File size: 7,058 Bytes
9a2407d
 
 
 
2b42f4f
ef07f3f
 
 
 
0e514e1
 
ef07f3f
 
9a2407d
ef07f3f
 
 
 
 
 
 
0e514e1
ef07f3f
15cef53
9a2407d
 
15cef53
9a2407d
ef07f3f
0e514e1
ef07f3f
 
 
 
 
0e514e1
15cef53
ef07f3f
9a2407d
 
 
 
 
0e514e1
ef07f3f
9a2407d
 
0e514e1
9a2407d
 
ef07f3f
9a2407d
 
 
 
ef07f3f
 
 
 
0e514e1
ef07f3f
15cef53
9a2407d
15cef53
 
 
9a2407d
15cef53
 
 
 
9a2407d
 
15cef53
9a2407d
ef07f3f
 
 
 
 
9a2407d
2b42f4f
ef07f3f
0e514e1
15cef53
9a2407d
 
0e514e1
15cef53
9a2407d
 
ef07f3f
0e514e1
9a2407d
 
 
 
 
2b42f4f
9a2407d
 
ef07f3f
9a2407d
15cef53
 
9a2407d
ef07f3f
 
 
 
0e514e1
ef07f3f
15cef53
9a2407d
15cef53
9a2407d
ef07f3f
 
 
9a2407d
ef07f3f
 
0e514e1
15cef53
9a2407d
 
0e514e1
9a2407d
 
 
 
 
0e514e1
9a2407d
 
 
 
 
0e514e1
9a2407d
0e514e1
ef07f3f
9a2407d
15cef53
 
9a2407d
ef07f3f
9a2407d
 
 
0e514e1
ef07f3f
9a2407d
 
ef07f3f
9a2407d
 
 
 
 
 
 
0e514e1
9a2407d
 
 
 
4c6ee84
9a2407d
 
 
 
 
 
 
 
 
0e514e1
9a2407d
 
 
 
 
 
 
 
 
 
 
 
 
0e514e1
9a2407d
 
 
 
 
ef07f3f
9a2407d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Install required packages with version locking
from google.colab import drive
drive.mount('/content/drive')
!pip install deepface==0.0.79 tensorflow==2.10.0 opencv-python-headless==4.7.0.72

import gradio as gr
import json
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import os
import pandas as pd
import shutil

def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    img1_path = os.path.join(temp_dir, "image1.jpg")
    img2_path = os.path.join(temp_dir, "image2.jpg")
    
    try:
        # Save images
        Image.fromarray(img1).save(img1_path) if isinstance(img1, np.ndarray) else img1.save(img1_path)
        Image.fromarray(img2).save(img2_path) if isinstance(img2, np.ndarray) else img2.save(img2_path)

        # Verify faces with proper API parameters
        result = DeepFace.verify(
            img1_path=img1_path, 
            img2_path=img2_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold
        )
        
        # Create visualization
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
        for idx, path in enumerate([img1_path, img2_path]):
            img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
            ax[idx].imshow(img)
            ax[idx].set_title(f"Image {idx+1}")
            ax[idx].axis("off")
        
        confidence = round((1 - result["distance"]) * 100, 2)
        plt.suptitle(f"{'βœ… MATCH' if result['verified'] else '❌ NO MATCH'}\nConfidence: {confidence}%", 
                    fontsize=14, y=1.05)
        
        return fig, result
    
    except Exception as e:
        return None, {"error": str(e)}
    
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    query_path = os.path.join(temp_dir, "query.jpg")
    
    try:
        # Save query image
        Image.fromarray(query_img).save(query_path) if isinstance(query_img, np.ndarray) else query_img.save(query_path)

        # Handle database path
        if isinstance(db_folder, str):
            db_path = db_folder
        else:
            db_path = os.path.join(temp_dir, "db")
            os.makedirs(db_path, exist_ok=True)
            for i, file in enumerate(db_folder):
                ext = os.path.splitext(file.name)[1]
                shutil.copy(file.name, os.path.join(db_path, f"img_{i}{ext}"))

        # Find faces with corrected API parameters
        dfs = DeepFace.find(
            img_path=query_path,
            db_path=db_path,
            model_name=model,
            distance_metric="cosine",
            enforce_detection=False,
            silent=True
        )
        
        # Process results
        df = dfs[0] if isinstance(dfs, list) else dfs
        df = df[df['distance'] <= threshold].sort_values('distance')
        
        # Create visualization
        fig, axes = plt.subplots(1, min(4, len(df)) if len(df) > 0 else plt.subplots(1, 1))
        axes[0].imshow(cv2.cvtColor(cv2.imread(query_path), cv2.COLOR_BGR2RGB))
        axes[0].set_title("Query Image")
        
        for idx, (_, row) in enumerate(df.head(3).iterrows()):
            if idx >= len(axes)-1: break
            match_img = cv2.cvtColor(cv2.imread(row['identity']), cv2.COLOR_BGR2RGB)
            axes[idx+1].imshow(match_img)
            axes[idx+1].set_title(f"Match {idx+1}\n{row['distance']:.2f}")
        
        return fig, df[['identity', 'distance']].to_dict('records')
    
    except Exception as e:
        return None, {"error": str(e)}
    
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
    temp_dir = tempfile.mkdtemp()
    img_path = os.path.join(temp_dir, "analyze.jpg")
    
    try:
        # Save image
        Image.fromarray(img).save(img_path) if isinstance(img, np.ndarray) else img.save(img_path)

        # Analyze face
        results = DeepFace.analyze(
            img_path=img_path,
            actions=actions,
            enforce_detection=False,
            detector_backend='opencv'
        )
        
        # Process results
        results = results if isinstance(results, list) else [results]
        fig = plt.figure(figsize=(10, 5))
        
        # Display main image
        plt.subplot(121)
        plt.imshow(cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB))
        plt.title("Input Image")
        plt.axis('off')
        
        # Display attributes
        plt.subplot(122)
        attrs = {k:v for res in results for k,v in res.items() if k != 'region'}
        plt.barh(list(attrs.keys()), list(attrs.values()))
        plt.title("Analysis Results")
        
        return fig, results
    
    except Exception as e:
        return None, {"error": str(e)}
    
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)

# Gradio interface
with gr.Blocks(title="Face Analysis Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ” Face Analysis Toolkit")
    
    with gr.Tabs():
        with gr.Tab("Verify Faces"):
            gr.Markdown("## Compare two faces")
            with gr.Row():
                img1 = gr.Image(type="pil", label="First Face")
                img2 = gr.Image(type="pil", label="Second Face")
            thresh = gr.Slider(0.1, 1.0, 0.6, label="Matching Threshold")
            model = gr.Dropdown(["VGG-Face", "Facenet", "OpenFace"], value="VGG-Face")
            verify_btn = gr.Button("Compare Faces")
            result_plot = gr.Plot()
            result_json = gr.JSON()
            
            verify_btn.click(
                verify_faces, 
                [img1, img2, thresh, model], 
                [result_plot, result_json]
            )
        
        with gr.Tab("Find Faces"):
            gr.Markdown("## Find similar faces in database")
            query = gr.Image(type="pil", label="Query Image")
            db = gr.Textbox("/content/drive/MyDrive/db", label="Database Path")
            files = gr.File(file_count="multiple", label="Or upload files")
            find_btn = gr.Button("Search Faces")
            matches_plot = gr.Plot()
            matches_json = gr.JSON()
            
            find_btn.click(
                find_faces, 
                [query, db, thresh, model], 
                [matches_plot, matches_json]
            )
            files.change(lambda x: None, [files], [db])
        
        with gr.Tab("Analyze Face"):
            gr.Markdown("## Analyze facial attributes")
            inp_img = gr.Image(type="pil", label="Input Image")
            analyze_btn = gr.Button("Analyze")
            analysis_plot = gr.Plot()
            analysis_json = gr.JSON()
            
            analyze_btn.click(
                analyze_face, 
                [inp_img], 
                [analysis_plot, analysis_json]
            )

demo.launch()