Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import threading
|
3 |
import time
|
@@ -23,7 +28,7 @@ translations = {
|
|
23 |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
24 |
"negative_prompt": "Negative Prompt",
|
25 |
"seed": "Seed",
|
26 |
-
"video_length": "Video Length (max
|
27 |
"latent_window": "Latent Window Size",
|
28 |
"steps": "Inference Steps",
|
29 |
"steps_info": "Changing this value is not recommended.",
|
@@ -189,16 +194,19 @@ def load_models():
|
|
189 |
print(f"Device: {device}, VAE/Encoders dtype={dtype}, Transformer dtype={transformer_dtype}")
|
190 |
|
191 |
try:
|
|
|
192 |
text_encoder = LlamaModel.from_pretrained(
|
193 |
"hunyuanvideo-community/HunyuanVideo",
|
194 |
subfolder='text_encoder',
|
195 |
torch_dtype=dtype
|
196 |
).to(model_device)
|
|
|
197 |
text_encoder_2 = CLIPTextModel.from_pretrained(
|
198 |
"hunyuanvideo-community/HunyuanVideo",
|
199 |
subfolder='text_encoder_2',
|
200 |
torch_dtype=dtype
|
201 |
).to(model_device)
|
|
|
202 |
tokenizer = LlamaTokenizerFast.from_pretrained(
|
203 |
"hunyuanvideo-community/HunyuanVideo",
|
204 |
subfolder='tokenizer'
|
@@ -207,12 +215,15 @@ def load_models():
|
|
207 |
"hunyuanvideo-community/HunyuanVideo",
|
208 |
subfolder='tokenizer_2'
|
209 |
)
|
|
|
|
|
210 |
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
211 |
"hunyuanvideo-community/HunyuanVideo",
|
212 |
subfolder='vae',
|
213 |
torch_dtype=dtype
|
214 |
).to(model_device)
|
215 |
|
|
|
216 |
feature_extractor = SiglipImageProcessor.from_pretrained(
|
217 |
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
218 |
)
|
@@ -222,8 +233,13 @@ def load_models():
|
|
222 |
torch_dtype=dtype
|
223 |
).to(model_device)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
225 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
226 |
-
"lllyasviel/
|
227 |
torch_dtype=transformer_dtype
|
228 |
).to(model_device)
|
229 |
|
@@ -269,7 +285,7 @@ def load_models():
|
|
269 |
).to('cpu')
|
270 |
|
271 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
272 |
-
"lllyasviel/
|
273 |
torch_dtype=transformer_dtype
|
274 |
).to('cpu')
|
275 |
|
@@ -285,6 +301,7 @@ def load_models():
|
|
285 |
vae.enable_slicing()
|
286 |
vae.enable_tiling()
|
287 |
|
|
|
288 |
transformer.high_quality_fp32_output_for_inference = True
|
289 |
print("transformer.high_quality_fp32_output_for_inference = True")
|
290 |
|
@@ -304,6 +321,7 @@ def load_models():
|
|
304 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
305 |
try:
|
306 |
if not high_vram:
|
|
|
307 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
308 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
309 |
else:
|
@@ -338,7 +356,7 @@ def load_models():
|
|
338 |
cpu_fallback_mode = True
|
339 |
return {}
|
340 |
|
341 |
-
# GPU 데코레이터
|
342 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
343 |
try:
|
344 |
@spaces.GPU
|
@@ -404,7 +422,6 @@ def get_models():
|
|
404 |
|
405 |
stream = AsyncStream()
|
406 |
|
407 |
-
# 오류 메시지 HTML 생성 함수(영어만)
|
408 |
def create_error_html(error_msg, is_timeout=False):
|
409 |
"""
|
410 |
Create a user-friendly error message in English only
|
@@ -461,15 +478,13 @@ def worker(
|
|
461 |
use_teacache
|
462 |
):
|
463 |
"""
|
464 |
-
|
465 |
"""
|
466 |
global last_update_time
|
467 |
last_update_time = time.time()
|
468 |
|
469 |
-
#
|
470 |
-
|
471 |
-
# 내부 로직에서도 최대 5초 이상은 못 가도록 처리
|
472 |
-
total_second_length = min(total_second_length, 5.0)
|
473 |
|
474 |
try:
|
475 |
models_local = get_models()
|
@@ -499,47 +514,44 @@ def worker(
|
|
499 |
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
|
500 |
print(f"Inference device: {device}")
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
steps = min(steps, 15)
|
506 |
-
total_second_length = min(total_second_length, 2.0)
|
507 |
|
|
|
508 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
509 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
510 |
|
511 |
job_id = generate_timestamp()
|
512 |
last_output_filename = None
|
513 |
-
history_pixels = None
|
514 |
history_latents = None
|
|
|
515 |
total_generated_latent_frames = 0
|
516 |
|
517 |
-
|
518 |
-
|
519 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
520 |
|
521 |
try:
|
|
|
522 |
if not high_vram and not cpu_fallback_mode:
|
523 |
try:
|
524 |
-
unload_complete_models(
|
525 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
526 |
-
)
|
527 |
except Exception as e:
|
528 |
print(f"Error unloading models: {e}")
|
529 |
|
530 |
-
# Text Encode
|
531 |
last_update_time = time.time()
|
532 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding...'))))
|
533 |
|
534 |
try:
|
535 |
if not high_vram and not cpu_fallback_mode:
|
|
|
536 |
fake_diffusers_current_device(text_encoder, device)
|
537 |
load_model_as_complete(text_encoder_2, target_device=device)
|
538 |
|
539 |
llama_vec, clip_l_pooler = encode_prompt_conds(
|
540 |
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
541 |
)
|
542 |
-
|
543 |
if cfg == 1:
|
544 |
llama_vec_n, clip_l_pooler_n = (
|
545 |
torch.zeros_like(llama_vec),
|
@@ -549,7 +561,6 @@ def worker(
|
|
549 |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
550 |
n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
551 |
)
|
552 |
-
|
553 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
554 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
555 |
except Exception as e:
|
@@ -560,14 +571,16 @@ def worker(
|
|
560 |
stream.output_queue.push(('end', None))
|
561 |
return
|
562 |
|
563 |
-
# Image processing
|
564 |
last_update_time = time.time()
|
565 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing...'))))
|
566 |
|
567 |
try:
|
568 |
H, W, C = input_image.shape
|
|
|
569 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
570 |
|
|
|
571 |
if cpu_fallback_mode:
|
572 |
height = min(height, 320)
|
573 |
width = min(width, 320)
|
@@ -585,7 +598,7 @@ def worker(
|
|
585 |
stream.output_queue.push(('end', None))
|
586 |
return
|
587 |
|
588 |
-
# VAE
|
589 |
last_update_time = time.time()
|
590 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding...'))))
|
591 |
|
@@ -601,16 +614,14 @@ def worker(
|
|
601 |
stream.output_queue.push(('end', None))
|
602 |
return
|
603 |
|
604 |
-
# CLIP Vision
|
605 |
last_update_time = time.time()
|
606 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encode...'))))
|
607 |
|
608 |
try:
|
609 |
if not high_vram and not cpu_fallback_mode:
|
610 |
load_model_as_complete(image_encoder, target_device=device)
|
611 |
-
image_encoder_output = hf_clip_vision_encode(
|
612 |
-
input_image_np, feature_extractor, image_encoder
|
613 |
-
)
|
614 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
615 |
except Exception as e:
|
616 |
err = f"CLIP Vision encode error: {e}"
|
@@ -620,7 +631,7 @@ def worker(
|
|
620 |
stream.output_queue.push(('end', None))
|
621 |
return
|
622 |
|
623 |
-
#
|
624 |
try:
|
625 |
llama_vec = llama_vec.to(transformer.dtype)
|
626 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
@@ -635,20 +646,18 @@ def worker(
|
|
635 |
stream.output_queue.push(('end', None))
|
636 |
return
|
637 |
|
638 |
-
# Sampling
|
639 |
last_update_time = time.time()
|
640 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling...'))))
|
641 |
|
642 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
643 |
-
num_frames = latent_window_size * 4 - 3
|
644 |
|
|
|
|
|
645 |
try:
|
646 |
-
history_latents =
|
647 |
-
size=(1, 16, 1 + 2 + 16, height // 8, width // 8),
|
648 |
-
dtype=torch.float32
|
649 |
-
).cpu()
|
650 |
history_pixels = None
|
651 |
-
total_generated_latent_frames =
|
652 |
except Exception as e:
|
653 |
err = f"Init history state error: {e}"
|
654 |
print(err)
|
@@ -657,57 +666,27 @@ def worker(
|
|
657 |
stream.output_queue.push(('end', None))
|
658 |
return
|
659 |
|
660 |
-
|
661 |
-
|
662 |
-
# Some heuristic to flatten out large steps
|
663 |
-
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
|
664 |
-
|
665 |
-
for latent_padding in latent_paddings:
|
666 |
-
last_update_time = time.time()
|
667 |
-
is_last_section = (latent_padding == 0)
|
668 |
-
latent_padding_size = latent_padding * latent_window_size
|
669 |
|
|
|
670 |
if stream.input_queue.top() == 'end':
|
671 |
-
#
|
672 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
673 |
try:
|
674 |
outname = os.path.join(
|
675 |
outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4'
|
676 |
)
|
677 |
-
save_bcthw_as_mp4(history_pixels, outname, fps=30)
|
678 |
stream.output_queue.push(('file', outname))
|
679 |
except Exception as e:
|
680 |
print(f"Error saving final partial video: {e}")
|
681 |
stream.output_queue.push(('end', None))
|
682 |
return
|
683 |
|
684 |
-
print(f"
|
685 |
-
|
686 |
-
try:
|
687 |
-
indices = torch.arange(
|
688 |
-
0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])
|
689 |
-
).unsqueeze(0)
|
690 |
-
(
|
691 |
-
clean_latent_indices_pre,
|
692 |
-
blank_indices,
|
693 |
-
latent_indices,
|
694 |
-
clean_latent_indices_post,
|
695 |
-
clean_latent_2x_indices,
|
696 |
-
clean_latent_4x_indices
|
697 |
-
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
698 |
-
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
699 |
-
|
700 |
-
clean_latents_pre = start_latent.to(history_latents)
|
701 |
-
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2)
|
702 |
-
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
703 |
-
except Exception as e:
|
704 |
-
err = f"Sampling data prep error: {e}"
|
705 |
-
print(err)
|
706 |
-
traceback.print_exc()
|
707 |
-
if last_output_filename:
|
708 |
-
stream.output_queue.push(('file', last_output_filename))
|
709 |
-
continue
|
710 |
|
|
|
711 |
if not high_vram and not cpu_fallback_mode:
|
712 |
try:
|
713 |
unload_complete_models()
|
@@ -726,6 +705,7 @@ def worker(
|
|
726 |
else:
|
727 |
transformer.initialize_teacache(enable_teacache=False)
|
728 |
|
|
|
729 |
def callback(d):
|
730 |
global last_update_time
|
731 |
last_update_time = time.time()
|
@@ -741,7 +721,7 @@ def worker(
|
|
741 |
curr_step = d['i'] + 1
|
742 |
percentage = int(100.0 * curr_step / steps)
|
743 |
hint = f'Sampling {curr_step}/{steps}'
|
744 |
-
desc = f'
|
745 |
barhtml = make_progress_bar_html(percentage, hint)
|
746 |
stream.output_queue.push(('progress', (preview, desc, barhtml)))
|
747 |
except KeyboardInterrupt:
|
@@ -750,113 +730,137 @@ def worker(
|
|
750 |
print(f"Callback error: {e}")
|
751 |
return
|
752 |
|
|
|
|
|
753 |
try:
|
754 |
-
|
755 |
-
|
756 |
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
clean_latents_2x=clean_latents_2x,
|
782 |
-
clean_latent_2x_indices=clean_latent_2x_indices,
|
783 |
-
clean_latents_4x=clean_latents_4x,
|
784 |
-
clean_latent_4x_indices=clean_latent_4x_indices,
|
785 |
-
callback=callback
|
786 |
-
)
|
787 |
-
except KeyboardInterrupt as e:
|
788 |
-
print(f"User interrupt: {e}")
|
789 |
-
if last_output_filename:
|
790 |
-
stream.output_queue.push(('file', last_output_filename))
|
791 |
-
err = "User stopped generation, partial video returned."
|
792 |
-
else:
|
793 |
-
err = "User stopped generation, no video produced."
|
794 |
-
stream.output_queue.push(('error', err))
|
795 |
-
stream.output_queue.push(('end', None))
|
796 |
-
return
|
797 |
except Exception as e:
|
798 |
-
|
|
|
799 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
800 |
if last_output_filename:
|
801 |
stream.output_queue.push(('file', last_output_filename))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
err = f"Error during sampling, partial video returned: {e}"
|
|
|
803 |
stream.output_queue.push(('error', err))
|
804 |
else:
|
805 |
-
err = f"Error during sampling
|
806 |
stream.output_queue.push(('error', err))
|
807 |
stream.output_queue.push(('end', None))
|
808 |
return
|
809 |
|
810 |
try:
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
815 |
except Exception as e:
|
816 |
-
err = f"
|
817 |
print(err)
|
818 |
traceback.print_exc()
|
819 |
-
if last_output_filename:
|
820 |
-
stream.output_queue.push(('file', last_output_filename))
|
821 |
stream.output_queue.push(('error', err))
|
822 |
stream.output_queue.push(('end', None))
|
823 |
return
|
824 |
|
|
|
825 |
if not high_vram and not cpu_fallback_mode:
|
826 |
try:
|
827 |
-
offload_model_from_device_for_memory_preservation(
|
828 |
-
transformer, target_device=device, preserved_memory_gb=8
|
829 |
-
)
|
830 |
load_model_as_complete(vae, target_device=device)
|
831 |
except Exception as e:
|
832 |
print(f"Model memory manage error: {e}")
|
833 |
|
|
|
834 |
try:
|
835 |
-
real_history_latents = history_latents
|
836 |
-
except Exception as e:
|
837 |
-
err = f"History latents slice error: {e}"
|
838 |
-
print(err)
|
839 |
-
if last_output_filename:
|
840 |
-
stream.output_queue.push(('file', last_output_filename))
|
841 |
-
continue
|
842 |
|
843 |
-
|
844 |
-
# VAE decode
|
845 |
if history_pixels is None:
|
846 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
847 |
else:
|
848 |
-
#
|
849 |
-
|
850 |
-
|
851 |
-
)
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
|
|
856 |
output_filename = os.path.join(
|
857 |
outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
|
858 |
)
|
859 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
860 |
last_output_filename = output_filename
|
861 |
stream.output_queue.push(('file', output_filename))
|
862 |
except Exception as e:
|
@@ -868,16 +872,13 @@ def worker(
|
|
868 |
stream.output_queue.push(('error', err))
|
869 |
continue
|
870 |
|
871 |
-
|
872 |
-
break
|
873 |
except Exception as e:
|
874 |
print(f"Outer error: {e}, type={type(e)}")
|
875 |
traceback.print_exc()
|
876 |
if not high_vram and not cpu_fallback_mode:
|
877 |
try:
|
878 |
-
unload_complete_models(
|
879 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
880 |
-
)
|
881 |
except Exception as ue:
|
882 |
print(f"Unload error: {ue}")
|
883 |
|
@@ -889,7 +890,8 @@ def worker(
|
|
889 |
print("Worker finished, pushing 'end'.")
|
890 |
stream.output_queue.push(('end', None))
|
891 |
|
892 |
-
|
|
|
893 |
if IN_HF_SPACE and 'spaces' in globals():
|
894 |
@spaces.GPU
|
895 |
def process_with_gpu(
|
@@ -900,7 +902,7 @@ if IN_HF_SPACE and 'spaces' in globals():
|
|
900 |
global stream
|
901 |
assert input_image is not None, "No input image given."
|
902 |
|
903 |
-
#
|
904 |
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
905 |
try:
|
906 |
stream = AsyncStream()
|
@@ -916,50 +918,35 @@ if IN_HF_SPACE and 'spaces' in globals():
|
|
916 |
error_message = None
|
917 |
|
918 |
while True:
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
)
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
)
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
if (time.time() - last_update_time) > 60:
|
949 |
-
print("No updates for 60 seconds, possible hang or timeout.")
|
950 |
-
if prev_output_filename:
|
951 |
-
err_html = create_error_html("partial video has been generated", is_timeout=True)
|
952 |
-
yield (
|
953 |
-
prev_output_filename, gr.update(visible=False), gr.update(),
|
954 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
955 |
-
)
|
956 |
-
else:
|
957 |
-
err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
|
958 |
-
yield (
|
959 |
-
None, gr.update(visible=False), gr.update(),
|
960 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
961 |
-
)
|
962 |
-
break
|
963 |
except Exception as e:
|
964 |
print(f"Start process error: {e}")
|
965 |
traceback.print_exc()
|
@@ -991,56 +978,42 @@ else:
|
|
991 |
error_message = None
|
992 |
|
993 |
while True:
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
)
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
)
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
if (time.time() - last_update_time) > 60:
|
1024 |
-
print("No update for 60 seconds, possible hang or timeout.")
|
1025 |
-
if prev_output_filename:
|
1026 |
-
err_html = create_error_html("partial video has been generated", is_timeout=True)
|
1027 |
-
yield (
|
1028 |
-
prev_output_filename, gr.update(visible=False), gr.update(),
|
1029 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1030 |
-
)
|
1031 |
-
else:
|
1032 |
-
err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
|
1033 |
-
yield (
|
1034 |
-
None, gr.update(visible=False), gr.update(),
|
1035 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1036 |
-
)
|
1037 |
-
break
|
1038 |
except Exception as e:
|
1039 |
print(f"Start process error: {e}")
|
1040 |
traceback.print_exc()
|
1041 |
err_html = create_error_html(str(e))
|
1042 |
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1043 |
|
|
|
1044 |
def end_process():
|
1045 |
"""
|
1046 |
Stop generation by pushing 'end' to the worker queue
|
@@ -1068,7 +1041,6 @@ quick_prompts = [
|
|
1068 |
["A character doing some simple body movements."]
|
1069 |
]
|
1070 |
|
1071 |
-
# CSS (파스텔 톤 스타일)
|
1072 |
def make_custom_css():
|
1073 |
base_progress_css = make_progress_bar_css()
|
1074 |
pastel_css = """
|
@@ -1169,17 +1141,17 @@ with block:
|
|
1169 |
with gr.Row(elem_classes="mobile-full-width"):
|
1170 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1171 |
input_image = gr.Image(
|
1172 |
-
label="
|
1173 |
sources='upload',
|
1174 |
type="numpy",
|
1175 |
elem_id="input-image",
|
1176 |
height=320
|
1177 |
)
|
1178 |
-
prompt = gr.Textbox(label="
|
1179 |
|
1180 |
example_quick_prompts = gr.Dataset(
|
1181 |
samples=quick_prompts,
|
1182 |
-
label="
|
1183 |
samples_per_page=1000,
|
1184 |
components=[prompt]
|
1185 |
)
|
@@ -1193,18 +1165,18 @@ with block:
|
|
1193 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1194 |
with gr.Row(elem_classes="button-container"):
|
1195 |
start_button = gr.Button(
|
1196 |
-
value="
|
1197 |
elem_id="start-button",
|
1198 |
variant="primary"
|
1199 |
)
|
1200 |
end_button = gr.Button(
|
1201 |
-
value="
|
1202 |
elem_id="stop-button",
|
1203 |
interactive=False
|
1204 |
)
|
1205 |
|
1206 |
result_video = gr.Video(
|
1207 |
-
label="
|
1208 |
autoplay=True,
|
1209 |
loop=True,
|
1210 |
height=320,
|
@@ -1212,7 +1184,7 @@ with block:
|
|
1212 |
elem_id="result-video"
|
1213 |
)
|
1214 |
preview_image = gr.Image(
|
1215 |
-
label="
|
1216 |
visible=False,
|
1217 |
height=150,
|
1218 |
elem_classes="preview-container"
|
@@ -1239,11 +1211,11 @@ with block:
|
|
1239 |
value=31337,
|
1240 |
precision=0
|
1241 |
)
|
1242 |
-
#
|
1243 |
total_second_length = gr.Slider(
|
1244 |
label=get_translation("video_length"),
|
1245 |
minimum=1,
|
1246 |
-
maximum=
|
1247 |
value=2,
|
1248 |
step=0.1
|
1249 |
)
|
@@ -1296,7 +1268,7 @@ with block:
|
|
1296 |
info=get_translation("gpu_memory_info")
|
1297 |
)
|
1298 |
|
1299 |
-
#
|
1300 |
ips = [
|
1301 |
input_image, prompt, n_prompt, seed,
|
1302 |
total_second_length, latent_window_size, steps,
|
|
|
1 |
+
########################################
|
2 |
+
# from diffusers_helper.hf_login import login
|
3 |
+
# 필요 시 로그인 함수 사용 (주석 해제 후)
|
4 |
+
########################################
|
5 |
+
|
6 |
import os
|
7 |
import threading
|
8 |
import time
|
|
|
28 |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
29 |
"negative_prompt": "Negative Prompt",
|
30 |
"seed": "Seed",
|
31 |
+
"video_length": "Video Length (max 4 seconds)",
|
32 |
"latent_window": "Latent Window Size",
|
33 |
"steps": "Inference Steps",
|
34 |
"steps_info": "Changing this value is not recommended.",
|
|
|
194 |
print(f"Device: {device}, VAE/Encoders dtype={dtype}, Transformer dtype={transformer_dtype}")
|
195 |
|
196 |
try:
|
197 |
+
# (1) 텍스트 인코더
|
198 |
text_encoder = LlamaModel.from_pretrained(
|
199 |
"hunyuanvideo-community/HunyuanVideo",
|
200 |
subfolder='text_encoder',
|
201 |
torch_dtype=dtype
|
202 |
).to(model_device)
|
203 |
+
|
204 |
text_encoder_2 = CLIPTextModel.from_pretrained(
|
205 |
"hunyuanvideo-community/HunyuanVideo",
|
206 |
subfolder='text_encoder_2',
|
207 |
torch_dtype=dtype
|
208 |
).to(model_device)
|
209 |
+
|
210 |
tokenizer = LlamaTokenizerFast.from_pretrained(
|
211 |
"hunyuanvideo-community/HunyuanVideo",
|
212 |
subfolder='tokenizer'
|
|
|
215 |
"hunyuanvideo-community/HunyuanVideo",
|
216 |
subfolder='tokenizer_2'
|
217 |
)
|
218 |
+
|
219 |
+
# (2) VAE
|
220 |
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
221 |
"hunyuanvideo-community/HunyuanVideo",
|
222 |
subfolder='vae',
|
223 |
torch_dtype=dtype
|
224 |
).to(model_device)
|
225 |
|
226 |
+
# (3) CLIP Vision
|
227 |
feature_extractor = SiglipImageProcessor.from_pretrained(
|
228 |
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
229 |
)
|
|
|
233 |
torch_dtype=dtype
|
234 |
).to(model_device)
|
235 |
|
236 |
+
# (4) Transformer (FramePack_F1)
|
237 |
+
#
|
238 |
+
# 기존: "lllyasviel/FramePackI2V_HY"
|
239 |
+
# 변경: "lllyasviel/FramePack_F1_I2V_HY_20250503" (2번째 코드에서 제시됨)
|
240 |
+
#
|
241 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
242 |
+
"lllyasviel/FramePack_F1_I2V_HY_20250503",
|
243 |
torch_dtype=transformer_dtype
|
244 |
).to(model_device)
|
245 |
|
|
|
285 |
).to('cpu')
|
286 |
|
287 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
288 |
+
"lllyasviel/FramePack_F1_I2V_HY_20250503",
|
289 |
torch_dtype=transformer_dtype
|
290 |
).to('cpu')
|
291 |
|
|
|
301 |
vae.enable_slicing()
|
302 |
vae.enable_tiling()
|
303 |
|
304 |
+
# FramePack_F1 모델에서 필요
|
305 |
transformer.high_quality_fp32_output_for_inference = True
|
306 |
print("transformer.high_quality_fp32_output_for_inference = True")
|
307 |
|
|
|
321 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
322 |
try:
|
323 |
if not high_vram:
|
324 |
+
# VRAM이 적다면 DynamicSwapInstaller로 필요 시 GPU/CPU 스왑
|
325 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
326 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
327 |
else:
|
|
|
356 |
cpu_fallback_mode = True
|
357 |
return {}
|
358 |
|
359 |
+
# GPU 데코레이터 (Spaces 전용)
|
360 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
361 |
try:
|
362 |
@spaces.GPU
|
|
|
422 |
|
423 |
stream = AsyncStream()
|
424 |
|
|
|
425 |
def create_error_html(error_msg, is_timeout=False):
|
426 |
"""
|
427 |
Create a user-friendly error message in English only
|
|
|
478 |
use_teacache
|
479 |
):
|
480 |
"""
|
481 |
+
최종 영상 생성 로직 (백그라운드에서 동작)
|
482 |
"""
|
483 |
global last_update_time
|
484 |
last_update_time = time.time()
|
485 |
|
486 |
+
# 기본 2초, 최대 4초로 제한
|
487 |
+
total_second_length = min(total_second_length, 4.0)
|
|
|
|
|
488 |
|
489 |
try:
|
490 |
models_local = get_models()
|
|
|
514 |
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
|
515 |
print(f"Inference device: {device}")
|
516 |
|
517 |
+
# total_second_length만큼 30fps로 만들 때, latent_window_size*4-3 프레임 단위가 여러 번 이어져야 함.
|
518 |
+
# 단순히 (총초 * fps)/(latent_window_size*4-3) 로 반복 횟수를 구함
|
519 |
+
# 2번째 예시 코드처럼, 섹션 반복 방식으로 구현
|
|
|
|
|
520 |
|
521 |
+
# 'FramePack_F1' 모델 기준으로, 아래 방식으로 "조금씩" 영상을 확장해가며 샘플링
|
522 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
523 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
524 |
|
525 |
job_id = generate_timestamp()
|
526 |
last_output_filename = None
|
|
|
527 |
history_latents = None
|
528 |
+
history_pixels = None
|
529 |
total_generated_latent_frames = 0
|
530 |
|
531 |
+
# 초기 메시지
|
|
|
532 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
533 |
|
534 |
try:
|
535 |
+
# VRAM 적을 경우, 미리 Unload
|
536 |
if not high_vram and not cpu_fallback_mode:
|
537 |
try:
|
538 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
|
|
|
|
539 |
except Exception as e:
|
540 |
print(f"Error unloading models: {e}")
|
541 |
|
542 |
+
# (1) Text Encode
|
543 |
last_update_time = time.time()
|
544 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding...'))))
|
545 |
|
546 |
try:
|
547 |
if not high_vram and not cpu_fallback_mode:
|
548 |
+
# Dynamic 오프로딩
|
549 |
fake_diffusers_current_device(text_encoder, device)
|
550 |
load_model_as_complete(text_encoder_2, target_device=device)
|
551 |
|
552 |
llama_vec, clip_l_pooler = encode_prompt_conds(
|
553 |
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
554 |
)
|
|
|
555 |
if cfg == 1:
|
556 |
llama_vec_n, clip_l_pooler_n = (
|
557 |
torch.zeros_like(llama_vec),
|
|
|
561 |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
562 |
n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
563 |
)
|
|
|
564 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
565 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
566 |
except Exception as e:
|
|
|
571 |
stream.output_queue.push(('end', None))
|
572 |
return
|
573 |
|
574 |
+
# (2) Image processing
|
575 |
last_update_time = time.time()
|
576 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing...'))))
|
577 |
|
578 |
try:
|
579 |
H, W, C = input_image.shape
|
580 |
+
# 해상도 버킷
|
581 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
582 |
|
583 |
+
# CPU 모드면 해상도 너무 크지 않게
|
584 |
if cpu_fallback_mode:
|
585 |
height = min(height, 320)
|
586 |
width = min(width, 320)
|
|
|
598 |
stream.output_queue.push(('end', None))
|
599 |
return
|
600 |
|
601 |
+
# (3) VAE Encoding
|
602 |
last_update_time = time.time()
|
603 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding...'))))
|
604 |
|
|
|
614 |
stream.output_queue.push(('end', None))
|
615 |
return
|
616 |
|
617 |
+
# (4) CLIP Vision
|
618 |
last_update_time = time.time()
|
619 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encode...'))))
|
620 |
|
621 |
try:
|
622 |
if not high_vram and not cpu_fallback_mode:
|
623 |
load_model_as_complete(image_encoder, target_device=device)
|
624 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
|
|
|
|
625 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
626 |
except Exception as e:
|
627 |
err = f"CLIP Vision encode error: {e}"
|
|
|
631 |
stream.output_queue.push(('end', None))
|
632 |
return
|
633 |
|
634 |
+
# (5) dtype 변환
|
635 |
try:
|
636 |
llama_vec = llama_vec.to(transformer.dtype)
|
637 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
|
|
646 |
stream.output_queue.push(('end', None))
|
647 |
return
|
648 |
|
649 |
+
# (6) Sampling 반복
|
650 |
last_update_time = time.time()
|
651 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling...'))))
|
652 |
|
653 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
|
|
654 |
|
655 |
+
# FramePack_F1 모델에서, 처음에는 history_latents = [start_latent] 정도
|
656 |
+
# 2번째 코드처럼, 우선 history_latents 에 start_latent 넣고, 섹션별로 확장
|
657 |
try:
|
658 |
+
history_latents = start_latent.cpu()
|
|
|
|
|
|
|
659 |
history_pixels = None
|
660 |
+
total_generated_latent_frames = start_latent.shape[2] # 보통 1
|
661 |
except Exception as e:
|
662 |
err = f"Init history state error: {e}"
|
663 |
print(err)
|
|
|
666 |
stream.output_queue.push(('end', None))
|
667 |
return
|
668 |
|
669 |
+
# mp4 CRF(품질) 등은 고정(16 등) 가능. 여기서는 간단히 CRF=16
|
670 |
+
mp4_crf = 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
671 |
|
672 |
+
for section_index in range(total_latent_sections):
|
673 |
if stream.input_queue.top() == 'end':
|
674 |
+
# 사용자 중단
|
675 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
676 |
try:
|
677 |
outname = os.path.join(
|
678 |
outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4'
|
679 |
)
|
680 |
+
save_bcthw_as_mp4(history_pixels, outname, fps=30, crf=mp4_crf)
|
681 |
stream.output_queue.push(('file', outname))
|
682 |
except Exception as e:
|
683 |
print(f"Error saving final partial video: {e}")
|
684 |
stream.output_queue.push(('end', None))
|
685 |
return
|
686 |
|
687 |
+
print(f"Section {section_index+1}/{total_latent_sections}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
688 |
|
689 |
+
# 모델 스왑
|
690 |
if not high_vram and not cpu_fallback_mode:
|
691 |
try:
|
692 |
unload_complete_models()
|
|
|
705 |
else:
|
706 |
transformer.initialize_teacache(enable_teacache=False)
|
707 |
|
708 |
+
# 콜백
|
709 |
def callback(d):
|
710 |
global last_update_time
|
711 |
last_update_time = time.time()
|
|
|
721 |
curr_step = d['i'] + 1
|
722 |
percentage = int(100.0 * curr_step / steps)
|
723 |
hint = f'Sampling {curr_step}/{steps}'
|
724 |
+
desc = f'Section {section_index+1}/{total_latent_sections}'
|
725 |
barhtml = make_progress_bar_html(percentage, hint)
|
726 |
stream.output_queue.push(('progress', (preview, desc, barhtml)))
|
727 |
except KeyboardInterrupt:
|
|
|
730 |
print(f"Callback error: {e}")
|
731 |
return
|
732 |
|
733 |
+
# 2번째 예시처럼 indices split
|
734 |
+
# FramePack_F1: [1, 16, 2, 1, latent_window_size] 방식
|
735 |
try:
|
736 |
+
# 한 번 샘플링할 프레임 수
|
737 |
+
frames_per_section = latent_window_size * 4 - 3
|
738 |
|
739 |
+
# indices 준비
|
740 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
741 |
+
(
|
742 |
+
clean_latent_indices_start,
|
743 |
+
clean_latent_4x_indices,
|
744 |
+
clean_latent_2x_indices,
|
745 |
+
clean_latent_1x_indices,
|
746 |
+
latent_indices
|
747 |
+
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
748 |
+
|
749 |
+
# history_latents 에서 뒷부분 16+2+1=19 프레임짜리를 나눠서 clean_latents_xx 로 추출
|
750 |
+
if history_latents.shape[2] < 19:
|
751 |
+
# 혹은 초기 상태라 19프레임이 없을 수도 있으므로 패딩
|
752 |
+
# 여기서는 단순히 history_latents 전부를 19프레임으로 맞춰주기
|
753 |
+
needed = 19 - history_latents.shape[2]
|
754 |
+
if needed > 0:
|
755 |
+
pad_shape = list(history_latents.shape)
|
756 |
+
pad_shape[2] = needed
|
757 |
+
pad_zeros = torch.zeros(pad_shape, dtype=history_latents.dtype)
|
758 |
+
history_latents = torch.cat([pad_zeros, history_latents], dim=2)
|
759 |
+
|
760 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -19:, :, :].split([16, 2, 1], dim=2)
|
761 |
+
# clean_latents 는 [start_latent + clean_latents_1x], 즉 1프레임 정도만 연결
|
762 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
except Exception as e:
|
764 |
+
err = f"Indices prep error: {e}"
|
765 |
+
print(err)
|
766 |
traceback.print_exc()
|
767 |
+
stream.output_queue.push(('error', err))
|
768 |
+
stream.output_queue.push(('end', None))
|
769 |
+
return
|
770 |
+
|
771 |
+
# 진짜 샘플링
|
772 |
+
try:
|
773 |
+
generated_latents = sample_hunyuan(
|
774 |
+
transformer=transformer,
|
775 |
+
sampler='unipc',
|
776 |
+
width=width,
|
777 |
+
height=height,
|
778 |
+
frames=frames_per_section,
|
779 |
+
real_guidance_scale=cfg,
|
780 |
+
distilled_guidance_scale=gs,
|
781 |
+
guidance_rescale=rs,
|
782 |
+
num_inference_steps=steps,
|
783 |
+
generator=rnd,
|
784 |
+
prompt_embeds=llama_vec,
|
785 |
+
prompt_embeds_mask=llama_attention_mask,
|
786 |
+
prompt_poolers=clip_l_pooler,
|
787 |
+
negative_prompt_embeds=llama_vec_n,
|
788 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
789 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
790 |
+
device=device,
|
791 |
+
dtype=transformer.dtype,
|
792 |
+
image_embeddings=image_encoder_last_hidden_state,
|
793 |
+
latent_indices=latent_indices,
|
794 |
+
clean_latents=clean_latents,
|
795 |
+
clean_latent_indices=torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1),
|
796 |
+
clean_latents_2x=clean_latents_2x,
|
797 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
798 |
+
clean_latents_4x=clean_latents_4x,
|
799 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
800 |
+
callback=callback
|
801 |
+
)
|
802 |
+
except KeyboardInterrupt:
|
803 |
+
print("User stopped generation.")
|
804 |
+
err = "User stopped generation, partial video returned."
|
805 |
if last_output_filename:
|
806 |
stream.output_queue.push(('file', last_output_filename))
|
807 |
+
stream.output_queue.push(('error', err))
|
808 |
+
stream.output_queue.push(('end', None))
|
809 |
+
return
|
810 |
+
except Exception as e:
|
811 |
+
print(f"Sampling error: {e}")
|
812 |
+
traceback.print_exc()
|
813 |
+
if last_output_filename:
|
814 |
err = f"Error during sampling, partial video returned: {e}"
|
815 |
+
stream.output_queue.push(('file', last_output_filename))
|
816 |
stream.output_queue.push(('error', err))
|
817 |
else:
|
818 |
+
err = f"Error during sampling: {e}"
|
819 |
stream.output_queue.push(('error', err))
|
820 |
stream.output_queue.push(('end', None))
|
821 |
return
|
822 |
|
823 |
try:
|
824 |
+
# history_latents 뒤에 붙이기
|
825 |
+
total_generated_latent_frames += generated_latents.shape[2]
|
826 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
|
|
827 |
except Exception as e:
|
828 |
+
err = f"Concat history_latents error: {e}"
|
829 |
print(err)
|
830 |
traceback.print_exc()
|
|
|
|
|
831 |
stream.output_queue.push(('error', err))
|
832 |
stream.output_queue.push(('end', None))
|
833 |
return
|
834 |
|
835 |
+
# 모델 오프로딩 / VAE 로드
|
836 |
if not high_vram and not cpu_fallback_mode:
|
837 |
try:
|
838 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
|
|
|
|
|
839 |
load_model_as_complete(vae, target_device=device)
|
840 |
except Exception as e:
|
841 |
print(f"Model memory manage error: {e}")
|
842 |
|
843 |
+
# VAE 디코드 & 결과 저장
|
844 |
try:
|
845 |
+
real_history_latents = history_latents # 모든 프레임
|
|
|
|
|
|
|
|
|
|
|
|
|
846 |
|
847 |
+
# 처음 디코드 시
|
|
|
848 |
if history_pixels is None:
|
849 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
850 |
else:
|
851 |
+
# 앞뒤 중복 프레임 연결(단순 Append).
|
852 |
+
# 여기서는 2번째 예시의 soft_append_bcthw 방식을 그대로 사용
|
853 |
+
# frames_per_section = latent_window_size*4 - 3
|
854 |
+
# 중복(overlapped_frames)도 동일: frames_per_section
|
855 |
+
# 다만, 실제론 첫 섹션엔 중복이 거의 없을 수 있으므로 안전하게 min처리
|
856 |
+
overlapped_frames = frames_per_section
|
857 |
+
current_pixels = vae_decode(real_history_latents[:, :, -frames_per_section:], vae).cpu()
|
858 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
859 |
+
|
860 |
output_filename = os.path.join(
|
861 |
outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
|
862 |
)
|
863 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
864 |
last_output_filename = output_filename
|
865 |
stream.output_queue.push(('file', output_filename))
|
866 |
except Exception as e:
|
|
|
872 |
stream.output_queue.push(('error', err))
|
873 |
continue
|
874 |
|
875 |
+
# for문 종료
|
|
|
876 |
except Exception as e:
|
877 |
print(f"Outer error: {e}, type={type(e)}")
|
878 |
traceback.print_exc()
|
879 |
if not high_vram and not cpu_fallback_mode:
|
880 |
try:
|
881 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
|
|
|
|
882 |
except Exception as ue:
|
883 |
print(f"Unload error: {ue}")
|
884 |
|
|
|
890 |
print("Worker finished, pushing 'end'.")
|
891 |
stream.output_queue.push(('end', None))
|
892 |
|
893 |
+
|
894 |
+
# Gradio 내에서 Spaces GPU를 쓰는지 여부에 따라 process 함수를 감싸는 로직
|
895 |
if IN_HF_SPACE and 'spaces' in globals():
|
896 |
@spaces.GPU
|
897 |
def process_with_gpu(
|
|
|
902 |
global stream
|
903 |
assert input_image is not None, "No input image given."
|
904 |
|
905 |
+
# 초기화
|
906 |
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
907 |
try:
|
908 |
stream = AsyncStream()
|
|
|
918 |
error_message = None
|
919 |
|
920 |
while True:
|
921 |
+
flag, data = stream.output_queue.next()
|
922 |
+
if flag == 'file':
|
923 |
+
output_filename = data
|
924 |
+
prev_output_filename = output_filename
|
925 |
+
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
926 |
+
|
927 |
+
elif flag == 'progress':
|
928 |
+
preview, desc, html = data
|
929 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
930 |
+
|
931 |
+
elif flag == 'error':
|
932 |
+
error_message = data
|
933 |
+
print(f"Got error: {error_message}")
|
934 |
+
|
935 |
+
elif flag == 'end':
|
936 |
+
if output_filename is None and prev_output_filename:
|
937 |
+
output_filename = prev_output_filename
|
938 |
+
if error_message:
|
939 |
+
err_html = create_error_html(error_message)
|
940 |
+
yield (
|
941 |
+
output_filename, gr.update(visible=False), gr.update(),
|
942 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
yield (
|
946 |
+
output_filename, gr.update(visible=False), gr.update(),
|
947 |
+
'', gr.update(interactive=True), gr.update(interactive=False)
|
948 |
+
)
|
949 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
950 |
except Exception as e:
|
951 |
print(f"Start process error: {e}")
|
952 |
traceback.print_exc()
|
|
|
978 |
error_message = None
|
979 |
|
980 |
while True:
|
981 |
+
flag, data = stream.output_queue.next()
|
982 |
+
if flag == 'file':
|
983 |
+
output_filename = data
|
984 |
+
prev_output_filename = output_filename
|
985 |
+
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
986 |
+
|
987 |
+
elif flag == 'progress':
|
988 |
+
preview, desc, html = data
|
989 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
990 |
+
|
991 |
+
elif flag == 'error':
|
992 |
+
error_message = data
|
993 |
+
print(f"Got error: {error_message}")
|
994 |
+
|
995 |
+
elif flag == 'end':
|
996 |
+
if output_filename is None and prev_output_filename:
|
997 |
+
output_filename = prev_output_filename
|
998 |
+
if error_message:
|
999 |
+
err_html = create_error_html(error_message)
|
1000 |
+
yield (
|
1001 |
+
output_filename, gr.update(visible=False), gr.update(),
|
1002 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1003 |
+
)
|
1004 |
+
else:
|
1005 |
+
yield (
|
1006 |
+
output_filename, gr.update(visible=False), gr.update(),
|
1007 |
+
'', gr.update(interactive=True), gr.update(interactive=False)
|
1008 |
+
)
|
1009 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1010 |
except Exception as e:
|
1011 |
print(f"Start process error: {e}")
|
1012 |
traceback.print_exc()
|
1013 |
err_html = create_error_html(str(e))
|
1014 |
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1015 |
|
1016 |
+
|
1017 |
def end_process():
|
1018 |
"""
|
1019 |
Stop generation by pushing 'end' to the worker queue
|
|
|
1041 |
["A character doing some simple body movements."]
|
1042 |
]
|
1043 |
|
|
|
1044 |
def make_custom_css():
|
1045 |
base_progress_css = make_progress_bar_css()
|
1046 |
pastel_css = """
|
|
|
1141 |
with gr.Row(elem_classes="mobile-full-width"):
|
1142 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1143 |
input_image = gr.Image(
|
1144 |
+
label=get_translation("upload_image"),
|
1145 |
sources='upload',
|
1146 |
type="numpy",
|
1147 |
elem_id="input-image",
|
1148 |
height=320
|
1149 |
)
|
1150 |
+
prompt = gr.Textbox(label=get_translation("prompt"), value='', elem_id="prompt-input")
|
1151 |
|
1152 |
example_quick_prompts = gr.Dataset(
|
1153 |
samples=quick_prompts,
|
1154 |
+
label=get_translation("quick_prompts"),
|
1155 |
samples_per_page=1000,
|
1156 |
components=[prompt]
|
1157 |
)
|
|
|
1165 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1166 |
with gr.Row(elem_classes="button-container"):
|
1167 |
start_button = gr.Button(
|
1168 |
+
value=get_translation("start_generation"),
|
1169 |
elem_id="start-button",
|
1170 |
variant="primary"
|
1171 |
)
|
1172 |
end_button = gr.Button(
|
1173 |
+
value=get_translation("stop_generation"),
|
1174 |
elem_id="stop-button",
|
1175 |
interactive=False
|
1176 |
)
|
1177 |
|
1178 |
result_video = gr.Video(
|
1179 |
+
label=get_translation("generated_video"),
|
1180 |
autoplay=True,
|
1181 |
loop=True,
|
1182 |
height=320,
|
|
|
1184 |
elem_id="result-video"
|
1185 |
)
|
1186 |
preview_image = gr.Image(
|
1187 |
+
label=get_translation("next_latents"),
|
1188 |
visible=False,
|
1189 |
height=150,
|
1190 |
elem_classes="preview-container"
|
|
|
1211 |
value=31337,
|
1212 |
precision=0
|
1213 |
)
|
1214 |
+
# 기본값(value) = 2, 최대값(maximum) = 4
|
1215 |
total_second_length = gr.Slider(
|
1216 |
label=get_translation("video_length"),
|
1217 |
minimum=1,
|
1218 |
+
maximum=4,
|
1219 |
value=2,
|
1220 |
step=0.1
|
1221 |
)
|
|
|
1268 |
info=get_translation("gpu_memory_info")
|
1269 |
)
|
1270 |
|
1271 |
+
# 버튼 동작
|
1272 |
ips = [
|
1273 |
input_image, prompt, n_prompt, seed,
|
1274 |
total_second_length, latent_window_size, steps,
|