_encoder, transformer
|
1036 |
-
global last_update_time
|
1037 |
-
|
1038 |
-
# ์ต๋ 4์ด๋ก ๊ณ ์
|
1039 |
-
total_second_length = min(total_second_length, 4.0)
|
1040 |
-
|
1041 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
1042 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
1043 |
|
@@ -1046,38 +149,36 @@ def worker(
|
|
1046 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
1047 |
|
1048 |
try:
|
1049 |
-
# GPU
|
1050 |
-
if not high_vram
|
1051 |
unload_complete_models(
|
1052 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
1053 |
)
|
1054 |
|
1055 |
# Text encoding
|
|
|
1056 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
1057 |
|
1058 |
-
if not high_vram
|
1059 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
1060 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
1061 |
|
1062 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
1063 |
-
|
|
|
1064 |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
1065 |
else:
|
1066 |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
1067 |
|
1068 |
-
llama_vec,
|
1069 |
-
llama_vec_n,
|
|
|
|
|
1070 |
|
1071 |
-
# Image processing
|
1072 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
1073 |
|
1074 |
H, W, C = input_image.shape
|
1075 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
1076 |
-
|
1077 |
-
if cpu_fallback_mode:
|
1078 |
-
height = min(height, 320)
|
1079 |
-
width = min(width, 320)
|
1080 |
-
|
1081 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
1082 |
|
1083 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
@@ -1085,38 +186,42 @@ def worker(
|
|
1085 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
1086 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
1087 |
|
1088 |
-
# VAE
|
|
|
1089 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
1090 |
|
1091 |
-
if not high_vram
|
1092 |
load_model_as_complete(vae, target_device=gpu)
|
|
|
1093 |
start_latent = vae_encode(input_image_pt, vae)
|
1094 |
|
1095 |
# CLIP Vision
|
|
|
1096 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
1097 |
|
1098 |
-
if not high_vram
|
1099 |
load_model_as_complete(image_encoder, target_device=gpu)
|
|
|
1100 |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
1101 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
1102 |
|
1103 |
-
#
|
|
|
1104 |
llama_vec = llama_vec.to(transformer.dtype)
|
1105 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
1106 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
1107 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
1108 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
1109 |
|
1110 |
-
#
|
|
|
1111 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
1112 |
|
1113 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
1114 |
|
1115 |
-
# ์ด๊ธฐ history latents
|
1116 |
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
1117 |
history_pixels = None
|
1118 |
|
1119 |
-
# start_latent ๋ถ์ด๊ธฐ
|
1120 |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
1121 |
total_generated_latent_frames = 1
|
1122 |
|
@@ -1125,13 +230,12 @@ def worker(
|
|
1125 |
stream.output_queue.push(('end', None))
|
1126 |
return
|
1127 |
|
1128 |
-
print(f'
|
1129 |
|
1130 |
-
if not high_vram
|
1131 |
unload_complete_models()
|
1132 |
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
1133 |
|
1134 |
-
# teacache
|
1135 |
if use_teacache:
|
1136 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
1137 |
else:
|
@@ -1140,79 +244,63 @@ def worker(
|
|
1140 |
def callback(d):
|
1141 |
preview = d['denoised']
|
1142 |
preview = vae_decode_fake(preview)
|
|
|
1143 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
1144 |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
1145 |
|
1146 |
if stream.input_queue.top() == 'end':
|
1147 |
stream.output_queue.push(('end', None))
|
1148 |
-
raise KeyboardInterrupt('User
|
1149 |
|
1150 |
current_step = d['i'] + 1
|
1151 |
percentage = int(100.0 * current_step / steps)
|
1152 |
hint = f'Sampling {current_step}/{steps}'
|
1153 |
-
desc = f'
|
1154 |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
1155 |
return
|
1156 |
|
1157 |
-
# indices
|
1158 |
-
frames_per_section = latent_window_size * 4 - 3
|
1159 |
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
1160 |
-
(
|
1161 |
-
clean_latent_indices_start,
|
1162 |
-
clean_latent_4x_indices,
|
1163 |
-
clean_latent_2x_indices,
|
1164 |
-
clean_latent_1x_indices,
|
1165 |
-
latent_indices
|
1166 |
-
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
1167 |
-
|
1168 |
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
1169 |
|
1170 |
-
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -
|
1171 |
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
1172 |
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
|
1181 |
-
|
1182 |
-
|
1183 |
-
|
1184 |
-
|
1185 |
-
|
1186 |
-
|
1187 |
-
|
1188 |
-
|
1189 |
-
|
1190 |
-
|
1191 |
-
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
1199 |
-
|
1200 |
-
|
1201 |
-
|
1202 |
-
|
1203 |
-
except KeyboardInterrupt:
|
1204 |
-
print("User cancelled.")
|
1205 |
-
stream.output_queue.push(('end', None))
|
1206 |
-
return
|
1207 |
-
except Exception as e:
|
1208 |
-
traceback.print_exc()
|
1209 |
-
stream.output_queue.push(('end', None))
|
1210 |
-
return
|
1211 |
|
1212 |
-
total_generated_latent_frames += generated_latents.shape[2]
|
1213 |
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
1214 |
|
1215 |
-
if not high_vram
|
1216 |
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
1217 |
load_model_as_complete(vae, target_device=gpu)
|
1218 |
|
@@ -1222,325 +310,178 @@ def worker(
|
|
1222 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
1223 |
else:
|
1224 |
section_latent_frames = latent_window_size * 2
|
1225 |
-
overlapped_frames =
|
|
|
1226 |
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
1227 |
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
1228 |
|
1229 |
-
if not high_vram
|
1230 |
unload_complete_models()
|
1231 |
|
1232 |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
1233 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=16) # CRF=16
|
1234 |
|
1235 |
-
|
1236 |
|
|
|
|
|
|
|
1237 |
except:
|
1238 |
traceback.print_exc()
|
1239 |
-
|
1240 |
-
|
|
|
|
|
|
|
1241 |
|
1242 |
stream.output_queue.push(('end', None))
|
1243 |
return
|
1244 |
|
1245 |
-
def
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1249 |
global stream
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1263 |
|
1264 |
stream = AsyncStream()
|
1265 |
-
|
1266 |
-
|
1267 |
-
input_image, prompt, n_prompt, seed,
|
1268 |
-
total_second_length, latent_window_size, steps,
|
1269 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1270 |
-
)
|
1271 |
|
1272 |
output_filename = None
|
1273 |
-
prev_filename = None
|
1274 |
-
error_message = None
|
1275 |
|
1276 |
while True:
|
1277 |
flag, data = stream.output_queue.next()
|
|
|
1278 |
if flag == 'file':
|
1279 |
output_filename = data
|
1280 |
-
|
1281 |
-
yield output_filename, gr.update(), gr.update(), "", gr.update(interactive=False), gr.update(interactive=True)
|
1282 |
|
1283 |
-
|
1284 |
preview, desc, html = data
|
1285 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1286 |
|
1287 |
-
|
1288 |
-
|
1289 |
-
print(f"Error: {error_message}")
|
1290 |
-
|
1291 |
-
elif flag == 'end':
|
1292 |
-
if output_filename is None and prev_filename:
|
1293 |
-
output_filename = prev_filename
|
1294 |
-
# ์๋ฌ๊ฐ ์์์ผ๋ฉด ์๋ฌ ํ์
|
1295 |
-
if error_message:
|
1296 |
-
yield (
|
1297 |
-
output_filename, # ๋ง์ง๋ง ํ์ผ (๋๋ None)
|
1298 |
-
gr.update(visible=False),
|
1299 |
-
gr.update(),
|
1300 |
-
f"<div style='color:red;'>{error_message}</div>",
|
1301 |
-
gr.update(interactive=True),
|
1302 |
-
gr.update(interactive=False)
|
1303 |
-
)
|
1304 |
-
else:
|
1305 |
-
yield (
|
1306 |
-
output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
|
1307 |
-
)
|
1308 |
break
|
1309 |
|
1310 |
-
|
1311 |
-
def
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
background: #faf9ff !important;
|
1316 |
-
font-family: "Noto Sans", sans-serif;
|
1317 |
-
}
|
1318 |
-
#app-container {
|
1319 |
-
max-width: 1200px;
|
1320 |
-
margin: 0 auto;
|
1321 |
-
padding: 1rem;
|
1322 |
-
position: relative;
|
1323 |
-
}
|
1324 |
-
#app-container h1 {
|
1325 |
-
color: #5F5AA2;
|
1326 |
-
margin-bottom: 1.2rem;
|
1327 |
-
font-weight: 700;
|
1328 |
-
text-shadow: 1px 1px 2px #bbb;
|
1329 |
-
}
|
1330 |
-
.gr-panel {
|
1331 |
-
background: #ffffffcc;
|
1332 |
-
border: 1px solid #e1dff0;
|
1333 |
-
border-radius: 8px;
|
1334 |
-
padding: 1rem;
|
1335 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
1336 |
-
}
|
1337 |
-
.button-container button {
|
1338 |
-
min-height: 45px;
|
1339 |
-
font-size: 1rem;
|
1340 |
-
font-weight: 600;
|
1341 |
-
border-radius: 6px;
|
1342 |
-
}
|
1343 |
-
.button-container button#start-button {
|
1344 |
-
background-color: #A289E3 !important;
|
1345 |
-
color: #fff !important;
|
1346 |
-
border: 1px solid #a58de2;
|
1347 |
-
}
|
1348 |
-
.button-container button#stop-button {
|
1349 |
-
background-color: #F48A9B !important;
|
1350 |
-
color: #fff !important;
|
1351 |
-
border: 1px solid #f18fa0;
|
1352 |
-
}
|
1353 |
-
.button-container button:hover {
|
1354 |
-
filter: brightness(0.95);
|
1355 |
-
}
|
1356 |
-
.preview-container, .video-container {
|
1357 |
-
border: 1px solid #ded9f2;
|
1358 |
-
border-radius: 8px;
|
1359 |
-
overflow: hidden;
|
1360 |
-
}
|
1361 |
-
.progress-container {
|
1362 |
-
margin-top: 15px;
|
1363 |
-
margin-bottom: 15px;
|
1364 |
-
}
|
1365 |
-
.error-message {
|
1366 |
-
background-color: #FFF5F5;
|
1367 |
-
border: 1px solid #FED7D7;
|
1368 |
-
color: #E53E3E;
|
1369 |
-
padding: 10px;
|
1370 |
-
border-radius: 4px;
|
1371 |
-
margin-top: 10px;
|
1372 |
-
font-weight: 500;
|
1373 |
-
}
|
1374 |
-
@media (max-width: 768px) {
|
1375 |
-
#app-container {
|
1376 |
-
padding: 0.5rem;
|
1377 |
-
}
|
1378 |
-
.mobile-full-width {
|
1379 |
-
flex-direction: column !important;
|
1380 |
-
}
|
1381 |
-
.mobile-full-width > .gr-block {
|
1382 |
-
width: 100% !important;
|
1383 |
-
}
|
1384 |
-
}
|
1385 |
-
"""
|
1386 |
-
return base_progress_css + pastel_css
|
1387 |
-
|
1388 |
-
css = make_custom_css()
|
1389 |
-
|
1390 |
-
# ์ํ ํ๋กฌํํธ
|
1391 |
quick_prompts = [
|
1392 |
-
|
1393 |
-
|
1394 |
]
|
|
|
1395 |
|
1396 |
-
|
|
|
1397 |
block = gr.Blocks(css=css).queue()
|
1398 |
with block:
|
1399 |
-
gr.
|
1400 |
-
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
)
|
1409 |
-
|
1410 |
-
|
1411 |
-
|
1412 |
-
|
1413 |
-
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
|
1425 |
-
|
1426 |
-
|
1427 |
-
|
1428 |
-
|
1429 |
-
|
1430 |
-
|
1431 |
-
|
1432 |
-
|
1433 |
-
|
1434 |
-
|
1435 |
-
|
1436 |
-
|
1437 |
-
|
1438 |
-
|
1439 |
-
|
1440 |
-
|
1441 |
-
|
1442 |
-
|
1443 |
-
|
1444 |
-
|
1445 |
-
|
1446 |
-
|
1447 |
-
|
1448 |
-
|
1449 |
-
|
1450 |
-
|
1451 |
-
|
1452 |
-
|
1453 |
-
|
1454 |
-
|
1455 |
-
|
1456 |
-
|
1457 |
-
|
1458 |
-
|
1459 |
-
progress_bar = gr.HTML('')
|
1460 |
-
|
1461 |
-
error_message = gr.HTML('', visible=True)
|
1462 |
-
|
1463 |
-
# Advanced
|
1464 |
-
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
1465 |
-
use_teacache = gr.Checkbox(
|
1466 |
-
label=get_translation("use_teacache"),
|
1467 |
-
value=True,
|
1468 |
-
info=get_translation("teacache_info")
|
1469 |
-
)
|
1470 |
-
n_prompt = gr.Textbox(label=get_translation("negative_prompt"), value="", visible=False)
|
1471 |
-
seed = gr.Number(
|
1472 |
-
label=get_translation("seed"),
|
1473 |
-
value=31337,
|
1474 |
-
precision=0
|
1475 |
-
)
|
1476 |
-
# ๊ธฐ๋ณธ 2์ด, ์ต๋ 4์ด
|
1477 |
-
total_second_length = gr.Slider(
|
1478 |
-
label=get_translation("video_length"),
|
1479 |
-
minimum=1,
|
1480 |
-
maximum=4,
|
1481 |
-
value=2,
|
1482 |
-
step=0.1
|
1483 |
-
)
|
1484 |
-
latent_window_size = gr.Slider(
|
1485 |
-
label=get_translation("latent_window"),
|
1486 |
-
minimum=1,
|
1487 |
-
maximum=33,
|
1488 |
-
value=9,
|
1489 |
-
step=1,
|
1490 |
-
visible=False
|
1491 |
-
)
|
1492 |
-
steps = gr.Slider(
|
1493 |
-
label=get_translation("steps"),
|
1494 |
-
minimum=1,
|
1495 |
-
maximum=100,
|
1496 |
-
value=25,
|
1497 |
-
step=1,
|
1498 |
-
info=get_translation("steps_info")
|
1499 |
-
)
|
1500 |
-
cfg = gr.Slider(
|
1501 |
-
label=get_translation("cfg_scale"),
|
1502 |
-
minimum=1.0,
|
1503 |
-
maximum=32.0,
|
1504 |
-
value=1.0,
|
1505 |
-
step=0.01,
|
1506 |
-
visible=False
|
1507 |
-
)
|
1508 |
-
gs = gr.Slider(
|
1509 |
-
label=get_translation("distilled_cfg"),
|
1510 |
-
minimum=1.0,
|
1511 |
-
maximum=32.0,
|
1512 |
-
value=10.0,
|
1513 |
-
step=0.01,
|
1514 |
-
info=get_translation("distilled_cfg_info")
|
1515 |
-
)
|
1516 |
-
rs = gr.Slider(
|
1517 |
-
label=get_translation("cfg_rescale"),
|
1518 |
-
minimum=0.0,
|
1519 |
-
maximum=1.0,
|
1520 |
-
value=0.0,
|
1521 |
-
step=0.01,
|
1522 |
-
visible=False
|
1523 |
-
)
|
1524 |
-
gpu_memory_preservation = gr.Slider(
|
1525 |
-
label=get_translation("gpu_memory"),
|
1526 |
-
minimum=6,
|
1527 |
-
maximum=128,
|
1528 |
-
value=6,
|
1529 |
-
step=0.1,
|
1530 |
-
info=get_translation("gpu_memory_info")
|
1531 |
-
)
|
1532 |
-
|
1533 |
-
# ๋ฒํผ ์ฒ๋ฆฌ
|
1534 |
-
inputs_list = [
|
1535 |
-
input_image, prompt, n_prompt, seed,
|
1536 |
-
total_second_length, latent_window_size, steps,
|
1537 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1538 |
-
]
|
1539 |
-
start_button.click(
|
1540 |
-
fn=process,
|
1541 |
-
inputs=inputs_list,
|
1542 |
-
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, stop_button]
|
1543 |
-
)
|
1544 |
-
stop_button.click(fn=end_process)
|
1545 |
-
|
1546 |
-
block.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import os
|
3 |
|
4 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
10 |
import safetensors.torch as sf
|
11 |
import numpy as np
|
12 |
import math
|
13 |
+
import spaces
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
17 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
18 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
19 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
20 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
21 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
22 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
24 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
25 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
27 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
31 |
+
high_vram = free_mem_gb > 60
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
34 |
+
print(f'High-VRAM Mode: {high_vram}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
37 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
38 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
39 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
40 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
41 |
|
42 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
43 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
44 |
|
45 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
vae.eval()
|
48 |
+
text_encoder.eval()
|
49 |
+
text_encoder_2.eval()
|
50 |
+
image_encoder.eval()
|
51 |
+
transformer.eval()
|
52 |
|
53 |
+
if not high_vram:
|
54 |
+
vae.enable_slicing()
|
55 |
+
vae.enable_tiling()
|
56 |
|
57 |
+
transformer.high_quality_fp32_output_for_inference = True
|
58 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
59 |
|
60 |
+
transformer.to(dtype=torch.bfloat16)
|
61 |
+
vae.to(dtype=torch.float16)
|
62 |
+
image_encoder.to(dtype=torch.float16)
|
63 |
+
text_encoder.to(dtype=torch.float16)
|
64 |
+
text_encoder_2.to(dtype=torch.float16)
|
|
|
|
|
65 |
|
66 |
+
vae.requires_grad_(False)
|
67 |
+
text_encoder.requires_grad_(False)
|
68 |
+
text_encoder_2.requires_grad_(False)
|
69 |
+
image_encoder.requires_grad_(False)
|
70 |
+
transformer.requires_grad_(False)
|
71 |
|
72 |
+
if not high_vram:
|
73 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
74 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
75 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
76 |
+
else:
|
77 |
+
text_encoder.to(gpu)
|
78 |
+
text_encoder_2.to(gpu)
|
79 |
+
image_encoder.to(gpu)
|
80 |
+
vae.to(gpu)
|
81 |
+
transformer.to(gpu)
|
82 |
|
83 |
+
stream = AsyncStream()
|
84 |
|
85 |
+
outputs_folder = './outputs/'
|
86 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
|
|
|
|
87 |
|
88 |
+
examples = [
|
89 |
+
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm.",],
|
90 |
+
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
91 |
+
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
|
92 |
+
]
|
93 |
|
94 |
+
def generate_examples(input_image, prompt):
|
95 |
+
|
96 |
+
t2v=False
|
97 |
+
n_prompt=""
|
98 |
+
seed=31337
|
99 |
+
total_second_length=5
|
100 |
+
latent_window_size=9
|
101 |
+
steps=25
|
102 |
+
cfg=1.0
|
103 |
+
gs=10.0
|
104 |
+
rs=0.0
|
105 |
+
gpu_memory_preservation=6
|
106 |
+
use_teacache=True
|
107 |
+
mp4_crf=16
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
global stream
|
110 |
+
|
111 |
+
# assert input_image is not None, 'No input image!'
|
112 |
+
if t2v:
|
113 |
+
default_height, default_width = 640, 640
|
114 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
115 |
+
print("No input image provided. Using a blank white image.")
|
116 |
|
117 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
118 |
|
119 |
stream = AsyncStream()
|
120 |
+
|
121 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
|
|
|
|
|
|
|
|
122 |
|
123 |
output_filename = None
|
|
|
|
|
124 |
|
125 |
while True:
|
126 |
flag, data = stream.output_queue.next()
|
127 |
+
|
128 |
if flag == 'file':
|
129 |
output_filename = data
|
130 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
|
|
131 |
|
132 |
+
if flag == 'progress':
|
133 |
preview, desc, html = data
|
134 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
135 |
|
136 |
+
if flag == 'end':
|
137 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
break
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
|
142 |
@torch.no_grad()
|
143 |
+
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
145 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
146 |
|
|
|
149 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
150 |
|
151 |
try:
|
152 |
+
# Clean GPU
|
153 |
+
if not high_vram:
|
154 |
unload_complete_models(
|
155 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
156 |
)
|
157 |
|
158 |
# Text encoding
|
159 |
+
|
160 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
161 |
|
162 |
+
if not high_vram:
|
163 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
164 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
165 |
|
166 |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
167 |
+
|
168 |
+
if cfg == 1:
|
169 |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
170 |
else:
|
171 |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
172 |
|
173 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
174 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
175 |
+
|
176 |
+
# Processing input image
|
177 |
|
|
|
178 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
179 |
|
180 |
H, W, C = input_image.shape
|
181 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
|
|
|
|
|
|
|
|
|
|
182 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
183 |
|
184 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
|
|
186 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
187 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
188 |
|
189 |
+
# VAE encoding
|
190 |
+
|
191 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
192 |
|
193 |
+
if not high_vram:
|
194 |
load_model_as_complete(vae, target_device=gpu)
|
195 |
+
|
196 |
start_latent = vae_encode(input_image_pt, vae)
|
197 |
|
198 |
# CLIP Vision
|
199 |
+
|
200 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
201 |
|
202 |
+
if not high_vram:
|
203 |
load_model_as_complete(image_encoder, target_device=gpu)
|
204 |
+
|
205 |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
206 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
207 |
|
208 |
+
# Dtype
|
209 |
+
|
210 |
llama_vec = llama_vec.to(transformer.dtype)
|
211 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
212 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
213 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
214 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
215 |
|
216 |
+
# Sampling
|
217 |
+
|
218 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
219 |
|
220 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
221 |
|
|
|
222 |
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
223 |
history_pixels = None
|
224 |
|
|
|
225 |
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
226 |
total_generated_latent_frames = 1
|
227 |
|
|
|
230 |
stream.output_queue.push(('end', None))
|
231 |
return
|
232 |
|
233 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
234 |
|
235 |
+
if not high_vram:
|
236 |
unload_complete_models()
|
237 |
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
238 |
|
|
|
239 |
if use_teacache:
|
240 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
241 |
else:
|
|
|
244 |
def callback(d):
|
245 |
preview = d['denoised']
|
246 |
preview = vae_decode_fake(preview)
|
247 |
+
|
248 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
249 |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
250 |
|
251 |
if stream.input_queue.top() == 'end':
|
252 |
stream.output_queue.push(('end', None))
|
253 |
+
raise KeyboardInterrupt('User ends the task.')
|
254 |
|
255 |
current_step = d['i'] + 1
|
256 |
percentage = int(100.0 * current_step / steps)
|
257 |
hint = f'Sampling {current_step}/{steps}'
|
258 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
259 |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
260 |
return
|
261 |
|
|
|
|
|
262 |
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
263 |
+
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
265 |
|
266 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
|
267 |
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
268 |
|
269 |
+
generated_latents = sample_hunyuan(
|
270 |
+
transformer=transformer,
|
271 |
+
sampler='unipc',
|
272 |
+
width=width,
|
273 |
+
height=height,
|
274 |
+
frames=latent_window_size * 4 - 3,
|
275 |
+
real_guidance_scale=cfg,
|
276 |
+
distilled_guidance_scale=gs,
|
277 |
+
guidance_rescale=rs,
|
278 |
+
# shift=3.0,
|
279 |
+
num_inference_steps=steps,
|
280 |
+
generator=rnd,
|
281 |
+
prompt_embeds=llama_vec,
|
282 |
+
prompt_embeds_mask=llama_attention_mask,
|
283 |
+
prompt_poolers=clip_l_pooler,
|
284 |
+
negative_prompt_embeds=llama_vec_n,
|
285 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
286 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
287 |
+
device=gpu,
|
288 |
+
dtype=torch.bfloat16,
|
289 |
+
image_embeddings=image_encoder_last_hidden_state,
|
290 |
+
latent_indices=latent_indices,
|
291 |
+
clean_latents=clean_latents,
|
292 |
+
clean_latent_indices=clean_latent_indices,
|
293 |
+
clean_latents_2x=clean_latents_2x,
|
294 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
295 |
+
clean_latents_4x=clean_latents_4x,
|
296 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
297 |
+
callback=callback,
|
298 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
301 |
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
302 |
|
303 |
+
if not high_vram:
|
304 |
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
305 |
load_model_as_complete(vae, target_device=gpu)
|
306 |
|
|
|
310 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
311 |
else:
|
312 |
section_latent_frames = latent_window_size * 2
|
313 |
+
overlapped_frames = latent_window_size * 4 - 3
|
314 |
+
|
315 |
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
316 |
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
317 |
|
318 |
+
if not high_vram:
|
319 |
unload_complete_models()
|
320 |
|
321 |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
|
|
322 |
|
323 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
324 |
|
325 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
326 |
+
|
327 |
+
stream.output_queue.push(('file', output_filename))
|
328 |
except:
|
329 |
traceback.print_exc()
|
330 |
+
|
331 |
+
if not high_vram:
|
332 |
+
unload_complete_models(
|
333 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
334 |
+
)
|
335 |
|
336 |
stream.output_queue.push(('end', None))
|
337 |
return
|
338 |
|
339 |
+
def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
|
340 |
+
return total_second_length * 60
|
341 |
+
|
342 |
+
@spaces.GPU(duration=get_duration)
|
343 |
+
def process(input_image, prompt,
|
344 |
+
t2v=False,
|
345 |
+
n_prompt="",
|
346 |
+
seed=31337,
|
347 |
+
total_second_length=5,
|
348 |
+
latent_window_size=9,
|
349 |
+
steps=25,
|
350 |
+
cfg=1.0,
|
351 |
+
gs=10.0,
|
352 |
+
rs=0.0,
|
353 |
+
gpu_memory_preservation=6,
|
354 |
+
use_teacache=True,
|
355 |
+
mp4_crf=16
|
356 |
+
):
|
357 |
global stream
|
358 |
+
|
359 |
+
# assert input_image is not None, 'No input image!'
|
360 |
+
if t2v:
|
361 |
+
default_height, default_width = 640, 640
|
362 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
363 |
+
print("No input image provided. Using a blank white image.")
|
364 |
+
else:
|
365 |
+
composite_rgba_uint8 = input_image["composite"]
|
366 |
+
|
367 |
+
# rgb_uint8 will be (H, W, 3), dtype uint8
|
368 |
+
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
369 |
+
# mask_uint8 will be (H, W), dtype uint8
|
370 |
+
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
371 |
+
|
372 |
+
# Create background
|
373 |
+
h, w = rgb_uint8.shape[:2]
|
374 |
+
# White background, (H, W, 3), dtype uint8
|
375 |
+
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
376 |
+
|
377 |
+
# Normalize mask to range [0.0, 1.0].
|
378 |
+
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
379 |
+
|
380 |
+
# Expand alpha to 3 channels to match RGB images for broadcasting.
|
381 |
+
# alpha_mask_float32 will have shape (H, W, 3)
|
382 |
+
alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
|
383 |
+
|
384 |
+
# alpha blending
|
385 |
+
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
386 |
+
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
387 |
+
|
388 |
+
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
389 |
+
|
390 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
391 |
|
392 |
stream = AsyncStream()
|
393 |
+
|
394 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
|
|
|
|
|
|
|
|
|
395 |
|
396 |
output_filename = None
|
|
|
|
|
397 |
|
398 |
while True:
|
399 |
flag, data = stream.output_queue.next()
|
400 |
+
|
401 |
if flag == 'file':
|
402 |
output_filename = data
|
403 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
|
|
404 |
|
405 |
+
if flag == 'progress':
|
406 |
preview, desc, html = data
|
407 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
408 |
|
409 |
+
if flag == 'end':
|
410 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
break
|
412 |
|
413 |
+
|
414 |
+
def end_process():
|
415 |
+
stream.input_queue.push('end')
|
416 |
+
|
417 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
quick_prompts = [
|
419 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
420 |
+
'A character doing some simple body movements.',
|
421 |
]
|
422 |
+
quick_prompts = [[x] for x in quick_prompts]
|
423 |
|
424 |
+
|
425 |
+
css = make_progress_bar_css()
|
426 |
block = gr.Blocks(css=css).queue()
|
427 |
with block:
|
428 |
+
gr.Markdown('# FramePack-F1')
|
429 |
+
gr.Markdown(f"""### Video diffusion, but feels like image diffusion
|
430 |
+
*FramePack F1 - a FramePack model that only predicts future frames from history frames*
|
431 |
+
### *beta* FramePack Fill ๐๏ธ- draw a mask over the input image to inpaint the video output
|
432 |
+
adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) ๐๐ป
|
433 |
+
""")
|
434 |
+
with gr.Row():
|
435 |
+
with gr.Column():
|
436 |
+
input_image = gr.ImageEditor(type="numpy", label="Image", height=320, brush=gr.Brush(colors=["#ffffff"]))
|
437 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
438 |
+
t2v = gr.Checkbox(label="do text-to-video", value=False)
|
439 |
+
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
440 |
+
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
441 |
+
|
442 |
+
with gr.Row():
|
443 |
+
start_button = gr.Button(value="Start Generation")
|
444 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
445 |
+
|
446 |
+
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
|
447 |
+
with gr.Group():
|
448 |
+
with gr.Accordion("Advanced settings", open=False):
|
449 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
450 |
+
|
451 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
452 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
453 |
+
|
454 |
+
|
455 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
456 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
457 |
+
|
458 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
459 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
460 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
461 |
+
|
462 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
463 |
+
|
464 |
+
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
465 |
+
|
466 |
+
with gr.Column():
|
467 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
468 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
469 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
470 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
471 |
+
|
472 |
+
gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
|
473 |
+
|
474 |
+
ips = [input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
|
475 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
476 |
+
end_button.click(fn=end_process)
|
477 |
+
|
478 |
+
# gr.Examples(
|
479 |
+
# examples,
|
480 |
+
# inputs=[input_image, prompt],
|
481 |
+
# outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
482 |
+
# fn=generate_examples,
|
483 |
+
# cache_examples=True
|
484 |
+
# )
|
485 |
+
|
486 |
+
|
487 |
+
block.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|