Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
-
|
2 |
import os
|
3 |
|
4 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
import torch
|
@@ -14,12 +15,32 @@ import spaces
|
|
14 |
|
15 |
from PIL import Image
|
16 |
from diffusers import AutoencoderKLHunyuanVideo
|
17 |
-
from transformers import
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
21 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
22 |
-
from diffusers_helper.memory import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
24 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
25 |
from transformers import SiglipImageProcessor, SiglipVisionModel
|
@@ -33,16 +54,44 @@ high_vram = free_mem_gb > 60
|
|
33 |
print(f'Free VRAM {free_mem_gb} GB')
|
34 |
print(f'High-VRAM Mode: {high_vram}')
|
35 |
|
36 |
-
text_encoder = LlamaModel.from_pretrained(
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
vae.eval()
|
48 |
text_encoder.eval()
|
@@ -86,39 +135,41 @@ outputs_folder = './outputs/'
|
|
86 |
os.makedirs(outputs_folder, exist_ok=True)
|
87 |
|
88 |
examples = [
|
89 |
-
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."
|
90 |
-
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
91 |
-
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
92 |
]
|
93 |
|
94 |
def generate_examples(input_image, prompt):
|
95 |
-
|
96 |
-
t2v=False
|
97 |
n_prompt=""
|
98 |
seed=31337
|
99 |
-
total_second_length=5
|
100 |
-
latent_window_size=9
|
101 |
-
steps=25
|
102 |
-
cfg=1.0
|
103 |
-
gs=10.0
|
104 |
rs=0.0
|
105 |
-
gpu_memory_preservation=6
|
106 |
-
use_teacache=True
|
107 |
mp4_crf=16
|
108 |
|
109 |
global stream
|
110 |
-
|
111 |
-
# assert input_image is not None, 'No input image!'
|
112 |
if t2v:
|
113 |
default_height, default_width = 640, 640
|
114 |
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
115 |
-
print("No input image provided. Using a blank white image.")
|
116 |
|
117 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
118 |
|
119 |
stream = AsyncStream()
|
120 |
|
121 |
-
async_run(
|
|
|
|
|
|
|
|
|
122 |
|
123 |
output_filename = None
|
124 |
|
@@ -127,68 +178,111 @@ def generate_examples(input_image, prompt):
|
|
127 |
|
128 |
if flag == 'file':
|
129 |
output_filename = data
|
130 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
if flag == 'progress':
|
133 |
preview, desc, html = data
|
134 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if flag == 'end':
|
137 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
break
|
139 |
|
140 |
-
|
141 |
-
|
142 |
@torch.no_grad()
|
143 |
-
def worker(
|
|
|
|
|
|
|
|
|
|
|
144 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
145 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
146 |
|
147 |
job_id = generate_timestamp()
|
148 |
|
149 |
-
stream.output_queue.push(
|
|
|
|
|
150 |
|
151 |
try:
|
152 |
-
# Clean GPU
|
153 |
if not high_vram:
|
154 |
unload_complete_models(
|
155 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
156 |
)
|
157 |
|
158 |
# Text encoding
|
159 |
-
|
160 |
-
|
|
|
161 |
|
162 |
if not high_vram:
|
163 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
164 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
165 |
|
166 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(
|
|
|
|
|
|
|
167 |
|
168 |
if cfg == 1:
|
169 |
-
llama_vec_n, clip_l_pooler_n =
|
|
|
|
|
|
|
170 |
else:
|
171 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
|
|
|
|
|
|
172 |
|
173 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
174 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
175 |
|
176 |
# Processing input image
|
177 |
-
|
178 |
-
|
|
|
179 |
|
180 |
H, W, C = input_image.shape
|
181 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
182 |
-
input_image_np = resize_and_center_crop(
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
Image.fromarray(input_image_np).save(
|
|
|
|
|
185 |
|
186 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
187 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
188 |
|
189 |
# VAE encoding
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
if not high_vram:
|
194 |
load_model_as_complete(vae, target_device=gpu)
|
@@ -196,33 +290,42 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
196 |
start_latent = vae_encode(input_image_pt, vae)
|
197 |
|
198 |
# CLIP Vision
|
199 |
-
|
200 |
-
|
|
|
201 |
|
202 |
if not high_vram:
|
203 |
load_model_as_complete(image_encoder, target_device=gpu)
|
204 |
|
205 |
-
image_encoder_output = hf_clip_vision_encode(
|
|
|
|
|
206 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
207 |
|
208 |
# Dtype
|
209 |
-
|
210 |
llama_vec = llama_vec.to(transformer.dtype)
|
211 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
212 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
213 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
214 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
215 |
|
216 |
-
#
|
217 |
-
|
218 |
-
|
|
|
219 |
|
220 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
221 |
|
222 |
-
history_latents = torch.zeros(
|
|
|
|
|
|
|
223 |
history_pixels = None
|
224 |
|
225 |
-
history_latents = torch.cat(
|
|
|
|
|
|
|
226 |
total_generated_latent_frames = 1
|
227 |
|
228 |
for section_index in range(total_latent_sections):
|
@@ -234,7 +337,10 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
234 |
|
235 |
if not high_vram:
|
236 |
unload_complete_models()
|
237 |
-
move_model_to_device_with_memory_preservation(
|
|
|
|
|
|
|
238 |
|
239 |
if use_teacache:
|
240 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
@@ -244,9 +350,11 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
244 |
def callback(d):
|
245 |
preview = d['denoised']
|
246 |
preview = vae_decode_fake(preview)
|
247 |
-
|
248 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
249 |
-
preview = einops.rearrange(
|
|
|
|
|
|
|
250 |
|
251 |
if stream.input_queue.top() == 'end':
|
252 |
stream.output_queue.push(('end', None))
|
@@ -255,16 +363,35 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
255 |
current_step = d['i'] + 1
|
256 |
percentage = int(100.0 * current_step / steps)
|
257 |
hint = f'Sampling {current_step}/{steps}'
|
258 |
-
desc = f'
|
259 |
-
stream.output_queue.push(
|
|
|
|
|
260 |
return
|
261 |
|
262 |
-
indices = torch.arange(
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
generated_latents = sample_hunyuan(
|
270 |
transformer=transformer,
|
@@ -275,7 +402,6 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
275 |
real_guidance_scale=cfg,
|
276 |
distilled_guidance_scale=gs,
|
277 |
guidance_rescale=rs,
|
278 |
-
# shift=3.0,
|
279 |
num_inference_steps=steps,
|
280 |
generator=rnd,
|
281 |
prompt_embeds=llama_vec,
|
@@ -298,13 +424,21 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
298 |
)
|
299 |
|
300 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
301 |
-
history_latents = torch.cat(
|
|
|
|
|
|
|
302 |
|
303 |
if not high_vram:
|
304 |
-
offload_model_from_device_for_memory_preservation(
|
|
|
|
|
|
|
305 |
load_model_as_complete(vae, target_device=gpu)
|
306 |
|
307 |
-
real_history_latents = history_latents[
|
|
|
|
|
308 |
|
309 |
if history_pixels is None:
|
310 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
@@ -312,22 +446,33 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
312 |
section_latent_frames = latent_window_size * 2
|
313 |
overlapped_frames = latent_window_size * 4 - 3
|
314 |
|
315 |
-
current_pixels = vae_decode(
|
316 |
-
|
|
|
|
|
|
|
|
|
317 |
|
318 |
if not high_vram:
|
319 |
unload_complete_models()
|
320 |
|
321 |
-
output_filename = os.path.join(
|
|
|
|
|
322 |
|
323 |
-
save_bcthw_as_mp4(
|
|
|
|
|
|
|
324 |
|
325 |
-
print(
|
|
|
|
|
326 |
|
327 |
stream.output_queue.push(('file', output_filename))
|
|
|
328 |
except:
|
329 |
traceback.print_exc()
|
330 |
-
|
331 |
if not high_vram:
|
332 |
unload_complete_models(
|
333 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
@@ -336,62 +481,62 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
336 |
stream.output_queue.push(('end', None))
|
337 |
return
|
338 |
|
339 |
-
def get_duration(
|
|
|
|
|
|
|
|
|
340 |
return total_second_length * 60
|
341 |
|
342 |
@spaces.GPU(duration=get_duration)
|
343 |
-
def process(
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
steps=25,
|
350 |
-
cfg=1.0,
|
351 |
-
gs=10.0,
|
352 |
-
rs=0.0,
|
353 |
-
gpu_memory_preservation=6,
|
354 |
-
use_teacache=True,
|
355 |
-
mp4_crf=16
|
356 |
-
):
|
357 |
global stream
|
358 |
-
|
359 |
-
# assert input_image is not None, 'No input image!'
|
360 |
if t2v:
|
361 |
default_height, default_width = 640, 640
|
362 |
-
input_image = np.ones(
|
|
|
|
|
|
|
363 |
print("No input image provided. Using a blank white image.")
|
364 |
else:
|
365 |
-
|
|
|
366 |
|
367 |
-
# rgb_uint8
|
368 |
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
369 |
-
# mask_uint8
|
370 |
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
371 |
-
|
372 |
-
#
|
373 |
h, w = rgb_uint8.shape[:2]
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
# Normalize mask to range [0.0, 1.0].
|
378 |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
379 |
-
|
380 |
-
|
381 |
-
#
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
386 |
-
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
387 |
|
388 |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
389 |
-
|
390 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
391 |
|
392 |
stream = AsyncStream()
|
393 |
|
394 |
-
async_run(
|
|
|
|
|
|
|
|
|
395 |
|
396 |
output_filename = None
|
397 |
|
@@ -400,88 +545,265 @@ def process(input_image, prompt,
|
|
400 |
|
401 |
if flag == 'file':
|
402 |
output_filename = data
|
403 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
-
|
406 |
preview, desc, html = data
|
407 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
-
|
410 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
break
|
412 |
|
413 |
-
|
414 |
def end_process():
|
415 |
stream.input_queue.push('end')
|
416 |
|
417 |
-
|
418 |
quick_prompts = [
|
419 |
'The girl dances gracefully, with clear movements, full of charm.',
|
420 |
-
'A character doing some simple body movements.'
|
421 |
]
|
422 |
quick_prompts = [[x] for x in quick_prompts]
|
423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
-
css = make_progress_bar_css()
|
426 |
block = gr.Blocks(css=css).queue()
|
427 |
with block:
|
428 |
-
|
429 |
-
gr.
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
433 |
""")
|
|
|
434 |
with gr.Row():
|
435 |
with gr.Column():
|
436 |
-
input_image = gr.ImageEditor(
|
|
|
|
|
|
|
|
|
|
|
437 |
prompt = gr.Textbox(label="Prompt", value='')
|
438 |
-
t2v = gr.Checkbox(label="do text-to-video", value=False)
|
439 |
-
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
440 |
-
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
-
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
|
447 |
with gr.Group():
|
448 |
-
with gr.Accordion("Advanced
|
449 |
-
use_teacache = gr.Checkbox(
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
452 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
with gr.Column():
|
467 |
-
preview_image = gr.Image(label="
|
468 |
-
result_video = gr.Video(label="
|
|
|
469 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
470 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
471 |
|
472 |
-
gr.HTML(
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
-
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
end_button.click(fn=end_process)
|
477 |
|
|
|
478 |
# gr.Examples(
|
479 |
-
# examples,
|
480 |
# inputs=[input_image, prompt],
|
481 |
# outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
482 |
# fn=generate_examples,
|
483 |
# cache_examples=True
|
484 |
-
#
|
485 |
-
|
486 |
|
487 |
block.launch(share=True)
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
+
os.environ['HF_HOME'] = os.path.abspath(
|
4 |
+
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
5 |
+
)
|
6 |
|
7 |
import gradio as gr
|
8 |
import torch
|
|
|
15 |
|
16 |
from PIL import Image
|
17 |
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
+
from transformers import (
|
19 |
+
LlamaModel, CLIPTextModel,
|
20 |
+
LlamaTokenizerFast, CLIPTokenizer
|
21 |
+
)
|
22 |
+
from diffusers_helper.hunyuan import (
|
23 |
+
encode_prompt_conds, vae_decode,
|
24 |
+
vae_encode, vae_decode_fake
|
25 |
+
)
|
26 |
+
from diffusers_helper.utils import (
|
27 |
+
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
28 |
+
soft_append_bcthw, resize_and_center_crop,
|
29 |
+
state_dict_weighted_merge, state_dict_offset_merge,
|
30 |
+
generate_timestamp
|
31 |
+
)
|
32 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
33 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
34 |
+
from diffusers_helper.memory import (
|
35 |
+
cpu, gpu,
|
36 |
+
get_cuda_free_memory_gb,
|
37 |
+
move_model_to_device_with_memory_preservation,
|
38 |
+
offload_model_from_device_for_memory_preservation,
|
39 |
+
fake_diffusers_current_device,
|
40 |
+
DynamicSwapInstaller,
|
41 |
+
unload_complete_models,
|
42 |
+
load_model_as_complete
|
43 |
+
)
|
44 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
45 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
46 |
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
|
54 |
print(f'Free VRAM {free_mem_gb} GB')
|
55 |
print(f'High-VRAM Mode: {high_vram}')
|
56 |
|
57 |
+
text_encoder = LlamaModel.from_pretrained(
|
58 |
+
"hunyuanvideo-community/HunyuanVideo",
|
59 |
+
subfolder='text_encoder',
|
60 |
+
torch_dtype=torch.float16
|
61 |
+
).cpu()
|
62 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
63 |
+
"hunyuanvideo-community/HunyuanVideo",
|
64 |
+
subfolder='text_encoder_2',
|
65 |
+
torch_dtype=torch.float16
|
66 |
+
).cpu()
|
67 |
+
tokenizer = LlamaTokenizerFast.from_pretrained(
|
68 |
+
"hunyuanvideo-community/HunyuanVideo",
|
69 |
+
subfolder='tokenizer'
|
70 |
+
)
|
71 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
72 |
+
"hunyuanvideo-community/HunyuanVideo",
|
73 |
+
subfolder='tokenizer_2'
|
74 |
+
)
|
75 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
76 |
+
"hunyuanvideo-community/HunyuanVideo",
|
77 |
+
subfolder='vae',
|
78 |
+
torch_dtype=torch.float16
|
79 |
+
).cpu()
|
80 |
+
|
81 |
+
feature_extractor = SiglipImageProcessor.from_pretrained(
|
82 |
+
"lllyasviel/flux_redux_bfl",
|
83 |
+
subfolder='feature_extractor'
|
84 |
+
)
|
85 |
+
image_encoder = SiglipVisionModel.from_pretrained(
|
86 |
+
"lllyasviel/flux_redux_bfl",
|
87 |
+
subfolder='image_encoder',
|
88 |
+
torch_dtype=torch.float16
|
89 |
+
).cpu()
|
90 |
+
|
91 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
92 |
+
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
93 |
+
torch_dtype=torch.bfloat16
|
94 |
+
).cpu()
|
95 |
|
96 |
vae.eval()
|
97 |
text_encoder.eval()
|
|
|
135 |
os.makedirs(outputs_folder, exist_ok=True)
|
136 |
|
137 |
examples = [
|
138 |
+
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
|
139 |
+
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
140 |
+
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
141 |
]
|
142 |
|
143 |
def generate_examples(input_image, prompt):
|
144 |
+
t2v=False
|
|
|
145 |
n_prompt=""
|
146 |
seed=31337
|
147 |
+
total_second_length=5
|
148 |
+
latent_window_size=9
|
149 |
+
steps=25
|
150 |
+
cfg=1.0
|
151 |
+
gs=10.0
|
152 |
rs=0.0
|
153 |
+
gpu_memory_preservation=6
|
154 |
+
use_teacache=True
|
155 |
mp4_crf=16
|
156 |
|
157 |
global stream
|
158 |
+
|
|
|
159 |
if t2v:
|
160 |
default_height, default_width = 640, 640
|
161 |
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
162 |
+
print("No input image provided. Using a blank white image.")
|
163 |
|
164 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
165 |
|
166 |
stream = AsyncStream()
|
167 |
|
168 |
+
async_run(
|
169 |
+
worker, input_image, prompt, n_prompt, seed,
|
170 |
+
total_second_length, latent_window_size, steps,
|
171 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
172 |
+
)
|
173 |
|
174 |
output_filename = None
|
175 |
|
|
|
178 |
|
179 |
if flag == 'file':
|
180 |
output_filename = data
|
181 |
+
yield (
|
182 |
+
output_filename,
|
183 |
+
gr.update(),
|
184 |
+
gr.update(),
|
185 |
+
gr.update(),
|
186 |
+
gr.update(interactive=False),
|
187 |
+
gr.update(interactive=True)
|
188 |
+
)
|
189 |
|
190 |
if flag == 'progress':
|
191 |
preview, desc, html = data
|
192 |
+
yield (
|
193 |
+
gr.update(),
|
194 |
+
gr.update(visible=True, value=preview),
|
195 |
+
desc, html,
|
196 |
+
gr.update(interactive=False),
|
197 |
+
gr.update(interactive=True)
|
198 |
+
)
|
199 |
|
200 |
if flag == 'end':
|
201 |
+
yield (
|
202 |
+
output_filename,
|
203 |
+
gr.update(visible=False),
|
204 |
+
gr.update(),
|
205 |
+
'',
|
206 |
+
gr.update(interactive=True),
|
207 |
+
gr.update(interactive=False)
|
208 |
+
)
|
209 |
break
|
210 |
|
|
|
|
|
211 |
@torch.no_grad()
|
212 |
+
def worker(
|
213 |
+
input_image, prompt, n_prompt, seed,
|
214 |
+
total_second_length, latent_window_size,
|
215 |
+
steps, cfg, gs, rs,
|
216 |
+
gpu_memory_preservation, use_teacache, mp4_crf
|
217 |
+
):
|
218 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
219 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
220 |
|
221 |
job_id = generate_timestamp()
|
222 |
|
223 |
+
stream.output_queue.push(
|
224 |
+
('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))
|
225 |
+
)
|
226 |
|
227 |
try:
|
228 |
+
# Clean GPU if VRAM is low
|
229 |
if not high_vram:
|
230 |
unload_complete_models(
|
231 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
232 |
)
|
233 |
|
234 |
# Text encoding
|
235 |
+
stream.output_queue.push(
|
236 |
+
('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))
|
237 |
+
)
|
238 |
|
239 |
if not high_vram:
|
240 |
+
fake_diffusers_current_device(text_encoder, gpu)
|
241 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
242 |
|
243 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(
|
244 |
+
prompt, text_encoder, text_encoder_2,
|
245 |
+
tokenizer, tokenizer_2
|
246 |
+
)
|
247 |
|
248 |
if cfg == 1:
|
249 |
+
llama_vec_n, clip_l_pooler_n = (
|
250 |
+
torch.zeros_like(llama_vec),
|
251 |
+
torch.zeros_like(clip_l_pooler)
|
252 |
+
)
|
253 |
else:
|
254 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
255 |
+
n_prompt, text_encoder, text_encoder_2,
|
256 |
+
tokenizer, tokenizer_2
|
257 |
+
)
|
258 |
|
259 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
260 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
261 |
|
262 |
# Processing input image
|
263 |
+
stream.output_queue.push(
|
264 |
+
('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))
|
265 |
+
)
|
266 |
|
267 |
H, W, C = input_image.shape
|
268 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
269 |
+
input_image_np = resize_and_center_crop(
|
270 |
+
input_image,
|
271 |
+
target_width=width,
|
272 |
+
target_height=height
|
273 |
+
)
|
274 |
|
275 |
+
Image.fromarray(input_image_np).save(
|
276 |
+
os.path.join(outputs_folder, f'{job_id}.png')
|
277 |
+
)
|
278 |
|
279 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
280 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
281 |
|
282 |
# VAE encoding
|
283 |
+
stream.output_queue.push(
|
284 |
+
('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))
|
285 |
+
)
|
286 |
|
287 |
if not high_vram:
|
288 |
load_model_as_complete(vae, target_device=gpu)
|
|
|
290 |
start_latent = vae_encode(input_image_pt, vae)
|
291 |
|
292 |
# CLIP Vision
|
293 |
+
stream.output_queue.push(
|
294 |
+
('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))
|
295 |
+
)
|
296 |
|
297 |
if not high_vram:
|
298 |
load_model_as_complete(image_encoder, target_device=gpu)
|
299 |
|
300 |
+
image_encoder_output = hf_clip_vision_encode(
|
301 |
+
input_image_np, feature_extractor, image_encoder
|
302 |
+
)
|
303 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
304 |
|
305 |
# Dtype
|
|
|
306 |
llama_vec = llama_vec.to(transformer.dtype)
|
307 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
308 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
309 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
310 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
311 |
|
312 |
+
# Start sampling
|
313 |
+
stream.output_queue.push(
|
314 |
+
('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))
|
315 |
+
)
|
316 |
|
317 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
318 |
|
319 |
+
history_latents = torch.zeros(
|
320 |
+
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
|
321 |
+
dtype=torch.float32
|
322 |
+
).cpu()
|
323 |
history_pixels = None
|
324 |
|
325 |
+
history_latents = torch.cat(
|
326 |
+
[history_latents, start_latent.to(history_latents)],
|
327 |
+
dim=2
|
328 |
+
)
|
329 |
total_generated_latent_frames = 1
|
330 |
|
331 |
for section_index in range(total_latent_sections):
|
|
|
337 |
|
338 |
if not high_vram:
|
339 |
unload_complete_models()
|
340 |
+
move_model_to_device_with_memory_preservation(
|
341 |
+
transformer, target_device=gpu,
|
342 |
+
preserved_memory_gb=gpu_memory_preservation
|
343 |
+
)
|
344 |
|
345 |
if use_teacache:
|
346 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
|
|
350 |
def callback(d):
|
351 |
preview = d['denoised']
|
352 |
preview = vae_decode_fake(preview)
|
|
|
353 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
354 |
+
preview = einops.rearrange(
|
355 |
+
preview,
|
356 |
+
'b c t h w -> (b h) (t w) c'
|
357 |
+
)
|
358 |
|
359 |
if stream.input_queue.top() == 'end':
|
360 |
stream.output_queue.push(('end', None))
|
|
|
363 |
current_step = d['i'] + 1
|
364 |
percentage = int(100.0 * current_step / steps)
|
365 |
hint = f'Sampling {current_step}/{steps}'
|
366 |
+
desc = f'Section {section_index+1}/{total_latent_sections}'
|
367 |
+
stream.output_queue.push(
|
368 |
+
('progress', (preview, desc, make_progress_bar_html(percentage, hint)))
|
369 |
+
)
|
370 |
return
|
371 |
|
372 |
+
indices = torch.arange(
|
373 |
+
0,
|
374 |
+
sum([1, 16, 2, 1, latent_window_size])
|
375 |
+
).unsqueeze(0)
|
376 |
+
(
|
377 |
+
clean_latent_indices_start,
|
378 |
+
clean_latent_4x_indices,
|
379 |
+
clean_latent_2x_indices,
|
380 |
+
clean_latent_1x_indices,
|
381 |
+
latent_indices
|
382 |
+
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
383 |
+
clean_latent_indices = torch.cat(
|
384 |
+
[clean_latent_indices_start, clean_latent_1x_indices],
|
385 |
+
dim=1
|
386 |
+
)
|
387 |
|
388 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
389 |
+
:, :, -sum([16, 2, 1]):, :, :
|
390 |
+
].split([16, 2, 1], dim=2)
|
391 |
+
clean_latents = torch.cat(
|
392 |
+
[start_latent.to(history_latents), clean_latents_1x],
|
393 |
+
dim=2
|
394 |
+
)
|
395 |
|
396 |
generated_latents = sample_hunyuan(
|
397 |
transformer=transformer,
|
|
|
402 |
real_guidance_scale=cfg,
|
403 |
distilled_guidance_scale=gs,
|
404 |
guidance_rescale=rs,
|
|
|
405 |
num_inference_steps=steps,
|
406 |
generator=rnd,
|
407 |
prompt_embeds=llama_vec,
|
|
|
424 |
)
|
425 |
|
426 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
427 |
+
history_latents = torch.cat(
|
428 |
+
[history_latents, generated_latents.to(history_latents)],
|
429 |
+
dim=2
|
430 |
+
)
|
431 |
|
432 |
if not high_vram:
|
433 |
+
offload_model_from_device_for_memory_preservation(
|
434 |
+
transformer, target_device=gpu,
|
435 |
+
preserved_memory_gb=8
|
436 |
+
)
|
437 |
load_model_as_complete(vae, target_device=gpu)
|
438 |
|
439 |
+
real_history_latents = history_latents[
|
440 |
+
:, :, -total_generated_latent_frames:, :, :
|
441 |
+
]
|
442 |
|
443 |
if history_pixels is None:
|
444 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
|
|
446 |
section_latent_frames = latent_window_size * 2
|
447 |
overlapped_frames = latent_window_size * 4 - 3
|
448 |
|
449 |
+
current_pixels = vae_decode(
|
450 |
+
real_history_latents[:, :, -section_latent_frames:], vae
|
451 |
+
).cpu()
|
452 |
+
history_pixels = soft_append_bcthw(
|
453 |
+
history_pixels, current_pixels, overlapped_frames
|
454 |
+
)
|
455 |
|
456 |
if not high_vram:
|
457 |
unload_complete_models()
|
458 |
|
459 |
+
output_filename = os.path.join(
|
460 |
+
outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
|
461 |
+
)
|
462 |
|
463 |
+
save_bcthw_as_mp4(
|
464 |
+
history_pixels, output_filename,
|
465 |
+
fps=30, crf=mp4_crf
|
466 |
+
)
|
467 |
|
468 |
+
print(
|
469 |
+
f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}'
|
470 |
+
)
|
471 |
|
472 |
stream.output_queue.push(('file', output_filename))
|
473 |
+
|
474 |
except:
|
475 |
traceback.print_exc()
|
|
|
476 |
if not high_vram:
|
477 |
unload_complete_models(
|
478 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
|
|
481 |
stream.output_queue.push(('end', None))
|
482 |
return
|
483 |
|
484 |
+
def get_duration(
|
485 |
+
input_image, prompt, t2v, n_prompt, seed,
|
486 |
+
total_second_length, latent_window_size, steps,
|
487 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
488 |
+
):
|
489 |
return total_second_length * 60
|
490 |
|
491 |
@spaces.GPU(duration=get_duration)
|
492 |
+
def process(
|
493 |
+
input_image, prompt, t2v=False, n_prompt="",
|
494 |
+
seed=31337, total_second_length=5, latent_window_size=9,
|
495 |
+
steps=25, cfg=1.0, gs=10.0, rs=0.0,
|
496 |
+
gpu_memory_preservation=6, use_teacache=True, mp4_crf=16
|
497 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
global stream
|
499 |
+
|
|
|
500 |
if t2v:
|
501 |
default_height, default_width = 640, 640
|
502 |
+
input_image = np.ones(
|
503 |
+
(default_height, default_width, 3),
|
504 |
+
dtype=np.uint8
|
505 |
+
) * 255
|
506 |
print("No input image provided. Using a blank white image.")
|
507 |
else:
|
508 |
+
# ImageEditor에서 받은 composite RGBA를 분리
|
509 |
+
composite_rgba_uint8 = input_image["composite"]
|
510 |
|
511 |
+
# rgb_uint8: (H,W,3)
|
512 |
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
513 |
+
# mask_uint8: (H,W)
|
514 |
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
515 |
+
|
516 |
+
# 흰색 배경
|
517 |
h, w = rgb_uint8.shape[:2]
|
518 |
+
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
519 |
+
|
520 |
+
# 알파 노멀라이즈
|
|
|
521 |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
522 |
+
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
523 |
+
|
524 |
+
# 알파 블렌딩
|
525 |
+
blended_image_float32 = \
|
526 |
+
rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
527 |
+
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
|
|
|
|
528 |
|
529 |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
530 |
+
|
531 |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
532 |
|
533 |
stream = AsyncStream()
|
534 |
|
535 |
+
async_run(
|
536 |
+
worker, input_image, prompt, n_prompt, seed,
|
537 |
+
total_second_length, latent_window_size, steps,
|
538 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
539 |
+
)
|
540 |
|
541 |
output_filename = None
|
542 |
|
|
|
545 |
|
546 |
if flag == 'file':
|
547 |
output_filename = data
|
548 |
+
yield (
|
549 |
+
output_filename,
|
550 |
+
gr.update(),
|
551 |
+
gr.update(),
|
552 |
+
gr.update(),
|
553 |
+
gr.update(interactive=False),
|
554 |
+
gr.update(interactive=True)
|
555 |
+
)
|
556 |
|
557 |
+
elif flag == 'progress':
|
558 |
preview, desc, html = data
|
559 |
+
yield (
|
560 |
+
gr.update(),
|
561 |
+
gr.update(visible=True, value=preview),
|
562 |
+
desc, html,
|
563 |
+
gr.update(interactive=False),
|
564 |
+
gr.update(interactive=True)
|
565 |
+
)
|
566 |
|
567 |
+
elif flag == 'end':
|
568 |
+
yield (
|
569 |
+
output_filename,
|
570 |
+
gr.update(visible=False),
|
571 |
+
gr.update(),
|
572 |
+
'',
|
573 |
+
gr.update(interactive=True),
|
574 |
+
gr.update(interactive=False)
|
575 |
+
)
|
576 |
break
|
577 |
|
|
|
578 |
def end_process():
|
579 |
stream.input_queue.push('end')
|
580 |
|
|
|
581 |
quick_prompts = [
|
582 |
'The girl dances gracefully, with clear movements, full of charm.',
|
583 |
+
'A character doing some simple body movements.'
|
584 |
]
|
585 |
quick_prompts = [[x] for x in quick_prompts]
|
586 |
|
587 |
+
# 기존 CSS + 추가로 UI 개선용
|
588 |
+
def make_custom_css():
|
589 |
+
base_progress_css = make_progress_bar_css()
|
590 |
+
# 아래는 예시로 약간 더 파스텔 톤의 스타일 및 카드형 UI
|
591 |
+
extra_css = """
|
592 |
+
body {
|
593 |
+
background: #fafbfe !important;
|
594 |
+
font-family: "Noto Sans", sans-serif;
|
595 |
+
}
|
596 |
+
#title-container {
|
597 |
+
text-align: center;
|
598 |
+
padding: 30px;
|
599 |
+
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
600 |
+
border-radius: 0 0 16px 16px;
|
601 |
+
margin-bottom: 20px;
|
602 |
+
}
|
603 |
+
#title-container h1 {
|
604 |
+
color: white;
|
605 |
+
font-size: 2.2rem;
|
606 |
+
margin: 0;
|
607 |
+
font-weight: 800;
|
608 |
+
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
609 |
+
}
|
610 |
+
.gr-panel {
|
611 |
+
background: #ffffffcc;
|
612 |
+
backdrop-filter: blur(4px);
|
613 |
+
border: 1px solid #dcdcf7;
|
614 |
+
border-radius: 12px;
|
615 |
+
padding: 16px;
|
616 |
+
margin-bottom: 8px;
|
617 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
618 |
+
}
|
619 |
+
.gr-box > label {
|
620 |
+
font-size: 0.9rem;
|
621 |
+
font-weight: 600;
|
622 |
+
color: #333;
|
623 |
+
}
|
624 |
+
.button-container button {
|
625 |
+
min-height: 48px;
|
626 |
+
font-size: 1rem;
|
627 |
+
font-weight: 600;
|
628 |
+
border-radius: 8px;
|
629 |
+
border: none !important;
|
630 |
+
}
|
631 |
+
.button-container button#start-button {
|
632 |
+
background-color: #4b9ffa !important;
|
633 |
+
color: #fff;
|
634 |
+
}
|
635 |
+
.button-container button#stop-button {
|
636 |
+
background-color: #ef5d84 !important;
|
637 |
+
color: #fff;
|
638 |
+
}
|
639 |
+
.button-container button:hover {
|
640 |
+
filter: brightness(0.97);
|
641 |
+
}
|
642 |
+
.no-generating-animation {
|
643 |
+
margin-top: 10px;
|
644 |
+
margin-bottom: 10px;
|
645 |
+
}
|
646 |
+
"""
|
647 |
+
return base_progress_css + extra_css
|
648 |
+
|
649 |
+
css = make_custom_css()
|
650 |
|
|
|
651 |
block = gr.Blocks(css=css).queue()
|
652 |
with block:
|
653 |
+
# 상단 그라디언트 영역
|
654 |
+
with gr.Box(elem_id="title-container"):
|
655 |
+
gr.Markdown("<h1>FramePack I2V</h1>")
|
656 |
+
|
657 |
+
# 설명 부분
|
658 |
+
gr.Markdown("""
|
659 |
+
### Video diffusion, but feels like image diffusion
|
660 |
+
FramePack I2V - a model that predicts future frames from history frames,
|
661 |
+
enabling you to generate short animations from a single image and a text prompt.<br><br>
|
662 |
+
***beta FramePack Fill*** - You can also paint over the input image to inpaint the video output.
|
663 |
""")
|
664 |
+
|
665 |
with gr.Row():
|
666 |
with gr.Column():
|
667 |
+
input_image = gr.ImageEditor(
|
668 |
+
type="numpy",
|
669 |
+
label="Image (click 'Brush' tool to mask)",
|
670 |
+
height=320,
|
671 |
+
brush=gr.Brush(colors=["#ffffff"])
|
672 |
+
)
|
673 |
prompt = gr.Textbox(label="Prompt", value='')
|
|
|
|
|
|
|
674 |
|
675 |
+
t2v = gr.Checkbox(
|
676 |
+
label="Generate from Text Only (no image)?",
|
677 |
+
value=False
|
678 |
+
)
|
679 |
+
example_quick_prompts = gr.Dataset(
|
680 |
+
samples=quick_prompts,
|
681 |
+
label="Quick Prompt Picks",
|
682 |
+
samples_per_page=1000,
|
683 |
+
components=[prompt]
|
684 |
+
)
|
685 |
+
example_quick_prompts.click(
|
686 |
+
fn=lambda x: x[0],
|
687 |
+
inputs=[example_quick_prompts],
|
688 |
+
outputs=prompt,
|
689 |
+
show_progress=False,
|
690 |
+
queue=False
|
691 |
+
)
|
692 |
+
|
693 |
+
with gr.Row(elem_classes="button-container"):
|
694 |
+
start_button = gr.Button(value="Start Generation", elem_id="start-button")
|
695 |
+
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
696 |
+
|
697 |
+
total_second_length = gr.Slider(
|
698 |
+
label="Total Video Length (sec)",
|
699 |
+
minimum=1,
|
700 |
+
maximum=5,
|
701 |
+
value=2,
|
702 |
+
step=0.1
|
703 |
+
)
|
704 |
|
|
|
705 |
with gr.Group():
|
706 |
+
with gr.Accordion("Advanced Settings", open=False):
|
707 |
+
use_teacache = gr.Checkbox(
|
708 |
+
label='Use TeaCache',
|
709 |
+
value=True,
|
710 |
+
info='Faster speed but can degrade finger/hand details'
|
711 |
+
)
|
712 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
713 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
714 |
+
|
715 |
+
latent_window_size = gr.Slider(
|
716 |
+
label="Latent Window Size",
|
717 |
+
minimum=1,
|
718 |
+
maximum=33,
|
719 |
+
value=9,
|
720 |
+
step=1,
|
721 |
+
visible=False
|
722 |
+
)
|
723 |
+
steps = gr.Slider(
|
724 |
+
label="Steps",
|
725 |
+
minimum=1,
|
726 |
+
maximum=100,
|
727 |
+
value=25,
|
728 |
+
step=1,
|
729 |
+
info='Not recommended to change significantly.'
|
730 |
+
)
|
731 |
+
cfg = gr.Slider(
|
732 |
+
label="CFG Scale",
|
733 |
+
minimum=1.0,
|
734 |
+
maximum=32.0,
|
735 |
+
value=1.0,
|
736 |
+
step=0.01,
|
737 |
+
visible=False
|
738 |
+
)
|
739 |
+
gs = gr.Slider(
|
740 |
+
label="Distilled CFG Scale",
|
741 |
+
minimum=1.0,
|
742 |
+
maximum=32.0,
|
743 |
+
value=10.0,
|
744 |
+
step=0.01,
|
745 |
+
info='Not recommended to change significantly.'
|
746 |
+
)
|
747 |
+
rs = gr.Slider(
|
748 |
+
label="CFG Re-Scale",
|
749 |
+
minimum=0.0,
|
750 |
+
maximum=1.0,
|
751 |
+
value=0.0,
|
752 |
+
step=0.01,
|
753 |
+
visible=False
|
754 |
+
)
|
755 |
+
gpu_memory_preservation = gr.Slider(
|
756 |
+
label="GPU Memory Preservation (GB)",
|
757 |
+
minimum=6,
|
758 |
+
maximum=128,
|
759 |
+
value=6,
|
760 |
+
step=0.1,
|
761 |
+
info="Increase if OOM occurs (slower speed)."
|
762 |
+
)
|
763 |
+
mp4_crf = gr.Slider(
|
764 |
+
label="MP4 Compression (CRF)",
|
765 |
+
minimum=0,
|
766 |
+
maximum=100,
|
767 |
+
value=16,
|
768 |
+
step=1,
|
769 |
+
info="Lower is higher quality. 16 is recommended."
|
770 |
+
)
|
771 |
|
772 |
with gr.Column():
|
773 |
+
preview_image = gr.Image(label="Preview Latents", height=200, visible=False)
|
774 |
+
result_video = gr.Video(label="Generated Video", autoplay=True, height=512, loop=True)
|
775 |
+
|
776 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
777 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
778 |
|
779 |
+
gr.HTML("""
|
780 |
+
<div style="text-align:center; margin-top:20px;">
|
781 |
+
Share your creations or find inspiration by searching
|
782 |
+
<a href="https://x.com/search?q=framepack&f=live" target="_blank">#framepack</a> on Twitter (X)!
|
783 |
+
</div>
|
784 |
+
""")
|
785 |
|
786 |
+
# 함수 연결
|
787 |
+
ips = [
|
788 |
+
input_image, prompt, t2v, n_prompt, seed,
|
789 |
+
total_second_length, latent_window_size, steps,
|
790 |
+
cfg, gs, rs, gpu_memory_preservation,
|
791 |
+
use_teacache, mp4_crf
|
792 |
+
]
|
793 |
+
start_button.click(
|
794 |
+
fn=process,
|
795 |
+
inputs=ips,
|
796 |
+
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
|
797 |
+
)
|
798 |
end_button.click(fn=end_process)
|
799 |
|
800 |
+
# 예제 버튼 (원한다면 주석 해제)
|
801 |
# gr.Examples(
|
802 |
+
# examples=examples,
|
803 |
# inputs=[input_image, prompt],
|
804 |
# outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
805 |
# fn=generate_examples,
|
806 |
# cache_examples=True
|
807 |
+
# )
|
|
|
808 |
|
809 |
block.launch(share=True)
|