Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,800 @@
|
|
1 |
-
|
2 |
# from diffusers_helper.hf_login import login
|
3 |
-
#
|
4 |
-
|
5 |
|
6 |
import os
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import time
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
os.environ['HF_HOME'] = os.path.abspath(
|
15 |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
16 |
)
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
translations = {
|
20 |
"en": {
|
21 |
"title": "FramePack - Image to Video Generation",
|
@@ -28,6 +807,7 @@ translations = {
|
|
28 |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
29 |
"negative_prompt": "Negative Prompt",
|
30 |
"seed": "Seed",
|
|
|
31 |
"video_length": "Video Length (max 4 seconds)",
|
32 |
"latent_window": "Latent Window Size",
|
33 |
"steps": "Inference Steps",
|
@@ -40,7 +820,7 @@ translations = {
|
|
40 |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
41 |
"next_latents": "Next Latents",
|
42 |
"generated_video": "Generated Video",
|
43 |
-
"sampling_note": "Note:
|
44 |
"error_message": "Error",
|
45 |
"processing_error": "Processing error",
|
46 |
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
@@ -51,75 +831,14 @@ translations = {
|
|
51 |
}
|
52 |
}
|
53 |
|
54 |
-
# ์์ด๋ง ์ฌ์ฉํ ๊ฒ์ด๋ฏ๋ก ์๋ ํจ์๋ ์ฌ์ค์ ํญ์ ์์ด๋ฅผ ๋ฐํํฉ๋๋ค.
|
55 |
def get_translation(key):
|
56 |
return translations["en"].get(key, key)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
import
|
62 |
-
import
|
63 |
-
import traceback
|
64 |
-
import einops
|
65 |
-
import safetensors.torch as sf
|
66 |
-
import numpy as np
|
67 |
-
import math
|
68 |
-
|
69 |
-
# Hugging Face Space ํ๊ฒฝ ์ฒดํฌ
|
70 |
-
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
71 |
-
|
72 |
-
# GPU ์ฌ์ฉ ์ฌ๋ถ ์ ์ญ ๊ด๋ฆฌ
|
73 |
-
GPU_AVAILABLE = False
|
74 |
-
GPU_INITIALIZED = False
|
75 |
-
last_update_time = time.time()
|
76 |
-
|
77 |
-
if IN_HF_SPACE:
|
78 |
-
try:
|
79 |
-
import spaces
|
80 |
-
print("Running in Hugging Face Space environment.")
|
81 |
-
try:
|
82 |
-
GPU_AVAILABLE = torch.cuda.is_available()
|
83 |
-
print(f"GPU available: {GPU_AVAILABLE}")
|
84 |
-
if GPU_AVAILABLE:
|
85 |
-
test_tensor = torch.zeros(1, device='cuda') + 1
|
86 |
-
del test_tensor
|
87 |
-
print("GPU small test pass")
|
88 |
-
except Exception as e:
|
89 |
-
GPU_AVAILABLE = False
|
90 |
-
print(f"Error checking GPU: {e}")
|
91 |
-
except ImportError:
|
92 |
-
GPU_AVAILABLE = torch.cuda.is_available()
|
93 |
-
|
94 |
-
from PIL import Image
|
95 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
96 |
-
from transformers import (
|
97 |
-
LlamaModel,
|
98 |
-
CLIPTextModel,
|
99 |
-
LlamaTokenizerFast,
|
100 |
-
CLIPTokenizer,
|
101 |
-
SiglipImageProcessor,
|
102 |
-
SiglipVisionModel
|
103 |
-
)
|
104 |
-
|
105 |
-
from diffusers_helper.hunyuan import (
|
106 |
-
encode_prompt_conds,
|
107 |
-
vae_decode,
|
108 |
-
vae_encode,
|
109 |
-
vae_decode_fake
|
110 |
-
)
|
111 |
-
|
112 |
-
from diffusers_helper.utils import (
|
113 |
-
save_bcthw_as_mp4,
|
114 |
-
crop_or_pad_yield_mask,
|
115 |
-
soft_append_bcthw,
|
116 |
-
resize_and_center_crop,
|
117 |
-
generate_timestamp
|
118 |
-
)
|
119 |
-
|
120 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
121 |
-
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
122 |
-
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
123 |
from diffusers_helper.memory import (
|
124 |
cpu,
|
125 |
gpu,
|
@@ -131,644 +850,326 @@ from diffusers_helper.memory import (
|
|
131 |
unload_complete_models,
|
132 |
load_model_as_complete
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
)
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
free_mem_gb = 6.0
|
153 |
-
print("CUDA not available, default memory setting used.")
|
154 |
-
except Exception as e:
|
155 |
-
free_mem_gb = 6.0
|
156 |
-
print(f"Error getting GPU mem: {e}, using default=6GB")
|
157 |
-
high_vram = free_mem_gb > 60
|
158 |
-
else:
|
159 |
-
print("Using default memory setting in Spaces environment.")
|
160 |
try:
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
except Exception as e:
|
168 |
-
free_mem_gb = 6.0
|
169 |
-
high_vram = False
|
170 |
-
print(f'GPU memory: {free_mem_gb:.2f} GB, High-VRAM mode: {high_vram}')
|
171 |
-
|
172 |
-
models = {}
|
173 |
cpu_fallback_mode = not GPU_AVAILABLE
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
model_device = 'cpu'
|
190 |
-
|
191 |
-
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
|
192 |
-
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
|
193 |
-
|
194 |
-
print(f"Device: {device}, VAE/Encoders dtype={dtype}, Transformer dtype={transformer_dtype}")
|
195 |
-
|
196 |
-
try:
|
197 |
-
# (1) ํ
์คํธ ์ธ์ฝ๋
|
198 |
-
text_encoder = LlamaModel.from_pretrained(
|
199 |
-
"hunyuanvideo-community/HunyuanVideo",
|
200 |
-
subfolder='text_encoder',
|
201 |
-
torch_dtype=dtype
|
202 |
-
).to(model_device)
|
203 |
-
|
204 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
205 |
-
"hunyuanvideo-community/HunyuanVideo",
|
206 |
-
subfolder='text_encoder_2',
|
207 |
-
torch_dtype=dtype
|
208 |
-
).to(model_device)
|
209 |
-
|
210 |
-
tokenizer = LlamaTokenizerFast.from_pretrained(
|
211 |
-
"hunyuanvideo-community/HunyuanVideo",
|
212 |
-
subfolder='tokenizer'
|
213 |
-
)
|
214 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
215 |
-
"hunyuanvideo-community/HunyuanVideo",
|
216 |
-
subfolder='tokenizer_2'
|
217 |
-
)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
"hunyuanvideo-community/HunyuanVideo",
|
222 |
-
subfolder='vae',
|
223 |
-
torch_dtype=dtype
|
224 |
-
).to(model_device)
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
subfolder='image_encoder',
|
233 |
-
torch_dtype=dtype
|
234 |
-
).to(model_device)
|
235 |
-
|
236 |
-
# (4) Transformer (FramePack_F1)
|
237 |
-
#
|
238 |
-
# ๊ธฐ์กด: "lllyasviel/FramePackI2V_HY"
|
239 |
-
# ๋ณ๊ฒฝ: "lllyasviel/FramePack_F1_I2V_HY_20250503" (2๋ฒ์งธ ์ฝ๋์์ ์ ์๋จ)
|
240 |
-
#
|
241 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
242 |
-
"lllyasviel/FramePack_F1_I2V_HY_20250503",
|
243 |
-
torch_dtype=transformer_dtype
|
244 |
-
).to(model_device)
|
245 |
-
|
246 |
-
print("All models loaded successfully.")
|
247 |
-
except Exception as e:
|
248 |
-
print(f"Error loading models: {e}")
|
249 |
-
print("Retry with float32 on CPU...")
|
250 |
-
dtype = torch.float32
|
251 |
-
transformer_dtype = torch.float32
|
252 |
-
cpu_fallback_mode = True
|
253 |
-
|
254 |
-
text_encoder = LlamaModel.from_pretrained(
|
255 |
-
"hunyuanvideo-community/HunyuanVideo",
|
256 |
-
subfolder='text_encoder',
|
257 |
-
torch_dtype=dtype
|
258 |
-
).to('cpu')
|
259 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
260 |
-
"hunyuanvideo-community/HunyuanVideo",
|
261 |
-
subfolder='text_encoder_2',
|
262 |
-
torch_dtype=dtype
|
263 |
-
).to('cpu')
|
264 |
-
tokenizer = LlamaTokenizerFast.from_pretrained(
|
265 |
-
"hunyuanvideo-community/HunyuanVideo",
|
266 |
-
subfolder='tokenizer'
|
267 |
-
)
|
268 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
269 |
-
"hunyuanvideo-community/HunyuanVideo",
|
270 |
-
subfolder='tokenizer_2'
|
271 |
-
)
|
272 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
273 |
-
"hunyuanvideo-community/HunyuanVideo",
|
274 |
-
subfolder='vae',
|
275 |
-
torch_dtype=dtype
|
276 |
-
).to('cpu')
|
277 |
-
|
278 |
-
feature_extractor = SiglipImageProcessor.from_pretrained(
|
279 |
-
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
280 |
-
)
|
281 |
-
image_encoder = SiglipVisionModel.from_pretrained(
|
282 |
-
"lllyasviel/flux_redux_bfl",
|
283 |
-
subfolder='image_encoder',
|
284 |
-
torch_dtype=dtype
|
285 |
-
).to('cpu')
|
286 |
-
|
287 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
288 |
-
"lllyasviel/FramePack_F1_I2V_HY_20250503",
|
289 |
-
torch_dtype=transformer_dtype
|
290 |
-
).to('cpu')
|
291 |
-
|
292 |
-
print("Loaded in CPU-only fallback mode.")
|
293 |
-
|
294 |
-
vae.eval()
|
295 |
-
text_encoder.eval()
|
296 |
-
text_encoder_2.eval()
|
297 |
-
image_encoder.eval()
|
298 |
-
transformer.eval()
|
299 |
-
|
300 |
-
if not high_vram or cpu_fallback_mode:
|
301 |
-
vae.enable_slicing()
|
302 |
-
vae.enable_tiling()
|
303 |
-
|
304 |
-
# FramePack_F1 ๋ชจ๋ธ์์ ํ์
|
305 |
-
transformer.high_quality_fp32_output_for_inference = True
|
306 |
-
print("transformer.high_quality_fp32_output_for_inference = True")
|
307 |
-
|
308 |
-
if not cpu_fallback_mode:
|
309 |
-
transformer.to(dtype=transformer_dtype)
|
310 |
-
vae.to(dtype=dtype)
|
311 |
-
image_encoder.to(dtype=dtype)
|
312 |
-
text_encoder.to(dtype=dtype)
|
313 |
-
text_encoder_2.to(dtype=dtype)
|
314 |
-
|
315 |
-
vae.requires_grad_(False)
|
316 |
-
text_encoder.requires_grad_(False)
|
317 |
-
text_encoder_2.requires_grad_(False)
|
318 |
-
image_encoder.requires_grad_(False)
|
319 |
-
transformer.requires_grad_(False)
|
320 |
-
|
321 |
-
if torch.cuda.is_available() and not cpu_fallback_mode:
|
322 |
-
try:
|
323 |
-
if not high_vram:
|
324 |
-
# VRAM์ด ์ ๋ค๋ฉด DynamicSwapInstaller๋ก ํ์ ์ GPU/CPU ์ค์
|
325 |
-
DynamicSwapInstaller.install_model(transformer, device=device)
|
326 |
-
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
327 |
-
else:
|
328 |
-
text_encoder.to(device)
|
329 |
-
text_encoder_2.to(device)
|
330 |
-
image_encoder.to(device)
|
331 |
-
vae.to(device)
|
332 |
-
transformer.to(device)
|
333 |
-
print(f"Moved models to {device}")
|
334 |
-
except Exception as e:
|
335 |
-
print(f"Error moving models to {device}: {e}, fallback to CPU")
|
336 |
-
cpu_fallback_mode = True
|
337 |
-
|
338 |
-
models_local = {
|
339 |
-
'text_encoder': text_encoder,
|
340 |
-
'text_encoder_2': text_encoder_2,
|
341 |
-
'tokenizer': tokenizer,
|
342 |
-
'tokenizer_2': tokenizer_2,
|
343 |
-
'vae': vae,
|
344 |
-
'feature_extractor': feature_extractor,
|
345 |
-
'image_encoder': image_encoder,
|
346 |
-
'transformer': transformer
|
347 |
-
}
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
print(f"Unexpected error in load_models(): {e}")
|
355 |
-
traceback.print_exc()
|
356 |
-
cpu_fallback_mode = True
|
357 |
-
return {}
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
GPU_INITIALIZED = True
|
368 |
-
return result
|
369 |
-
except Exception as e:
|
370 |
-
print(f"Error in @spaces.GPU model init: {e}")
|
371 |
-
global cpu_fallback_mode
|
372 |
-
cpu_fallback_mode = True
|
373 |
-
return load_models()
|
374 |
-
except Exception as e:
|
375 |
-
print(f"Error creating spaces.GPU decorator: {e}")
|
376 |
-
def initialize_models():
|
377 |
-
return load_models()
|
378 |
-
else:
|
379 |
-
def initialize_models():
|
380 |
-
return load_models()
|
381 |
-
|
382 |
-
def get_models():
|
383 |
-
"""
|
384 |
-
Retrieve or load models if not loaded yet.
|
385 |
-
"""
|
386 |
-
global models
|
387 |
-
model_loading_key = "__model_loading__"
|
388 |
-
|
389 |
-
if not models:
|
390 |
-
if model_loading_key in globals():
|
391 |
-
print("Models are loading, please wait...")
|
392 |
-
import time
|
393 |
-
start_wait = time.time()
|
394 |
-
while (not models) and (model_loading_key in globals()):
|
395 |
-
time.sleep(0.5)
|
396 |
-
if time.time() - start_wait > 60:
|
397 |
-
print("Timed out waiting for model load.")
|
398 |
-
break
|
399 |
-
if models:
|
400 |
-
return models
|
401 |
-
try:
|
402 |
-
globals()[model_loading_key] = True
|
403 |
-
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
|
404 |
-
try:
|
405 |
-
print("Loading models via @spaces.GPU decorator.")
|
406 |
-
models_local = initialize_models()
|
407 |
-
models.update(models_local)
|
408 |
-
except Exception as e:
|
409 |
-
print(f"Error with GPU decorator: {e}, direct load fallback.")
|
410 |
-
models_local = load_models()
|
411 |
-
models.update(models_local)
|
412 |
-
else:
|
413 |
-
models_local = load_models()
|
414 |
-
models.update(models_local)
|
415 |
-
except Exception as e:
|
416 |
-
print(f"Unexpected error while loading models: {e}")
|
417 |
-
models.clear()
|
418 |
-
finally:
|
419 |
-
if model_loading_key in globals():
|
420 |
-
del globals()[model_loading_key]
|
421 |
-
return models
|
422 |
|
423 |
-
|
|
|
|
|
|
|
|
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
else:
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
445 |
else:
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
464 |
|
465 |
@torch.no_grad()
|
466 |
def worker(
|
467 |
-
input_image,
|
468 |
-
|
469 |
-
|
470 |
-
seed,
|
471 |
-
total_second_length,
|
472 |
-
latent_window_size,
|
473 |
-
steps,
|
474 |
-
cfg,
|
475 |
-
gs,
|
476 |
-
rs,
|
477 |
-
gpu_memory_preservation,
|
478 |
-
use_teacache
|
479 |
):
|
480 |
"""
|
481 |
-
|
482 |
"""
|
|
|
|
|
|
|
483 |
global last_update_time
|
484 |
-
last_update_time = time.time()
|
485 |
|
486 |
-
#
|
487 |
total_second_length = min(total_second_length, 4.0)
|
488 |
|
489 |
-
try:
|
490 |
-
models_local = get_models()
|
491 |
-
if not models_local:
|
492 |
-
error_msg = "Model load failed. Check logs for details."
|
493 |
-
print(error_msg)
|
494 |
-
stream.output_queue.push(('error', error_msg))
|
495 |
-
stream.output_queue.push(('end', None))
|
496 |
-
return
|
497 |
-
|
498 |
-
text_encoder = models_local['text_encoder']
|
499 |
-
text_encoder_2 = models_local['text_encoder_2']
|
500 |
-
tokenizer = models_local['tokenizer']
|
501 |
-
tokenizer_2 = models_local['tokenizer_2']
|
502 |
-
vae = models_local['vae']
|
503 |
-
feature_extractor = models_local['feature_extractor']
|
504 |
-
image_encoder = models_local['image_encoder']
|
505 |
-
transformer = models_local['transformer']
|
506 |
-
except Exception as e:
|
507 |
-
err = f"Error retrieving models: {e}"
|
508 |
-
print(err)
|
509 |
-
traceback.print_exc()
|
510 |
-
stream.output_queue.push(('error', err))
|
511 |
-
stream.output_queue.push(('end', None))
|
512 |
-
return
|
513 |
-
|
514 |
-
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
|
515 |
-
print(f"Inference device: {device}")
|
516 |
-
|
517 |
-
# total_second_length๋งํผ 30fps๋ก ๋ง๋ค ๋, latent_window_size*4-3 ํ๋ ์ ๋จ์๊ฐ ์ฌ๋ฌ ๋ฒ ์ด์ด์ ธ์ผ ํจ.
|
518 |
-
# ๋จ์ํ (์ด์ด * fps)/(latent_window_size*4-3) ๋ก ๋ฐ๋ณต ํ์๋ฅผ ๊ตฌํจ
|
519 |
-
# 2๋ฒ์งธ ์์ ์ฝ๋์ฒ๋ผ, ์น์
๋ฐ๋ณต ๋ฐฉ์์ผ๋ก ๊ตฌํ
|
520 |
-
|
521 |
-
# 'FramePack_F1' ๋ชจ๋ธ ๊ธฐ์ค์ผ๋ก, ์๋ ๋ฐฉ์์ผ๋ก "์กฐ๊ธ์ฉ" ์์์ ํ์ฅํด๊ฐ๋ฉฐ ์ํ๋ง
|
522 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
523 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
524 |
|
525 |
job_id = generate_timestamp()
|
526 |
-
last_output_filename = None
|
527 |
-
history_latents = None
|
528 |
-
history_pixels = None
|
529 |
-
total_generated_latent_frames = 0
|
530 |
|
531 |
-
# ์ด๊ธฐ ๋ฉ์์ง
|
532 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
533 |
|
534 |
try:
|
535 |
-
#
|
536 |
-
if not high_vram and
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
print(f"Error unloading models: {e}")
|
541 |
|
542 |
-
#
|
543 |
-
|
544 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding...'))))
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
fake_diffusers_current_device(text_encoder, device)
|
550 |
-
load_model_as_complete(text_encoder_2, target_device=device)
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
)
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
last_update_time = time.time()
|
603 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding...'))))
|
604 |
-
|
605 |
-
try:
|
606 |
-
if not high_vram and not cpu_fallback_mode:
|
607 |
-
load_model_as_complete(vae, target_device=device)
|
608 |
-
start_latent = vae_encode(input_image_pt, vae)
|
609 |
-
except Exception as e:
|
610 |
-
err = f"VAE encode error: {e}"
|
611 |
-
print(err)
|
612 |
-
traceback.print_exc()
|
613 |
-
stream.output_queue.push(('error', err))
|
614 |
-
stream.output_queue.push(('end', None))
|
615 |
-
return
|
616 |
-
|
617 |
-
# (4) CLIP Vision
|
618 |
-
last_update_time = time.time()
|
619 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encode...'))))
|
620 |
-
|
621 |
-
try:
|
622 |
-
if not high_vram and not cpu_fallback_mode:
|
623 |
-
load_model_as_complete(image_encoder, target_device=device)
|
624 |
-
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
625 |
-
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
626 |
-
except Exception as e:
|
627 |
-
err = f"CLIP Vision encode error: {e}"
|
628 |
-
print(err)
|
629 |
-
traceback.print_exc()
|
630 |
-
stream.output_queue.push(('error', err))
|
631 |
-
stream.output_queue.push(('end', None))
|
632 |
-
return
|
633 |
-
|
634 |
-
# (5) dtype ๋ณํ
|
635 |
-
try:
|
636 |
-
llama_vec = llama_vec.to(transformer.dtype)
|
637 |
-
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
638 |
-
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
639 |
-
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
640 |
-
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
641 |
-
except Exception as e:
|
642 |
-
err = f"Data type conversion error: {e}"
|
643 |
-
print(err)
|
644 |
-
traceback.print_exc()
|
645 |
-
stream.output_queue.push(('error', err))
|
646 |
-
stream.output_queue.push(('end', None))
|
647 |
-
return
|
648 |
-
|
649 |
-
# (6) Sampling ๋ฐ๋ณต
|
650 |
-
last_update_time = time.time()
|
651 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling...'))))
|
652 |
|
653 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
654 |
|
655 |
-
#
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
err = f"Init history state error: {e}"
|
663 |
-
print(err)
|
664 |
-
traceback.print_exc()
|
665 |
-
stream.output_queue.push(('error', err))
|
666 |
-
stream.output_queue.push(('end', None))
|
667 |
-
return
|
668 |
-
|
669 |
-
# mp4 CRF(ํ์ง) ๋ฑ์ ๊ณ ์ (16 ๋ฑ) ๊ฐ๋ฅ. ์ฌ๊ธฐ์๋ ๊ฐ๋จํ CRF=16
|
670 |
-
mp4_crf = 16
|
671 |
|
672 |
for section_index in range(total_latent_sections):
|
673 |
if stream.input_queue.top() == 'end':
|
674 |
-
# ์ฌ์ฉ์ ์ค๋จ
|
675 |
-
if history_pixels is not None and total_generated_latent_frames > 0:
|
676 |
-
try:
|
677 |
-
outname = os.path.join(
|
678 |
-
outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4'
|
679 |
-
)
|
680 |
-
save_bcthw_as_mp4(history_pixels, outname, fps=30, crf=mp4_crf)
|
681 |
-
stream.output_queue.push(('file', outname))
|
682 |
-
except Exception as e:
|
683 |
-
print(f"Error saving final partial video: {e}")
|
684 |
stream.output_queue.push(('end', None))
|
685 |
return
|
686 |
|
687 |
-
print(f
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
except Exception as e:
|
697 |
-
print(f"Error moving transformer to GPU: {e}")
|
698 |
-
|
699 |
-
if use_teacache and not cpu_fallback_mode:
|
700 |
-
try:
|
701 |
-
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
702 |
-
except Exception as e:
|
703 |
-
print(f"Error init teacache: {e}")
|
704 |
-
transformer.initialize_teacache(enable_teacache=False)
|
705 |
else:
|
706 |
transformer.initialize_teacache(enable_teacache=False)
|
707 |
|
708 |
-
# ์ฝ๋ฐฑ
|
709 |
def callback(d):
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
desc = f'Section {section_index+1}/{total_latent_sections}'
|
725 |
-
barhtml = make_progress_bar_html(percentage, hint)
|
726 |
-
stream.output_queue.push(('progress', (preview, desc, barhtml)))
|
727 |
-
except KeyboardInterrupt:
|
728 |
-
raise
|
729 |
-
except Exception as e:
|
730 |
-
print(f"Callback error: {e}")
|
731 |
return
|
732 |
|
733 |
-
#
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
# history_latents ์์ ๋ท๋ถ๋ถ 16+2+1=19 ํ๋ ์์ง๋ฆฌ๋ฅผ ๋๋ ์ clean_latents_xx ๋ก ์ถ์ถ
|
750 |
-
if history_latents.shape[2] < 19:
|
751 |
-
# ํน์ ์ด๊ธฐ ์ํ๋ผ 19ํ๋ ์์ด ์์ ์๋ ์์ผ๋ฏ๋ก ํจ๋ฉ
|
752 |
-
# ์ฌ๊ธฐ์๋ ๋จ์ํ history_latents ์ ๋ถ๋ฅผ 19ํ๋ ์์ผ๋ก ๋ง์ถฐ์ฃผ๊ธฐ
|
753 |
-
needed = 19 - history_latents.shape[2]
|
754 |
-
if needed > 0:
|
755 |
-
pad_shape = list(history_latents.shape)
|
756 |
-
pad_shape[2] = needed
|
757 |
-
pad_zeros = torch.zeros(pad_shape, dtype=history_latents.dtype)
|
758 |
-
history_latents = torch.cat([pad_zeros, history_latents], dim=2)
|
759 |
-
|
760 |
-
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -19:, :, :].split([16, 2, 1], dim=2)
|
761 |
-
# clean_latents ๋ [start_latent + clean_latents_1x], ์ฆ 1ํ๋ ์ ์ ๋๋ง ์ฐ๊ฒฐ
|
762 |
-
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
763 |
-
except Exception as e:
|
764 |
-
err = f"Indices prep error: {e}"
|
765 |
-
print(err)
|
766 |
-
traceback.print_exc()
|
767 |
-
stream.output_queue.push(('error', err))
|
768 |
-
stream.output_queue.push(('end', None))
|
769 |
-
return
|
770 |
|
771 |
-
# ์ง์ง ์ํ๋ง
|
772 |
try:
|
773 |
generated_latents = sample_hunyuan(
|
774 |
transformer=transformer,
|
@@ -782,17 +1183,17 @@ def worker(
|
|
782 |
num_inference_steps=steps,
|
783 |
generator=rnd,
|
784 |
prompt_embeds=llama_vec,
|
785 |
-
prompt_embeds_mask=
|
786 |
prompt_poolers=clip_l_pooler,
|
787 |
negative_prompt_embeds=llama_vec_n,
|
788 |
-
negative_prompt_embeds_mask=
|
789 |
negative_prompt_poolers=clip_l_pooler_n,
|
790 |
-
device=
|
791 |
-
dtype=
|
792 |
image_embeddings=image_encoder_last_hidden_state,
|
793 |
latent_indices=latent_indices,
|
794 |
clean_latents=clean_latents,
|
795 |
-
clean_latent_indices=
|
796 |
clean_latents_2x=clean_latents_2x,
|
797 |
clean_latent_2x_indices=clean_latent_2x_indices,
|
798 |
clean_latents_4x=clean_latents_4x,
|
@@ -800,251 +1201,116 @@ def worker(
|
|
800 |
callback=callback
|
801 |
)
|
802 |
except KeyboardInterrupt:
|
803 |
-
print("User
|
804 |
-
err = "User stopped generation, partial video returned."
|
805 |
-
if last_output_filename:
|
806 |
-
stream.output_queue.push(('file', last_output_filename))
|
807 |
-
stream.output_queue.push(('error', err))
|
808 |
-
stream.output_queue.push(('end', None))
|
809 |
-
return
|
810 |
-
except Exception as e:
|
811 |
-
print(f"Sampling error: {e}")
|
812 |
-
traceback.print_exc()
|
813 |
-
if last_output_filename:
|
814 |
-
err = f"Error during sampling, partial video returned: {e}"
|
815 |
-
stream.output_queue.push(('file', last_output_filename))
|
816 |
-
stream.output_queue.push(('error', err))
|
817 |
-
else:
|
818 |
-
err = f"Error during sampling: {e}"
|
819 |
-
stream.output_queue.push(('error', err))
|
820 |
stream.output_queue.push(('end', None))
|
821 |
return
|
822 |
-
|
823 |
-
try:
|
824 |
-
# history_latents ๋ค์ ๋ถ์ด๊ธฐ
|
825 |
-
total_generated_latent_frames += generated_latents.shape[2]
|
826 |
-
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
827 |
except Exception as e:
|
828 |
-
err = f"Concat history_latents error: {e}"
|
829 |
-
print(err)
|
830 |
traceback.print_exc()
|
831 |
-
stream.output_queue.push(('error', err))
|
832 |
stream.output_queue.push(('end', None))
|
833 |
return
|
834 |
|
835 |
-
|
836 |
-
|
837 |
-
try:
|
838 |
-
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
|
839 |
-
load_model_as_complete(vae, target_device=device)
|
840 |
-
except Exception as e:
|
841 |
-
print(f"Model memory manage error: {e}")
|
842 |
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
# ์ฒ์ ๋์ฝ๋ ์
|
848 |
-
if history_pixels is None:
|
849 |
-
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
850 |
-
else:
|
851 |
-
# ์๋ค ์ค๋ณต ํ๋ ์ ์ฐ๊ฒฐ(๋จ์ Append).
|
852 |
-
# ์ฌ๊ธฐ์๋ 2๋ฒ์งธ ์์์ soft_append_bcthw ๋ฐฉ์์ ๊ทธ๋๋ก ์ฌ์ฉ
|
853 |
-
# frames_per_section = latent_window_size*4 - 3
|
854 |
-
# ์ค๋ณต(overlapped_frames)๋ ๋์ผ: frames_per_section
|
855 |
-
# ๋ค๋ง, ์ค์ ๋ก ์ฒซ ์น์
์ ์ค๋ณต์ด ๊ฑฐ์ ์์ ์ ์์ผ๋ฏ๋ก ์์ ํ๊ฒ min์ฒ๋ฆฌ
|
856 |
-
overlapped_frames = frames_per_section
|
857 |
-
current_pixels = vae_decode(real_history_latents[:, :, -frames_per_section:], vae).cpu()
|
858 |
-
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
859 |
-
|
860 |
-
output_filename = os.path.join(
|
861 |
-
outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
|
862 |
-
)
|
863 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
864 |
-
last_output_filename = output_filename
|
865 |
-
stream.output_queue.push(('file', output_filename))
|
866 |
-
except Exception as e:
|
867 |
-
print(f"Video decode/save error: {e}")
|
868 |
-
traceback.print_exc()
|
869 |
-
if last_output_filename:
|
870 |
-
stream.output_queue.push(('file', last_output_filename))
|
871 |
-
err = f"Video decode/save error: {e}"
|
872 |
-
stream.output_queue.push(('error', err))
|
873 |
-
continue
|
874 |
-
|
875 |
-
# for๋ฌธ ์ข
๋ฃ
|
876 |
-
except Exception as e:
|
877 |
-
print(f"Outer error: {e}, type={type(e)}")
|
878 |
-
traceback.print_exc()
|
879 |
-
if not high_vram and not cpu_fallback_mode:
|
880 |
-
try:
|
881 |
-
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
882 |
-
except Exception as ue:
|
883 |
-
print(f"Unload error: {ue}")
|
884 |
|
885 |
-
|
886 |
-
stream.output_queue.push(('file', last_output_filename))
|
887 |
-
err = f"Error in worker: {e}"
|
888 |
-
stream.output_queue.push(('error', err))
|
889 |
|
890 |
-
|
891 |
-
|
|
|
|
|
|
|
|
|
|
|
892 |
|
|
|
|
|
893 |
|
894 |
-
|
895 |
-
|
896 |
-
@spaces.GPU
|
897 |
-
def process_with_gpu(
|
898 |
-
input_image, prompt, n_prompt, seed,
|
899 |
-
total_second_length, latent_window_size, steps,
|
900 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
901 |
-
):
|
902 |
-
global stream
|
903 |
-
assert input_image is not None, "No input image given."
|
904 |
-
|
905 |
-
# ์ด๊ธฐํ
|
906 |
-
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
907 |
-
try:
|
908 |
-
stream = AsyncStream()
|
909 |
-
async_run(
|
910 |
-
worker,
|
911 |
-
input_image, prompt, n_prompt, seed,
|
912 |
-
total_second_length, latent_window_size, steps, cfg, gs, rs,
|
913 |
-
gpu_memory_preservation, use_teacache
|
914 |
-
)
|
915 |
|
916 |
-
output_filename
|
917 |
-
prev_output_filename = None
|
918 |
-
error_message = None
|
919 |
-
|
920 |
-
while True:
|
921 |
-
flag, data = stream.output_queue.next()
|
922 |
-
if flag == 'file':
|
923 |
-
output_filename = data
|
924 |
-
prev_output_filename = output_filename
|
925 |
-
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
926 |
-
|
927 |
-
elif flag == 'progress':
|
928 |
-
preview, desc, html = data
|
929 |
-
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
930 |
-
|
931 |
-
elif flag == 'error':
|
932 |
-
error_message = data
|
933 |
-
print(f"Got error: {error_message}")
|
934 |
-
|
935 |
-
elif flag == 'end':
|
936 |
-
if output_filename is None and prev_output_filename:
|
937 |
-
output_filename = prev_output_filename
|
938 |
-
if error_message:
|
939 |
-
err_html = create_error_html(error_message)
|
940 |
-
yield (
|
941 |
-
output_filename, gr.update(visible=False), gr.update(),
|
942 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
943 |
-
)
|
944 |
-
else:
|
945 |
-
yield (
|
946 |
-
output_filename, gr.update(visible=False), gr.update(),
|
947 |
-
'', gr.update(interactive=True), gr.update(interactive=False)
|
948 |
-
)
|
949 |
-
break
|
950 |
-
except Exception as e:
|
951 |
-
print(f"Start process error: {e}")
|
952 |
-
traceback.print_exc()
|
953 |
-
err_html = create_error_html(str(e))
|
954 |
-
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
955 |
-
|
956 |
-
process = process_with_gpu
|
957 |
-
else:
|
958 |
-
def process(
|
959 |
-
input_image, prompt, n_prompt, seed,
|
960 |
-
total_second_length, latent_window_size, steps,
|
961 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
962 |
-
):
|
963 |
-
global stream
|
964 |
-
assert input_image is not None, "No input image given."
|
965 |
-
|
966 |
-
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
967 |
-
try:
|
968 |
-
stream = AsyncStream()
|
969 |
-
async_run(
|
970 |
-
worker,
|
971 |
-
input_image, prompt, n_prompt, seed,
|
972 |
-
total_second_length, latent_window_size, steps, cfg, gs, rs,
|
973 |
-
gpu_memory_preservation, use_teacache
|
974 |
-
)
|
975 |
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
while True:
|
981 |
-
flag, data = stream.output_queue.next()
|
982 |
-
if flag == 'file':
|
983 |
-
output_filename = data
|
984 |
-
prev_output_filename = output_filename
|
985 |
-
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
986 |
-
|
987 |
-
elif flag == 'progress':
|
988 |
-
preview, desc, html = data
|
989 |
-
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
990 |
-
|
991 |
-
elif flag == 'error':
|
992 |
-
error_message = data
|
993 |
-
print(f"Got error: {error_message}")
|
994 |
-
|
995 |
-
elif flag == 'end':
|
996 |
-
if output_filename is None and prev_output_filename:
|
997 |
-
output_filename = prev_output_filename
|
998 |
-
if error_message:
|
999 |
-
err_html = create_error_html(error_message)
|
1000 |
-
yield (
|
1001 |
-
output_filename, gr.update(visible=False), gr.update(),
|
1002 |
-
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1003 |
-
)
|
1004 |
-
else:
|
1005 |
-
yield (
|
1006 |
-
output_filename, gr.update(visible=False), gr.update(),
|
1007 |
-
'', gr.update(interactive=True), gr.update(interactive=False)
|
1008 |
-
)
|
1009 |
-
break
|
1010 |
-
except Exception as e:
|
1011 |
-
print(f"Start process error: {e}")
|
1012 |
-
traceback.print_exc()
|
1013 |
-
err_html = create_error_html(str(e))
|
1014 |
-
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1015 |
|
|
|
|
|
1016 |
|
1017 |
def end_process():
|
1018 |
"""
|
1019 |
-
|
1020 |
"""
|
1021 |
-
print("User clicked stop, sending 'end' signal...")
|
1022 |
global stream
|
1023 |
-
|
1024 |
-
try:
|
1025 |
-
top_signal = stream.input_queue.top()
|
1026 |
-
print(f"Queue top signal = {top_signal}")
|
1027 |
-
except Exception as e:
|
1028 |
-
print(f"Error checking queue top: {e}")
|
1029 |
-
try:
|
1030 |
-
stream.input_queue.push('end')
|
1031 |
-
print("Pushed 'end' successfully.")
|
1032 |
-
except Exception as e:
|
1033 |
-
print(f"Error pushing 'end': {e}")
|
1034 |
-
else:
|
1035 |
-
print("Warning: Stream not initialized, cannot stop.")
|
1036 |
-
return None
|
1037 |
|
1038 |
-
#
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1043 |
|
|
|
1044 |
def make_custom_css():
|
1045 |
base_progress_css = make_progress_bar_css()
|
1046 |
pastel_css = """
|
1047 |
-
/* ํ์คํ
ํค, ์ข ๋ ๋ถ๋๋ฝ๊ณ ์ธ๋ จ๋ UI ์คํ์ผ */
|
1048 |
body {
|
1049 |
background: #faf9ff !important;
|
1050 |
font-family: "Noto Sans", sans-serif;
|
@@ -1105,17 +1371,6 @@ def make_custom_css():
|
|
1105 |
margin-top: 10px;
|
1106 |
font-weight: 500;
|
1107 |
}
|
1108 |
-
.error-icon {
|
1109 |
-
color: #E53E3E;
|
1110 |
-
margin-right: 8px;
|
1111 |
-
}
|
1112 |
-
#error-message {
|
1113 |
-
color: #ff4444;
|
1114 |
-
font-weight: bold;
|
1115 |
-
padding: 10px;
|
1116 |
-
border-radius: 4px;
|
1117 |
-
margin-top: 10px;
|
1118 |
-
}
|
1119 |
@media (max-width: 768px) {
|
1120 |
#app-container {
|
1121 |
padding: 0.5rem;
|
@@ -1132,22 +1387,29 @@ def make_custom_css():
|
|
1132 |
|
1133 |
css = make_custom_css()
|
1134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1135 |
# Gradio UI
|
1136 |
block = gr.Blocks(css=css).queue()
|
1137 |
with block:
|
1138 |
-
# ์๋จ ์ ๋ชฉ
|
1139 |
gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
|
1140 |
|
1141 |
with gr.Row(elem_classes="mobile-full-width"):
|
|
|
1142 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1143 |
input_image = gr.Image(
|
1144 |
label=get_translation("upload_image"),
|
1145 |
-
sources='upload',
|
1146 |
type="numpy",
|
1147 |
-
elem_id="input-image",
|
1148 |
height=320
|
1149 |
)
|
1150 |
-
prompt = gr.Textbox(
|
|
|
|
|
|
|
1151 |
|
1152 |
example_quick_prompts = gr.Dataset(
|
1153 |
samples=quick_prompts,
|
@@ -1162,6 +1424,8 @@ with block:
|
|
1162 |
show_progress=False,
|
1163 |
queue=False
|
1164 |
)
|
|
|
|
|
1165 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1166 |
with gr.Row(elem_classes="button-container"):
|
1167 |
start_button = gr.Button(
|
@@ -1169,19 +1433,18 @@ with block:
|
|
1169 |
elem_id="start-button",
|
1170 |
variant="primary"
|
1171 |
)
|
1172 |
-
|
1173 |
value=get_translation("stop_generation"),
|
1174 |
elem_id="stop-button",
|
1175 |
interactive=False
|
1176 |
)
|
1177 |
-
|
1178 |
result_video = gr.Video(
|
1179 |
label=get_translation("generated_video"),
|
1180 |
autoplay=True,
|
1181 |
loop=True,
|
1182 |
height=320,
|
1183 |
-
elem_classes="video-container"
|
1184 |
-
elem_id="result-video"
|
1185 |
)
|
1186 |
preview_image = gr.Image(
|
1187 |
label=get_translation("next_latents"),
|
@@ -1189,16 +1452,15 @@ with block:
|
|
1189 |
height=150,
|
1190 |
elem_classes="preview-container"
|
1191 |
)
|
1192 |
-
|
1193 |
gr.Markdown(get_translation("sampling_note"))
|
1194 |
-
|
1195 |
with gr.Group(elem_classes="progress-container"):
|
1196 |
progress_desc = gr.Markdown('')
|
1197 |
progress_bar = gr.HTML('')
|
1198 |
-
|
1199 |
-
error_message = gr.HTML('', elem_id='error-message', visible=True)
|
1200 |
|
1201 |
-
|
|
|
|
|
1202 |
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
1203 |
use_teacache = gr.Checkbox(
|
1204 |
label=get_translation("use_teacache"),
|
@@ -1211,7 +1473,7 @@ with block:
|
|
1211 |
value=31337,
|
1212 |
precision=0
|
1213 |
)
|
1214 |
-
#
|
1215 |
total_second_length = gr.Slider(
|
1216 |
label=get_translation("video_length"),
|
1217 |
minimum=1,
|
@@ -1268,17 +1530,17 @@ with block:
|
|
1268 |
info=get_translation("gpu_memory_info")
|
1269 |
)
|
1270 |
|
1271 |
-
# ๋ฒํผ
|
1272 |
-
|
1273 |
input_image, prompt, n_prompt, seed,
|
1274 |
total_second_length, latent_window_size, steps,
|
1275 |
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1276 |
]
|
1277 |
start_button.click(
|
1278 |
fn=process,
|
1279 |
-
inputs=
|
1280 |
-
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button,
|
1281 |
)
|
1282 |
-
|
1283 |
|
1284 |
block.launch()
|
|
|
1 |
+
#############################################
|
2 |
# from diffusers_helper.hf_login import login
|
3 |
+
# ํ์์ HF ๋ก๊ทธ์ธ ์ฌ์ฉ (์ฃผ์ ํด์ ํ)
|
4 |
+
#############################################
|
5 |
|
6 |
import os
|
7 |
+
|
8 |
+
os.environ['HF_HOME'] = os.path.abspath(
|
9 |
+
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
10 |
+
)
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
import traceback
|
15 |
+
import einops
|
16 |
+
import safetensors.torch as sf
|
17 |
+
import numpy as np
|
18 |
+
import math
|
19 |
import time
|
20 |
+
|
21 |
+
# Hugging Face Spaces ํ๊ฒฝ ์ธ์ง ํ์ธ
|
22 |
+
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
23 |
+
|
24 |
+
# --------- ๋ฒ์ญ ๋์
๋๋ฆฌ(์์ด ๊ณ ์ ) ---------
|
25 |
+
translations = {
|
26 |
+
"en": {
|
27 |
+
"title": "FramePack - Image to Video Generation",
|
28 |
+
"upload_image": "Upload Image",
|
29 |
+
"prompt": "Prompt",
|
30 |
+
"quick_prompts": "Quick Prompts",
|
31 |
+
"start_generation": "Generate",
|
32 |
+
"stop_generation": "Stop",
|
33 |
+
"use_teacache": "Use TeaCache",
|
34 |
+
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
35 |
+
"negative_prompt": "Negative Prompt",
|
36 |
+
"seed": "Seed",
|
37 |
+
# ์ต๋ 4์ด๋ก UI ํ๊ธฐ ์์
|
38 |
+
"video_length": "Video Length (max 4 seconds)",
|
39 |
+
"latent_window": "Latent Window Size",
|
40 |
+
"steps": "Inference Steps",
|
41 |
+
"steps_info": "Changing this value is not recommended.",
|
42 |
+
"cfg_scale": "CFG Scale",
|
43 |
+
"distilled_cfg": "Distilled CFG Scale",
|
44 |
+
"distilled_cfg_info": "Changing this value is not recommended.",
|
45 |
+
"cfg_rescale": "CFG Rescale",
|
46 |
+
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
|
47 |
+
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
48 |
+
"next_latents": "Next Latents",
|
49 |
+
"generated_video": "Generated Video",
|
50 |
+
"sampling_note": "Note: The model predicts future frames from past frames. If the start action isn't immediately visible, please wait for more frames.",
|
51 |
+
"error_message": "Error",
|
52 |
+
"processing_error": "Processing error",
|
53 |
+
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
54 |
+
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
|
55 |
+
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
56 |
+
"partial_video": "Processing error, but partial video has been generated",
|
57 |
+
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
def get_translation(key):
|
62 |
+
return translations["en"].get(key, key)
|
63 |
+
|
64 |
+
#############################################
|
65 |
+
# diffusers_helper ๊ด๋ จ ์ํฌํธ
|
66 |
+
#############################################
|
67 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
68 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
69 |
+
from diffusers_helper.memory import (
|
70 |
+
cpu,
|
71 |
+
gpu,
|
72 |
+
get_cuda_free_memory_gb,
|
73 |
+
move_model_to_device_with_memory_preservation,
|
74 |
+
offload_model_from_device_for_memory_preservation,
|
75 |
+
fake_diffusers_current_device,
|
76 |
+
DynamicSwapInstaller,
|
77 |
+
unload_complete_models,
|
78 |
+
load_model_as_complete
|
79 |
+
)
|
80 |
+
from diffusers_helper.utils import (
|
81 |
+
generate_timestamp,
|
82 |
+
save_bcthw_as_mp4,
|
83 |
+
resize_and_center_crop,
|
84 |
+
crop_or_pad_yield_mask,
|
85 |
+
soft_append_bcthw
|
86 |
+
)
|
87 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
88 |
+
from diffusers_helper.hunyuan import (
|
89 |
+
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake
|
90 |
+
)
|
91 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
92 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
93 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
94 |
+
|
95 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
96 |
+
from transformers import (
|
97 |
+
LlamaModel, CLIPTextModel,
|
98 |
+
LlamaTokenizerFast, CLIPTokenizer,
|
99 |
+
SiglipVisionModel, SiglipImageProcessor
|
100 |
+
)
|
101 |
+
|
102 |
+
#############################################
|
103 |
+
# GPU ์ฒดํฌ
|
104 |
+
#############################################
|
105 |
+
GPU_AVAILABLE = torch.cuda.is_available()
|
106 |
+
free_mem_gb = 0.0
|
107 |
+
high_vram = False
|
108 |
+
if GPU_AVAILABLE:
|
109 |
+
try:
|
110 |
+
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
111 |
+
high_vram = (free_mem_gb > 60)
|
112 |
+
except:
|
113 |
+
pass
|
114 |
+
print(f"GPU Available: {GPU_AVAILABLE}, free_mem_gb={free_mem_gb}, high_vram={high_vram}")
|
115 |
+
|
116 |
+
cpu_fallback_mode = not GPU_AVAILABLE
|
117 |
+
last_update_time = time.time()
|
118 |
+
|
119 |
+
#############################################
|
120 |
+
# ๋ชจ๋ธ ๋ก๋ (์ ์ญ)
|
121 |
+
#############################################
|
122 |
+
text_encoder = None
|
123 |
+
text_encoder_2 = None
|
124 |
+
tokenizer = None
|
125 |
+
tokenizer_2 = None
|
126 |
+
vae = None
|
127 |
+
feature_extractor = None
|
128 |
+
image_encoder = None
|
129 |
+
transformer = None
|
130 |
+
|
131 |
+
# ์๋ ๋ก์ง์ ์ง๋ฌธ์ ์ ์๋ '๋ ๋ฒ์งธ ์ฝ๋'์ ๋ชจ๋ธ ๋ก๋ ๋ถ๋ถ์ ๊ฑฐ์ ๊ทธ๋๋ก ์ฌ์ฉ
|
132 |
+
def load_global_models():
|
133 |
+
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
134 |
+
global vae, feature_extractor, image_encoder, transformer
|
135 |
+
global cpu_fallback_mode
|
136 |
+
|
137 |
+
# ์ด๋ฏธ ๋ก๋๋์์ผ๋ฉด ํจ์ค
|
138 |
+
if transformer is not None:
|
139 |
+
return
|
140 |
+
|
141 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ณด
|
142 |
+
device = gpu if GPU_AVAILABLE else cpu
|
143 |
+
|
144 |
+
# diffusers_helper.memory.get_cuda_free_memory_gb(gpu)๋ก ๋ ์ ํํ ๊ตฌํด๋ ๋จ
|
145 |
+
print("Loading models...")
|
146 |
+
|
147 |
+
# ======== ์ค ์ฝ๋: ๋ ๋ฒ์งธ ์์ ๊ธฐ์ค =========
|
148 |
+
# (1) ํ์ด๋ธ๋ฆฌ๋ (if high_vram -> GPU๋ก ๋ก๋, ์๋๋ฉด CPU + DynamicSwap)
|
149 |
+
|
150 |
+
# ๋ฐ๋์ float16, bfloat16๋ก ๋ก๋
|
151 |
+
text_encoder_local = LlamaModel.from_pretrained(
|
152 |
+
"hunyuanvideo-community/HunyuanVideo",
|
153 |
+
subfolder='text_encoder',
|
154 |
+
torch_dtype=torch.float16
|
155 |
+
).cpu()
|
156 |
+
|
157 |
+
text_encoder_2_local = CLIPTextModel.from_pretrained(
|
158 |
+
"hunyuanvideo-community/HunyuanVideo",
|
159 |
+
subfolder='text_encoder_2',
|
160 |
+
torch_dtype=torch.float16
|
161 |
+
).cpu()
|
162 |
+
|
163 |
+
tokenizer_local = LlamaTokenizerFast.from_pretrained(
|
164 |
+
"hunyuanvideo-community/HunyuanVideo",
|
165 |
+
subfolder='tokenizer'
|
166 |
+
)
|
167 |
+
tokenizer_2_local = CLIPTokenizer.from_pretrained(
|
168 |
+
"hunyuanvideo-community/HunyuanVideo",
|
169 |
+
subfolder='tokenizer_2'
|
170 |
+
)
|
171 |
+
|
172 |
+
vae_local = AutoencoderKLHunyuanVideo.from_pretrained(
|
173 |
+
"hunyuanvideo-community/HunyuanVideo",
|
174 |
+
subfolder='vae',
|
175 |
+
torch_dtype=torch.float16
|
176 |
+
).cpu()
|
177 |
+
|
178 |
+
feature_extractor_local = SiglipImageProcessor.from_pretrained(
|
179 |
+
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
180 |
+
)
|
181 |
+
image_encoder_local = SiglipVisionModel.from_pretrained(
|
182 |
+
"lllyasviel/flux_redux_bfl",
|
183 |
+
subfolder='image_encoder',
|
184 |
+
torch_dtype=torch.float16
|
185 |
+
).cpu()
|
186 |
+
|
187 |
+
# FramePack_F1_I2V_HY_20250503 (bfloat16)
|
188 |
+
transformer_local = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
189 |
+
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
190 |
+
torch_dtype=torch.bfloat16
|
191 |
+
).cpu()
|
192 |
+
|
193 |
+
# eval & dtype
|
194 |
+
vae_local.eval()
|
195 |
+
text_encoder_local.eval()
|
196 |
+
text_encoder_2_local.eval()
|
197 |
+
image_encoder_local.eval()
|
198 |
+
transformer_local.eval()
|
199 |
+
|
200 |
+
# VAE slicing for low VRAM
|
201 |
+
if not high_vram:
|
202 |
+
vae_local.enable_slicing()
|
203 |
+
vae_local.enable_tiling()
|
204 |
+
|
205 |
+
# ์คํ๋ก๋์ฉ
|
206 |
+
transformer_local.high_quality_fp32_output_for_inference = True
|
207 |
+
transformer_local.to(dtype=torch.bfloat16)
|
208 |
+
vae_local.to(dtype=torch.float16)
|
209 |
+
image_encoder_local.to(dtype=torch.float16)
|
210 |
+
text_encoder_local.to(dtype=torch.float16)
|
211 |
+
text_encoder_2_local.to(dtype=torch.float16)
|
212 |
+
|
213 |
+
# requires_grad_(False)
|
214 |
+
for m in [vae_local, text_encoder_local, text_encoder_2_local, image_encoder_local, transformer_local]:
|
215 |
+
m.requires_grad_(False)
|
216 |
+
|
217 |
+
# GPU ๋ชจ๋ & VRAM ๋ง์ผ๋ฉด ์ ๋ถ GPU
|
218 |
+
# ๊ทธ๋ ์ง ์์ผ๋ฉด DynamicSwap
|
219 |
+
if GPU_AVAILABLE:
|
220 |
+
if not high_vram:
|
221 |
+
DynamicSwapInstaller.install_model(transformer_local, device=gpu)
|
222 |
+
DynamicSwapInstaller.install_model(text_encoder_local, device=gpu)
|
223 |
+
else:
|
224 |
+
text_encoder_local.to(gpu)
|
225 |
+
text_encoder_2_local.to(gpu)
|
226 |
+
image_encoder_local.to(gpu)
|
227 |
+
vae_local.to(gpu)
|
228 |
+
transformer_local.to(gpu)
|
229 |
+
else:
|
230 |
+
cpu_fallback_mode = True
|
231 |
+
|
232 |
+
# ๊ธ๋ก๋ฒ์ ํ ๋น
|
233 |
+
print("Model loaded.")
|
234 |
+
text_encoder = text_encoder_local
|
235 |
+
text_encoder_2 = text_encoder_2_local
|
236 |
+
tokenizer = tokenizer_local
|
237 |
+
tokenizer_2 = tokenizer_2_local
|
238 |
+
vae = vae_local
|
239 |
+
feature_extractor = feature_extractor_local
|
240 |
+
image_encoder = image_encoder_local
|
241 |
+
transformer = transformer_local
|
242 |
+
|
243 |
+
#############################################
|
244 |
+
# Worker ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋) ๊ทธ๋๋ก
|
245 |
+
#############################################
|
246 |
+
stream = AsyncStream()
|
247 |
+
|
248 |
+
outputs_folder = './outputs/'
|
249 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
250 |
+
|
251 |
+
@torch.no_grad()
|
252 |
+
def worker(
|
253 |
+
input_image, prompt, n_prompt, seed,
|
254 |
+
total_second_length, latent_window_size, steps,
|
255 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
์ค์ ์ํ๋ง ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋ ๊ธฐ๋ฐ)
|
259 |
+
"""
|
260 |
+
load_global_models() # ๋ชจ๋ธ ๋ก๋ฉ
|
261 |
+
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
262 |
+
global vae, feature_extractor, image_encoder, transformer
|
263 |
+
global last_update_time
|
264 |
+
|
265 |
+
# ์ต๋ 4์ด๋ก ๊ณ ์
|
266 |
+
total_second_length = min(total_second_length, 4.0)
|
267 |
+
|
268 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
269 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
270 |
+
|
271 |
+
job_id = generate_timestamp()
|
272 |
+
|
273 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
274 |
+
|
275 |
+
try:
|
276 |
+
# GPU ์ ์ ๊ฒฝ์ฐ Unload
|
277 |
+
if not high_vram and GPU_AVAILABLE:
|
278 |
+
unload_complete_models(
|
279 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
280 |
+
)
|
281 |
+
|
282 |
+
# Text encoding
|
283 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
284 |
+
|
285 |
+
if not high_vram and GPU_AVAILABLE:
|
286 |
+
fake_diffusers_current_device(text_encoder, gpu)
|
287 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
288 |
+
|
289 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
290 |
+
if cfg == 1.0:
|
291 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
292 |
+
else:
|
293 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
294 |
+
|
295 |
+
llama_vec, llama_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
296 |
+
llama_vec_n, llama_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
297 |
+
|
298 |
+
# Image processing
|
299 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
300 |
+
|
301 |
+
H, W, C = input_image.shape
|
302 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
303 |
+
|
304 |
+
if cpu_fallback_mode:
|
305 |
+
height = min(height, 320)
|
306 |
+
width = min(width, 320)
|
307 |
+
|
308 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
309 |
+
|
310 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
311 |
+
|
312 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
313 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
314 |
+
|
315 |
+
# VAE encode
|
316 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
317 |
+
|
318 |
+
if not high_vram and GPU_AVAILABLE:
|
319 |
+
load_model_as_complete(vae, target_device=gpu)
|
320 |
+
start_latent = vae_encode(input_image_pt, vae)
|
321 |
+
|
322 |
+
# CLIP Vision
|
323 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
324 |
+
|
325 |
+
if not high_vram and GPU_AVAILABLE:
|
326 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
327 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
328 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
329 |
+
|
330 |
+
# dtype
|
331 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
332 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
333 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
334 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
335 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
336 |
+
|
337 |
+
# Start sampling
|
338 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
339 |
+
|
340 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
341 |
+
|
342 |
+
# ์ด๊ธฐ history latents
|
343 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
344 |
+
history_pixels = None
|
345 |
+
|
346 |
+
# start_latent ๋ถ์ด๊ธฐ
|
347 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
348 |
+
total_generated_latent_frames = 1
|
349 |
+
|
350 |
+
for section_index in range(total_latent_sections):
|
351 |
+
if stream.input_queue.top() == 'end':
|
352 |
+
stream.output_queue.push(('end', None))
|
353 |
+
return
|
354 |
+
|
355 |
+
print(f'Section {section_index+1}/{total_latent_sections}')
|
356 |
+
|
357 |
+
if not high_vram and GPU_AVAILABLE:
|
358 |
+
unload_complete_models()
|
359 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
360 |
+
|
361 |
+
# teacache
|
362 |
+
if use_teacache:
|
363 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
364 |
+
else:
|
365 |
+
transformer.initialize_teacache(enable_teacache=False)
|
366 |
+
|
367 |
+
def callback(d):
|
368 |
+
preview = d['denoised']
|
369 |
+
preview = vae_decode_fake(preview)
|
370 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
371 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
372 |
+
|
373 |
+
if stream.input_queue.top() == 'end':
|
374 |
+
stream.output_queue.push(('end', None))
|
375 |
+
raise KeyboardInterrupt('User stops generation.')
|
376 |
+
|
377 |
+
current_step = d['i'] + 1
|
378 |
+
percentage = int(100.0 * current_step / steps)
|
379 |
+
hint = f'Sampling {current_step}/{steps}'
|
380 |
+
desc = f'Section {section_index+1}/{total_latent_sections}'
|
381 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
382 |
+
return
|
383 |
+
|
384 |
+
# indices
|
385 |
+
frames_per_section = latent_window_size * 4 - 3
|
386 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
387 |
+
(
|
388 |
+
clean_latent_indices_start,
|
389 |
+
clean_latent_4x_indices,
|
390 |
+
clean_latent_2x_indices,
|
391 |
+
clean_latent_1x_indices,
|
392 |
+
latent_indices
|
393 |
+
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
394 |
+
|
395 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
396 |
+
|
397 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -19:, :, :].split([16, 2, 1], dim=2)
|
398 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
399 |
+
|
400 |
+
try:
|
401 |
+
generated_latents = sample_hunyuan(
|
402 |
+
transformer=transformer,
|
403 |
+
sampler='unipc',
|
404 |
+
width=width,
|
405 |
+
height=height,
|
406 |
+
frames=frames_per_section,
|
407 |
+
real_guidance_scale=cfg,
|
408 |
+
distilled_guidance_scale=gs,
|
409 |
+
guidance_rescale=rs,
|
410 |
+
num_inference_steps=steps,
|
411 |
+
generator=rnd,
|
412 |
+
prompt_embeds=llama_vec,
|
413 |
+
prompt_embeds_mask=llama_mask,
|
414 |
+
prompt_poolers=clip_l_pooler,
|
415 |
+
negative_prompt_embeds=llama_vec_n,
|
416 |
+
negative_prompt_embeds_mask=llama_mask_n,
|
417 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
418 |
+
device=gpu if GPU_AVAILABLE else cpu,
|
419 |
+
dtype=torch.bfloat16,
|
420 |
+
image_embeddings=image_encoder_last_hidden_state,
|
421 |
+
latent_indices=latent_indices,
|
422 |
+
clean_latents=clean_latents,
|
423 |
+
clean_latent_indices=clean_latent_indices,
|
424 |
+
clean_latents_2x=clean_latents_2x,
|
425 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
426 |
+
clean_latents_4x=clean_latents_4x,
|
427 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
428 |
+
callback=callback
|
429 |
+
)
|
430 |
+
except KeyboardInterrupt:
|
431 |
+
print("User cancelled.")
|
432 |
+
stream.output_queue.push(('end', None))
|
433 |
+
return
|
434 |
+
except Exception as e:
|
435 |
+
traceback.print_exc()
|
436 |
+
stream.output_queue.push(('end', None))
|
437 |
+
return
|
438 |
+
|
439 |
+
total_generated_latent_frames += generated_latents.shape[2]
|
440 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
441 |
+
|
442 |
+
if not high_vram and GPU_AVAILABLE:
|
443 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
444 |
+
load_model_as_complete(vae, target_device=gpu)
|
445 |
+
|
446 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
447 |
+
|
448 |
+
if history_pixels is None:
|
449 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
450 |
+
else:
|
451 |
+
section_latent_frames = latent_window_size * 2
|
452 |
+
overlapped_frames = frames_per_section
|
453 |
+
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
454 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
455 |
+
|
456 |
+
if not high_vram and GPU_AVAILABLE:
|
457 |
+
unload_complete_models()
|
458 |
+
|
459 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
460 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=16) # CRF=16
|
461 |
+
|
462 |
+
stream.output_queue.push(('file', output_filename))
|
463 |
+
|
464 |
+
except:
|
465 |
+
traceback.print_exc()
|
466 |
+
if not high_vram and GPU_AVAILABLE:
|
467 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
468 |
+
|
469 |
+
stream.output_queue.push(('end', None))
|
470 |
+
return
|
471 |
+
|
472 |
+
def end_process():
|
473 |
+
"""
|
474 |
+
์ค๋จ ์์ฒญ
|
475 |
+
"""
|
476 |
+
global stream
|
477 |
+
stream.input_queue.push('end')
|
478 |
+
|
479 |
+
# Gradio์์ ์ด worker ํจ์๋ฅผ ๋น๋๊ธฐ๋ก ํธ์ถ
|
480 |
+
def process(
|
481 |
+
input_image, prompt, n_prompt, seed,
|
482 |
+
total_second_length, latent_window_size, steps,
|
483 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
484 |
+
):
|
485 |
+
global stream
|
486 |
+
if input_image is None:
|
487 |
+
raise ValueError("No input image provided.")
|
488 |
+
|
489 |
+
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
490 |
+
|
491 |
+
stream = AsyncStream()
|
492 |
+
async_run(
|
493 |
+
worker,
|
494 |
+
input_image, prompt, n_prompt, seed,
|
495 |
+
total_second_length, latent_window_size, steps,
|
496 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
497 |
+
)
|
498 |
+
|
499 |
+
output_filename = None
|
500 |
+
prev_filename = None
|
501 |
+
error_message = None
|
502 |
+
|
503 |
+
while True:
|
504 |
+
flag, data = stream.output_queue.next()
|
505 |
+
if flag == 'file':
|
506 |
+
output_filename = data
|
507 |
+
prev_filename = output_filename
|
508 |
+
yield output_filename, gr.update(), gr.update(), "", gr.update(interactive=False), gr.update(interactive=True)
|
509 |
+
|
510 |
+
elif flag == 'progress':
|
511 |
+
preview, desc, html = data
|
512 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
513 |
+
|
514 |
+
elif flag == 'error':
|
515 |
+
error_message = data
|
516 |
+
print(f"Error: {error_message}")
|
517 |
+
|
518 |
+
elif flag == 'end':
|
519 |
+
if output_filename is None and prev_filename:
|
520 |
+
output_filename = prev_filename
|
521 |
+
# ์๋ฌ๊ฐ ์์์ผ๋ฉด ์๋ฌ ํ์
|
522 |
+
if error_message:
|
523 |
+
yield (
|
524 |
+
output_filename, # ๋ง์ง๋ง ํ์ผ (๋๋ None)
|
525 |
+
gr.update(visible=False),
|
526 |
+
gr.update(),
|
527 |
+
f"<div style='color:red;'>{error_message}</div>",
|
528 |
+
gr.update(interactive=True),
|
529 |
+
gr.update(interactive=False)
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
yield (
|
533 |
+
output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
|
534 |
+
)
|
535 |
+
break
|
536 |
+
|
537 |
+
# UI CSS
|
538 |
+
def make_custom_css():
|
539 |
+
base_progress_css = make_progress_bar_css()
|
540 |
+
pastel_css = """
|
541 |
+
body {
|
542 |
+
background: #faf9ff !important;
|
543 |
+
font-family: "Noto Sans", sans-serif;
|
544 |
+
}
|
545 |
+
#app-container {
|
546 |
+
max-width: 1200px;
|
547 |
+
margin: 0 auto;
|
548 |
+
padding: 1rem;
|
549 |
+
position: relative;
|
550 |
+
}
|
551 |
+
#app-container h1 {
|
552 |
+
color: #5F5AA2;
|
553 |
+
margin-bottom: 1.2rem;
|
554 |
+
font-weight: 700;
|
555 |
+
text-shadow: 1px 1px 2px #bbb;
|
556 |
+
}
|
557 |
+
.gr-panel {
|
558 |
+
background: #ffffffcc;
|
559 |
+
border: 1px solid #e1dff0;
|
560 |
+
border-radius: 8px;
|
561 |
+
padding: 1rem;
|
562 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
563 |
+
}
|
564 |
+
.button-container button {
|
565 |
+
min-height: 45px;
|
566 |
+
font-size: 1rem;
|
567 |
+
font-weight: 600;
|
568 |
+
border-radius: 6px;
|
569 |
+
}
|
570 |
+
.button-container button#start-button {
|
571 |
+
background-color: #A289E3 !important;
|
572 |
+
color: #fff !important;
|
573 |
+
border: 1px solid #a58de2;
|
574 |
+
}
|
575 |
+
.button-container button#stop-button {
|
576 |
+
background-color: #F48A9B !important;
|
577 |
+
color: #fff !important;
|
578 |
+
border: 1px solid #f18fa0;
|
579 |
+
}
|
580 |
+
.button-container button:hover {
|
581 |
+
filter: brightness(0.95);
|
582 |
+
}
|
583 |
+
.preview-container, .video-container {
|
584 |
+
border: 1px solid #ded9f2;
|
585 |
+
border-radius: 8px;
|
586 |
+
overflow: hidden;
|
587 |
+
}
|
588 |
+
.progress-container {
|
589 |
+
margin-top: 15px;
|
590 |
+
margin-bottom: 15px;
|
591 |
+
}
|
592 |
+
.error-message {
|
593 |
+
background-color: #FFF5F5;
|
594 |
+
border: 1px solid #FED7D7;
|
595 |
+
color: #E53E3E;
|
596 |
+
padding: 10px;
|
597 |
+
border-radius: 4px;
|
598 |
+
margin-top: 10px;
|
599 |
+
font-weight: 500;
|
600 |
+
}
|
601 |
+
@media (max-width: 768px) {
|
602 |
+
#app-container {
|
603 |
+
padding: 0.5rem;
|
604 |
+
}
|
605 |
+
.mobile-full-width {
|
606 |
+
flex-direction: column !important;
|
607 |
+
}
|
608 |
+
.mobile-full-width > .gr-block {
|
609 |
+
width: 100% !important;
|
610 |
+
}
|
611 |
+
}
|
612 |
+
"""
|
613 |
+
return base_progress_css + pastel_css
|
614 |
+
|
615 |
+
css = make_custom_css()
|
616 |
+
|
617 |
+
# ์ํ ํ๋กฌํํธ
|
618 |
+
quick_prompts = [
|
619 |
+
["The girl dances gracefully, with clear movements, full of charm."],
|
620 |
+
["A character doing some simple body movements."]
|
621 |
+
]
|
622 |
+
|
623 |
+
# Gradio UI
|
624 |
+
block = gr.Blocks(css=css).queue()
|
625 |
+
with block:
|
626 |
+
gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
|
627 |
+
|
628 |
+
with gr.Row(elem_classes="mobile-full-width"):
|
629 |
+
# ์ผ์ชฝ
|
630 |
+
with gr.Column(scale=1, elem_classes="gr-panel"):
|
631 |
+
input_image = gr.Image(
|
632 |
+
label=get_translation("upload_image"),
|
633 |
+
type="numpy",
|
634 |
+
height=320
|
635 |
+
)
|
636 |
+
prompt = gr.Textbox(
|
637 |
+
label=get_translation("prompt"),
|
638 |
+
value=''
|
639 |
+
)
|
640 |
+
|
641 |
+
example_quick_prompts = gr.Dataset(
|
642 |
+
samples=quick_prompts,
|
643 |
+
label=get_translation("quick_prompts"),
|
644 |
+
samples_per_page=1000,
|
645 |
+
components=[prompt]
|
646 |
+
)
|
647 |
+
example_quick_prompts.click(
|
648 |
+
fn=lambda x: x[0],
|
649 |
+
inputs=[example_quick_prompts],
|
650 |
+
outputs=prompt,
|
651 |
+
show_progress=False,
|
652 |
+
queue=False
|
653 |
+
)
|
654 |
+
|
655 |
+
# ์ค๋ฅธ์ชฝ
|
656 |
+
with gr.Column(scale=1, elem_classes="gr-panel"):
|
657 |
+
with gr.Row(elem_classes="button-container"):
|
658 |
+
start_button = gr.Button(
|
659 |
+
value=get_translation("start_generation"),
|
660 |
+
elem_id="start-button",
|
661 |
+
variant="primary"
|
662 |
+
)
|
663 |
+
stop_button = gr.Button(
|
664 |
+
value=get_translation("stop_generation"),
|
665 |
+
elem_id="stop-button",
|
666 |
+
interactive=False
|
667 |
+
)
|
668 |
+
|
669 |
+
result_video = gr.Video(
|
670 |
+
label=get_translation("generated_video"),
|
671 |
+
autoplay=True,
|
672 |
+
loop=True,
|
673 |
+
height=320,
|
674 |
+
elem_classes="video-container"
|
675 |
+
)
|
676 |
+
preview_image = gr.Image(
|
677 |
+
label=get_translation("next_latents"),
|
678 |
+
visible=False,
|
679 |
+
height=150,
|
680 |
+
elem_classes="preview-container"
|
681 |
+
)
|
682 |
+
gr.Markdown(get_translation("sampling_note"))
|
683 |
+
|
684 |
+
with gr.Group(elem_classes="progress-container"):
|
685 |
+
progress_desc = gr.Markdown('')
|
686 |
+
progress_bar = gr.HTML('')
|
687 |
+
|
688 |
+
error_message = gr.HTML('', visible=True)
|
689 |
+
|
690 |
+
# Advanced
|
691 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
692 |
+
use_teacache = gr.Checkbox(
|
693 |
+
label=get_translation("use_teacache"),
|
694 |
+
value=True,
|
695 |
+
info=get_translation("teacache_info")
|
696 |
+
)
|
697 |
+
n_prompt = gr.Textbox(label=get_translation("negative_prompt"), value="", visible=False)
|
698 |
+
seed = gr.Number(
|
699 |
+
label=get_translation("seed"),
|
700 |
+
value=31337,
|
701 |
+
precision=0
|
702 |
+
)
|
703 |
+
# ๊ธฐ๋ณธ 2์ด, ์ต๋ 4์ด
|
704 |
+
total_second_length = gr.Slider(
|
705 |
+
label=get_translation("video_length"),
|
706 |
+
minimum=1,
|
707 |
+
maximum=4,
|
708 |
+
value=2,
|
709 |
+
step=0.1
|
710 |
+
)
|
711 |
+
latent_window_size = gr.Slider(
|
712 |
+
label=get_translation("latent_window"),
|
713 |
+
minimum=1,
|
714 |
+
maximum=33,
|
715 |
+
value=9,
|
716 |
+
step=1,
|
717 |
+
visible=False
|
718 |
+
)
|
719 |
+
steps = gr.Slider(
|
720 |
+
label=get_translation("steps"),
|
721 |
+
minimum=1,
|
722 |
+
maximum=100,
|
723 |
+
value=25,
|
724 |
+
step=1,
|
725 |
+
info=get_translation("steps_info")
|
726 |
+
)
|
727 |
+
cfg = gr.Slider(
|
728 |
+
label=get_translation("cfg_scale"),
|
729 |
+
minimum=1.0,
|
730 |
+
maximum=32.0,
|
731 |
+
value=1.0,
|
732 |
+
step=0.01,
|
733 |
+
visible=False
|
734 |
+
)
|
735 |
+
gs = gr.Slider(
|
736 |
+
label=get_translation("distilled_cfg"),
|
737 |
+
minimum=1.0,
|
738 |
+
maximum=32.0,
|
739 |
+
value=10.0,
|
740 |
+
step=0.01,
|
741 |
+
info=get_translation("distilled_cfg_info")
|
742 |
+
)
|
743 |
+
rs = gr.Slider(
|
744 |
+
label=get_translation("cfg_rescale"),
|
745 |
+
minimum=0.0,
|
746 |
+
maximum=1.0,
|
747 |
+
value=0.0,
|
748 |
+
step=0.01,
|
749 |
+
visible=False
|
750 |
+
)
|
751 |
+
gpu_memory_preservation = gr.Slider(
|
752 |
+
label=get_translation("gpu_memory"),
|
753 |
+
minimum=6,
|
754 |
+
maximum=128,
|
755 |
+
value=6,
|
756 |
+
step=0.1,
|
757 |
+
info=get_translation("gpu_memory_info")
|
758 |
+
)
|
759 |
+
|
760 |
+
# ๋ฒํผ ์ฒ๋ฆฌ
|
761 |
+
inputs_list = [
|
762 |
+
input_image, prompt, n_prompt, seed,
|
763 |
+
total_second_length, latent_window_size, steps,
|
764 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
765 |
+
]
|
766 |
+
start_button.click(
|
767 |
+
fn=process,
|
768 |
+
inputs=inputs_list,
|
769 |
+
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, stop_button]
|
770 |
+
)
|
771 |
+
stop_button.click(fn=end_process)
|
772 |
+
|
773 |
+
block.launch()
|
774 |
+
#############################################
|
775 |
+
# from diffusers_helper.hf_login import login
|
776 |
+
# ํ์์ HF ๋ก๊ทธ์ธ ์ฌ์ฉ (์ฃผ์ ํด์ ํ)
|
777 |
+
#############################################
|
778 |
+
|
779 |
+
import os
|
780 |
|
781 |
os.environ['HF_HOME'] = os.path.abspath(
|
782 |
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
783 |
)
|
784 |
|
785 |
+
import gradio as gr
|
786 |
+
import torch
|
787 |
+
import traceback
|
788 |
+
import einops
|
789 |
+
import safetensors.torch as sf
|
790 |
+
import numpy as np
|
791 |
+
import math
|
792 |
+
import time
|
793 |
+
|
794 |
+
# Hugging Face Spaces ํ๊ฒฝ ์ธ์ง ํ์ธ
|
795 |
+
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
796 |
+
|
797 |
+
# --------- ๋ฒ์ญ ๋์
๋๋ฆฌ(์์ด ๊ณ ์ ) ---------
|
798 |
translations = {
|
799 |
"en": {
|
800 |
"title": "FramePack - Image to Video Generation",
|
|
|
807 |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
808 |
"negative_prompt": "Negative Prompt",
|
809 |
"seed": "Seed",
|
810 |
+
# ์ต๋ 4์ด๋ก UI ํ๊ธฐ ์์
|
811 |
"video_length": "Video Length (max 4 seconds)",
|
812 |
"latent_window": "Latent Window Size",
|
813 |
"steps": "Inference Steps",
|
|
|
820 |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
821 |
"next_latents": "Next Latents",
|
822 |
"generated_video": "Generated Video",
|
823 |
+
"sampling_note": "Note: The model predicts future frames from past frames. If the start action isn't immediately visible, please wait for more frames.",
|
824 |
"error_message": "Error",
|
825 |
"processing_error": "Processing error",
|
826 |
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
|
|
|
831 |
}
|
832 |
}
|
833 |
|
|
|
834 |
def get_translation(key):
|
835 |
return translations["en"].get(key, key)
|
836 |
|
837 |
+
#############################################
|
838 |
+
# diffusers_helper ๊ด๋ จ ์ํฌํธ
|
839 |
+
#############################################
|
840 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
841 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
842 |
from diffusers_helper.memory import (
|
843 |
cpu,
|
844 |
gpu,
|
|
|
850 |
unload_complete_models,
|
851 |
load_model_as_complete
|
852 |
)
|
853 |
+
from diffusers_helper.utils import (
|
854 |
+
generate_timestamp,
|
855 |
+
save_bcthw_as_mp4,
|
856 |
+
resize_and_center_crop,
|
857 |
+
crop_or_pad_yield_mask,
|
858 |
+
soft_append_bcthw
|
859 |
+
)
|
860 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
861 |
+
from diffusers_helper.hunyuan import (
|
862 |
+
encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake
|
863 |
)
|
864 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
865 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
866 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
867 |
|
868 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
869 |
+
from transformers import (
|
870 |
+
LlamaModel, CLIPTextModel,
|
871 |
+
LlamaTokenizerFast, CLIPTokenizer,
|
872 |
+
SiglipVisionModel, SiglipImageProcessor
|
873 |
+
)
|
874 |
|
875 |
+
#############################################
|
876 |
+
# GPU ์ฒดํฌ
|
877 |
+
#############################################
|
878 |
+
GPU_AVAILABLE = torch.cuda.is_available()
|
879 |
+
free_mem_gb = 0.0
|
880 |
+
high_vram = False
|
881 |
+
if GPU_AVAILABLE:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
try:
|
883 |
+
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
884 |
+
high_vram = (free_mem_gb > 60)
|
885 |
+
except:
|
886 |
+
pass
|
887 |
+
print(f"GPU Available: {GPU_AVAILABLE}, free_mem_gb={free_mem_gb}, high_vram={high_vram}")
|
888 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
889 |
cpu_fallback_mode = not GPU_AVAILABLE
|
890 |
+
last_update_time = time.time()
|
891 |
|
892 |
+
#############################################
|
893 |
+
# ๋ชจ๋ธ ๋ก๋ (์ ์ญ)
|
894 |
+
#############################################
|
895 |
+
text_encoder = None
|
896 |
+
text_encoder_2 = None
|
897 |
+
tokenizer = None
|
898 |
+
tokenizer_2 = None
|
899 |
+
vae = None
|
900 |
+
feature_extractor = None
|
901 |
+
image_encoder = None
|
902 |
+
transformer = None
|
903 |
+
|
904 |
+
# ์๋ ๋ก์ง์ ์ง๋ฌธ์ ์ ์๋ '๋ ๋ฒ์งธ ์ฝ๋'์ ๋ชจ๋ธ ๋ก๋ ๋ถ๋ถ์ ๊ฑฐ์ ๊ทธ๋๋ก ์ฌ์ฉ
|
905 |
+
def load_global_models():
|
906 |
+
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
907 |
+
global vae, feature_extractor, image_encoder, transformer
|
908 |
+
global cpu_fallback_mode
|
909 |
+
|
910 |
+
# ์ด๋ฏธ ๋ก๋๋์์ผ๋ฉด ํจ์ค
|
911 |
+
if transformer is not None:
|
912 |
+
return
|
913 |
|
914 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ณด
|
915 |
+
device = gpu if GPU_AVAILABLE else cpu
|
916 |
|
917 |
+
# diffusers_helper.memory.get_cuda_free_memory_gb(gpu)๋ก ๋ ์ ํํ ๊ตฌํด๋ ๋จ
|
918 |
+
print("Loading models...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
|
920 |
+
# ======== ์ค ์ฝ๋: ๋ ๋ฒ์งธ ์์ ๊ธฐ์ค =========
|
921 |
+
# (1) ํ์ด๋ธ๋ฆฌ๋ (if high_vram -> GPU๋ก ๋ก๋, ์๋๋ฉด CPU + DynamicSwap)
|
|
|
|
|
|
|
|
|
922 |
|
923 |
+
# ๋ฐ๋์ float16, bfloat16๋ก ๋ก๋
|
924 |
+
text_encoder_local = LlamaModel.from_pretrained(
|
925 |
+
"hunyuanvideo-community/HunyuanVideo",
|
926 |
+
subfolder='text_encoder',
|
927 |
+
torch_dtype=torch.float16
|
928 |
+
).cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
929 |
|
930 |
+
text_encoder_2_local = CLIPTextModel.from_pretrained(
|
931 |
+
"hunyuanvideo-community/HunyuanVideo",
|
932 |
+
subfolder='text_encoder_2',
|
933 |
+
torch_dtype=torch.float16
|
934 |
+
).cpu()
|
|
|
|
|
|
|
|
|
935 |
|
936 |
+
tokenizer_local = LlamaTokenizerFast.from_pretrained(
|
937 |
+
"hunyuanvideo-community/HunyuanVideo",
|
938 |
+
subfolder='tokenizer'
|
939 |
+
)
|
940 |
+
tokenizer_2_local = CLIPTokenizer.from_pretrained(
|
941 |
+
"hunyuanvideo-community/HunyuanVideo",
|
942 |
+
subfolder='tokenizer_2'
|
943 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
944 |
|
945 |
+
vae_local = AutoencoderKLHunyuanVideo.from_pretrained(
|
946 |
+
"hunyuanvideo-community/HunyuanVideo",
|
947 |
+
subfolder='vae',
|
948 |
+
torch_dtype=torch.float16
|
949 |
+
).cpu()
|
950 |
|
951 |
+
feature_extractor_local = SiglipImageProcessor.from_pretrained(
|
952 |
+
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
953 |
+
)
|
954 |
+
image_encoder_local = SiglipVisionModel.from_pretrained(
|
955 |
+
"lllyasviel/flux_redux_bfl",
|
956 |
+
subfolder='image_encoder',
|
957 |
+
torch_dtype=torch.float16
|
958 |
+
).cpu()
|
959 |
+
|
960 |
+
# FramePack_F1_I2V_HY_20250503 (bfloat16)
|
961 |
+
transformer_local = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
962 |
+
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
963 |
+
torch_dtype=torch.bfloat16
|
964 |
+
).cpu()
|
965 |
+
|
966 |
+
# eval & dtype
|
967 |
+
vae_local.eval()
|
968 |
+
text_encoder_local.eval()
|
969 |
+
text_encoder_2_local.eval()
|
970 |
+
image_encoder_local.eval()
|
971 |
+
transformer_local.eval()
|
972 |
+
|
973 |
+
# VAE slicing for low VRAM
|
974 |
+
if not high_vram:
|
975 |
+
vae_local.enable_slicing()
|
976 |
+
vae_local.enable_tiling()
|
977 |
+
|
978 |
+
# ์คํ๋ก๋์ฉ
|
979 |
+
transformer_local.high_quality_fp32_output_for_inference = True
|
980 |
+
transformer_local.to(dtype=torch.bfloat16)
|
981 |
+
vae_local.to(dtype=torch.float16)
|
982 |
+
image_encoder_local.to(dtype=torch.float16)
|
983 |
+
text_encoder_local.to(dtype=torch.float16)
|
984 |
+
text_encoder_2_local.to(dtype=torch.float16)
|
985 |
+
|
986 |
+
# requires_grad_(False)
|
987 |
+
for m in [vae_local, text_encoder_local, text_encoder_2_local, image_encoder_local, transformer_local]:
|
988 |
+
m.requires_grad_(False)
|
989 |
+
|
990 |
+
# GPU ๋ชจ๋ & VRAM ๋ง์ผ๋ฉด ์ ๋ถ GPU
|
991 |
+
# ๊ทธ๋ ์ง ์์ผ๋ฉด DynamicSwap
|
992 |
+
if GPU_AVAILABLE:
|
993 |
+
if not high_vram:
|
994 |
+
DynamicSwapInstaller.install_model(transformer_local, device=gpu)
|
995 |
+
DynamicSwapInstaller.install_model(text_encoder_local, device=gpu)
|
996 |
else:
|
997 |
+
text_encoder_local.to(gpu)
|
998 |
+
text_encoder_2_local.to(gpu)
|
999 |
+
image_encoder_local.to(gpu)
|
1000 |
+
vae_local.to(gpu)
|
1001 |
+
transformer_local.to(gpu)
|
1002 |
else:
|
1003 |
+
cpu_fallback_mode = True
|
1004 |
+
|
1005 |
+
# ๊ธ๋ก๋ฒ์ ํ ๋น
|
1006 |
+
print("Model loaded.")
|
1007 |
+
text_encoder = text_encoder_local
|
1008 |
+
text_encoder_2 = text_encoder_2_local
|
1009 |
+
tokenizer = tokenizer_local
|
1010 |
+
tokenizer_2 = tokenizer_2_local
|
1011 |
+
vae = vae_local
|
1012 |
+
feature_extractor = feature_extractor_local
|
1013 |
+
image_encoder = image_encoder_local
|
1014 |
+
transformer = transformer_local
|
1015 |
+
|
1016 |
+
#############################################
|
1017 |
+
# Worker ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋) ๊ทธ๋๋ก
|
1018 |
+
#############################################
|
1019 |
+
stream = AsyncStream()
|
1020 |
+
|
1021 |
+
outputs_folder = './outputs/'
|
1022 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
1023 |
|
1024 |
@torch.no_grad()
|
1025 |
def worker(
|
1026 |
+
input_image, prompt, n_prompt, seed,
|
1027 |
+
total_second_length, latent_window_size, steps,
|
1028 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1029 |
):
|
1030 |
"""
|
1031 |
+
์ค์ ์ํ๋ง ๋ก์ง (๋ ๋ฒ์งธ ์ฝ๋ ๊ธฐ๋ฐ)
|
1032 |
"""
|
1033 |
+
load_global_models() # ๋ชจ๋ธ ๋ก๋ฉ
|
1034 |
+
global text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
1035 |
+
global vae, feature_extractor, image_encoder, transformer
|
1036 |
global last_update_time
|
|
|
1037 |
|
1038 |
+
# ์ต๋ 4์ด๋ก ๊ณ ์
|
1039 |
total_second_length = min(total_second_length, 4.0)
|
1040 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1041 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
1042 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
1043 |
|
1044 |
job_id = generate_timestamp()
|
|
|
|
|
|
|
|
|
1045 |
|
|
|
1046 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
1047 |
|
1048 |
try:
|
1049 |
+
# GPU ์ ์ ๊ฒฝ์ฐ Unload
|
1050 |
+
if not high_vram and GPU_AVAILABLE:
|
1051 |
+
unload_complete_models(
|
1052 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
1053 |
+
)
|
|
|
1054 |
|
1055 |
+
# Text encoding
|
1056 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
|
|
1057 |
|
1058 |
+
if not high_vram and GPU_AVAILABLE:
|
1059 |
+
fake_diffusers_current_device(text_encoder, gpu)
|
1060 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
|
|
|
|
1061 |
|
1062 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
1063 |
+
if cfg == 1.0:
|
1064 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
1065 |
+
else:
|
1066 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
1067 |
+
|
1068 |
+
llama_vec, llama_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
1069 |
+
llama_vec_n, llama_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
1070 |
+
|
1071 |
+
# Image processing
|
1072 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
1073 |
+
|
1074 |
+
H, W, C = input_image.shape
|
1075 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
1076 |
+
|
1077 |
+
if cpu_fallback_mode:
|
1078 |
+
height = min(height, 320)
|
1079 |
+
width = min(width, 320)
|
1080 |
+
|
1081 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
1082 |
+
|
1083 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
1084 |
+
|
1085 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
1086 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
1087 |
+
|
1088 |
+
# VAE encode
|
1089 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
1090 |
+
|
1091 |
+
if not high_vram and GPU_AVAILABLE:
|
1092 |
+
load_model_as_complete(vae, target_device=gpu)
|
1093 |
+
start_latent = vae_encode(input_image_pt, vae)
|
1094 |
+
|
1095 |
+
# CLIP Vision
|
1096 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
1097 |
+
|
1098 |
+
if not high_vram and GPU_AVAILABLE:
|
1099 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
1100 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
1101 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
1102 |
+
|
1103 |
+
# dtype
|
1104 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
1105 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
1106 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
1107 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
1108 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
1109 |
+
|
1110 |
+
# Start sampling
|
1111 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1112 |
|
1113 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
1114 |
|
1115 |
+
# ์ด๊ธฐ history latents
|
1116 |
+
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
|
1117 |
+
history_pixels = None
|
1118 |
+
|
1119 |
+
# start_latent ๋ถ์ด๊ธฐ
|
1120 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
1121 |
+
total_generated_latent_frames = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
|
1123 |
for section_index in range(total_latent_sections):
|
1124 |
if stream.input_queue.top() == 'end':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1125 |
stream.output_queue.push(('end', None))
|
1126 |
return
|
1127 |
|
1128 |
+
print(f'Section {section_index+1}/{total_latent_sections}')
|
1129 |
+
|
1130 |
+
if not high_vram and GPU_AVAILABLE:
|
1131 |
+
unload_complete_models()
|
1132 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
1133 |
+
|
1134 |
+
# teacache
|
1135 |
+
if use_teacache:
|
1136 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1137 |
else:
|
1138 |
transformer.initialize_teacache(enable_teacache=False)
|
1139 |
|
|
|
1140 |
def callback(d):
|
1141 |
+
preview = d['denoised']
|
1142 |
+
preview = vae_decode_fake(preview)
|
1143 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
1144 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
1145 |
+
|
1146 |
+
if stream.input_queue.top() == 'end':
|
1147 |
+
stream.output_queue.push(('end', None))
|
1148 |
+
raise KeyboardInterrupt('User stops generation.')
|
1149 |
+
|
1150 |
+
current_step = d['i'] + 1
|
1151 |
+
percentage = int(100.0 * current_step / steps)
|
1152 |
+
hint = f'Sampling {current_step}/{steps}'
|
1153 |
+
desc = f'Section {section_index+1}/{total_latent_sections}'
|
1154 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1155 |
return
|
1156 |
|
1157 |
+
# indices
|
1158 |
+
frames_per_section = latent_window_size * 4 - 3
|
1159 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
1160 |
+
(
|
1161 |
+
clean_latent_indices_start,
|
1162 |
+
clean_latent_4x_indices,
|
1163 |
+
clean_latent_2x_indices,
|
1164 |
+
clean_latent_1x_indices,
|
1165 |
+
latent_indices
|
1166 |
+
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
1167 |
+
|
1168 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
1169 |
+
|
1170 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -19:, :, :].split([16, 2, 1], dim=2)
|
1171 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1172 |
|
|
|
1173 |
try:
|
1174 |
generated_latents = sample_hunyuan(
|
1175 |
transformer=transformer,
|
|
|
1183 |
num_inference_steps=steps,
|
1184 |
generator=rnd,
|
1185 |
prompt_embeds=llama_vec,
|
1186 |
+
prompt_embeds_mask=llama_mask,
|
1187 |
prompt_poolers=clip_l_pooler,
|
1188 |
negative_prompt_embeds=llama_vec_n,
|
1189 |
+
negative_prompt_embeds_mask=llama_mask_n,
|
1190 |
negative_prompt_poolers=clip_l_pooler_n,
|
1191 |
+
device=gpu if GPU_AVAILABLE else cpu,
|
1192 |
+
dtype=torch.bfloat16,
|
1193 |
image_embeddings=image_encoder_last_hidden_state,
|
1194 |
latent_indices=latent_indices,
|
1195 |
clean_latents=clean_latents,
|
1196 |
+
clean_latent_indices=clean_latent_indices,
|
1197 |
clean_latents_2x=clean_latents_2x,
|
1198 |
clean_latent_2x_indices=clean_latent_2x_indices,
|
1199 |
clean_latents_4x=clean_latents_4x,
|
|
|
1201 |
callback=callback
|
1202 |
)
|
1203 |
except KeyboardInterrupt:
|
1204 |
+
print("User cancelled.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1205 |
stream.output_queue.push(('end', None))
|
1206 |
return
|
|
|
|
|
|
|
|
|
|
|
1207 |
except Exception as e:
|
|
|
|
|
1208 |
traceback.print_exc()
|
|
|
1209 |
stream.output_queue.push(('end', None))
|
1210 |
return
|
1211 |
|
1212 |
+
total_generated_latent_frames += generated_latents.shape[2]
|
1213 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
|
|
|
|
|
|
|
|
|
|
1214 |
|
1215 |
+
if not high_vram and GPU_AVAILABLE:
|
1216 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
1217 |
+
load_model_as_complete(vae, target_device=gpu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1218 |
|
1219 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
|
|
|
|
|
|
1220 |
|
1221 |
+
if history_pixels is None:
|
1222 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
1223 |
+
else:
|
1224 |
+
section_latent_frames = latent_window_size * 2
|
1225 |
+
overlapped_frames = frames_per_section
|
1226 |
+
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
1227 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
1228 |
|
1229 |
+
if not high_vram and GPU_AVAILABLE:
|
1230 |
+
unload_complete_models()
|
1231 |
|
1232 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
1233 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=16) # CRF=16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1234 |
|
1235 |
+
stream.output_queue.push(('file', output_filename))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1236 |
|
1237 |
+
except:
|
1238 |
+
traceback.print_exc()
|
1239 |
+
if not high_vram and GPU_AVAILABLE:
|
1240 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1241 |
|
1242 |
+
stream.output_queue.push(('end', None))
|
1243 |
+
return
|
1244 |
|
1245 |
def end_process():
|
1246 |
"""
|
1247 |
+
์ค๋จ ์์ฒญ
|
1248 |
"""
|
|
|
1249 |
global stream
|
1250 |
+
stream.input_queue.push('end')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1251 |
|
1252 |
+
# Gradio์์ ์ด worker ํจ์๋ฅผ ๋น๋๊ธฐ๋ก ํธ์ถ
|
1253 |
+
def process(
|
1254 |
+
input_image, prompt, n_prompt, seed,
|
1255 |
+
total_second_length, latent_window_size, steps,
|
1256 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1257 |
+
):
|
1258 |
+
global stream
|
1259 |
+
if input_image is None:
|
1260 |
+
raise ValueError("No input image provided.")
|
1261 |
+
|
1262 |
+
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
1263 |
+
|
1264 |
+
stream = AsyncStream()
|
1265 |
+
async_run(
|
1266 |
+
worker,
|
1267 |
+
input_image, prompt, n_prompt, seed,
|
1268 |
+
total_second_length, latent_window_size, steps,
|
1269 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
output_filename = None
|
1273 |
+
prev_filename = None
|
1274 |
+
error_message = None
|
1275 |
+
|
1276 |
+
while True:
|
1277 |
+
flag, data = stream.output_queue.next()
|
1278 |
+
if flag == 'file':
|
1279 |
+
output_filename = data
|
1280 |
+
prev_filename = output_filename
|
1281 |
+
yield output_filename, gr.update(), gr.update(), "", gr.update(interactive=False), gr.update(interactive=True)
|
1282 |
+
|
1283 |
+
elif flag == 'progress':
|
1284 |
+
preview, desc, html = data
|
1285 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1286 |
+
|
1287 |
+
elif flag == 'error':
|
1288 |
+
error_message = data
|
1289 |
+
print(f"Error: {error_message}")
|
1290 |
+
|
1291 |
+
elif flag == 'end':
|
1292 |
+
if output_filename is None and prev_filename:
|
1293 |
+
output_filename = prev_filename
|
1294 |
+
# ์๋ฌ๊ฐ ์์์ผ๋ฉด ์๋ฌ ํ์
|
1295 |
+
if error_message:
|
1296 |
+
yield (
|
1297 |
+
output_filename, # ๋ง์ง๋ง ํ์ผ (๋๋ None)
|
1298 |
+
gr.update(visible=False),
|
1299 |
+
gr.update(),
|
1300 |
+
f"<div style='color:red;'>{error_message}</div>",
|
1301 |
+
gr.update(interactive=True),
|
1302 |
+
gr.update(interactive=False)
|
1303 |
+
)
|
1304 |
+
else:
|
1305 |
+
yield (
|
1306 |
+
output_filename, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
|
1307 |
+
)
|
1308 |
+
break
|
1309 |
|
1310 |
+
# UI CSS
|
1311 |
def make_custom_css():
|
1312 |
base_progress_css = make_progress_bar_css()
|
1313 |
pastel_css = """
|
|
|
1314 |
body {
|
1315 |
background: #faf9ff !important;
|
1316 |
font-family: "Noto Sans", sans-serif;
|
|
|
1371 |
margin-top: 10px;
|
1372 |
font-weight: 500;
|
1373 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1374 |
@media (max-width: 768px) {
|
1375 |
#app-container {
|
1376 |
padding: 0.5rem;
|
|
|
1387 |
|
1388 |
css = make_custom_css()
|
1389 |
|
1390 |
+
# ์ํ ํ๋กฌํํธ
|
1391 |
+
quick_prompts = [
|
1392 |
+
["The girl dances gracefully, with clear movements, full of charm."],
|
1393 |
+
["A character doing some simple body movements."]
|
1394 |
+
]
|
1395 |
+
|
1396 |
# Gradio UI
|
1397 |
block = gr.Blocks(css=css).queue()
|
1398 |
with block:
|
|
|
1399 |
gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
|
1400 |
|
1401 |
with gr.Row(elem_classes="mobile-full-width"):
|
1402 |
+
# ์ผ์ชฝ
|
1403 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1404 |
input_image = gr.Image(
|
1405 |
label=get_translation("upload_image"),
|
|
|
1406 |
type="numpy",
|
|
|
1407 |
height=320
|
1408 |
)
|
1409 |
+
prompt = gr.Textbox(
|
1410 |
+
label=get_translation("prompt"),
|
1411 |
+
value=''
|
1412 |
+
)
|
1413 |
|
1414 |
example_quick_prompts = gr.Dataset(
|
1415 |
samples=quick_prompts,
|
|
|
1424 |
show_progress=False,
|
1425 |
queue=False
|
1426 |
)
|
1427 |
+
|
1428 |
+
# ์ค๋ฅธ์ชฝ
|
1429 |
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1430 |
with gr.Row(elem_classes="button-container"):
|
1431 |
start_button = gr.Button(
|
|
|
1433 |
elem_id="start-button",
|
1434 |
variant="primary"
|
1435 |
)
|
1436 |
+
stop_button = gr.Button(
|
1437 |
value=get_translation("stop_generation"),
|
1438 |
elem_id="stop-button",
|
1439 |
interactive=False
|
1440 |
)
|
1441 |
+
|
1442 |
result_video = gr.Video(
|
1443 |
label=get_translation("generated_video"),
|
1444 |
autoplay=True,
|
1445 |
loop=True,
|
1446 |
height=320,
|
1447 |
+
elem_classes="video-container"
|
|
|
1448 |
)
|
1449 |
preview_image = gr.Image(
|
1450 |
label=get_translation("next_latents"),
|
|
|
1452 |
height=150,
|
1453 |
elem_classes="preview-container"
|
1454 |
)
|
|
|
1455 |
gr.Markdown(get_translation("sampling_note"))
|
1456 |
+
|
1457 |
with gr.Group(elem_classes="progress-container"):
|
1458 |
progress_desc = gr.Markdown('')
|
1459 |
progress_bar = gr.HTML('')
|
|
|
|
|
1460 |
|
1461 |
+
error_message = gr.HTML('', visible=True)
|
1462 |
+
|
1463 |
+
# Advanced
|
1464 |
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
1465 |
use_teacache = gr.Checkbox(
|
1466 |
label=get_translation("use_teacache"),
|
|
|
1473 |
value=31337,
|
1474 |
precision=0
|
1475 |
)
|
1476 |
+
# ๊ธฐ๋ณธ 2์ด, ์ต๋ 4์ด
|
1477 |
total_second_length = gr.Slider(
|
1478 |
label=get_translation("video_length"),
|
1479 |
minimum=1,
|
|
|
1530 |
info=get_translation("gpu_memory_info")
|
1531 |
)
|
1532 |
|
1533 |
+
# ๋ฒํผ ์ฒ๋ฆฌ
|
1534 |
+
inputs_list = [
|
1535 |
input_image, prompt, n_prompt, seed,
|
1536 |
total_second_length, latent_window_size, steps,
|
1537 |
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1538 |
]
|
1539 |
start_button.click(
|
1540 |
fn=process,
|
1541 |
+
inputs=inputs_list,
|
1542 |
+
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, stop_button]
|
1543 |
)
|
1544 |
+
stop_button.click(fn=end_process)
|
1545 |
|
1546 |
block.launch()
|